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MONOTONE ITERATIVE METHOD AND REGULAR SINGULAR
NONLINEAR BVP IN THE PRESENCE OF REVERSE

ORDERED UPPER AND LOWER SOLUTIONS

AMIT K. VERMA

Abstract. Monotone iterative technique is employed for studying the exis-
tence of solutions to the second-order nonlinear singular boundary value prob-
lem

−
`
p(x)y′(x)

´′
+ p(x)f

`
x, y(x), p(x)y′(x)

´
= 0

for 0 < x < 1 and y′(0) = y′(1) = 0. Here p(0) = 0 and xp′(x)/p(x) is analytic
at x = 0. The source function f(x, y, py′) is Lipschitz in py′ and one sided
Lipschitz in y. The initial approximations are upper solution u0(x) and lower
solution v0(x) which can be ordered in one way v0(x) ≤ u0(x) or the other
u0(x) ≤ v0(x).

1. Introduction

Recently, there have been a lot of activity as far as upper and lower solu-
tions technique is considered (see [1, 2, 3] and the references therein). In most
of the results upper and solutions are well ordered; i.e., u0(x) ≥ v0(x). But lit-
erature is not rich for the case of reverse ordered upper and lower solutions; i.e.,
u0(x) ≤ v0(x). Though results are available for nonsingular boundary value prob-
lems (p(x)=constant) but singular boundary value problems require attention. The
details of the work done for the nonsingular problem when upper and lower solutions
are in reverse order can be seen in [2] and the references therein. To fill this gap in
our recent result ([3]) we consider the singular boundary value problem of the form
−

(
xαy′(x)

)′+xαf
(
x, y(x), xαy′(x)

)
= 0, α ≥ 1 for 0 < x < 1 and y′(0) = y′(1) = 0

with upper and lower solution in one order (u0 ≥ v0) or the other (u0 ≤ v0). We
prove the existence of the solutions under quite general conditions. This problem is
simple and its advantage is that for the corresponding linear problem we obtain the
solutions in terms of Bessel functions. Bessel functions have some in built simplicity
which helps us in proving the results very easily. In the present paper we consider
a generalized problem

−
(
p(x)y′(x)

)′ + p(x)f
(
x, y(x), p(x)y′(x)

)
= 0, 0 < x < 1. (1.1)
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We replace the term xα in the boundary value problem considered in [3] with a
general function p(x). So in built simplicity due to Bessel functions is not there
with us in this paper. Here the source function f(x, y, py′) is derivative dependent
and boundary conditions are again of Neumann type and is written as

y′(0) = 0, y′(1) = 0. (1.2)

Let p(x) satisfy the following conditions:
(A1) (i) p(0) = 0 and p > 0 in (0, 1).

(ii) p ∈ C[0, 1] ∩ C1(0, 1) and
(iii) for some r > 1, xp′(x)

p(x) is analytic in {z : |z| < r}.
(iv)

∫ 1

0
dt

p(t) = ∞.

In this work we consider a computationally simple iterative scheme defined by

−
(
p(x)y′n(x)

)′ + λp(x)yn(x) = −p(x)f
(
x, yn−1, py′n−1

)
+ λp(x)yn−1(x) (1.3)

y′n(0) = 0, y′n(1) = 0. (1.4)

The main aim of this work is to extend our earlier work in [3]. Now we do not know
the solutions explicitly in terms of Bessel functions. Instead we have singular linear
boundary-value problems which we have to analyze and properties of the solutions
is to be extracted. We have arranged the paper in 4 sections. In Section 2 we discuss
some elementary results, e.g., maximum principles and existence of two differential
inequalities. Then using these elementary results we establish existence results for
well ordered upper and lower solutions in Section 3 and for reverse ordered upper
and lower solutions in Section 4. We conclude this article with some remarks.

2. Preliminaries

Let h(x) ∈ C[0, 1] and λ ∈ R0, R0 = R \ {0}, A ∈ R and B ∈ R. Now, consider
the class of linear singular problems

− (p(x)y′(x))′ + λp(x)y(x) = p(x)h(x), 0 < x < 1, (2.1)

y′(0) = A, y′(1) = B. (2.2)

The corresponding homogeneous system (eigenvalue problem) is given by

−
(
p(x)y′(x)

)′ + λp(x)y(x) = 0, 0 < x < 1, (2.3)

y′(0) = 0, y′(1) = 0. (2.4)

Remark 2.1. Since xp′/p is analytic at x = 0, the point x = 0 is a regular sin-
gular point of (2.3). Thus using Frobenius series method two linearly independent
solutions can be computed (see [4, 5, Lemma 2]). If p = xα these Frobenius series
solutions can be written in terms of Bessel functions.

It is easy to verify that all the eigenvalues of the Sturm-Liouville problem (2.3)–
(2.4) are real, negative and simple.

The solution of the nonhomogeneous problem (2.1)-(2.2) can be written as

w(x) = z1(x)
[ ∫ x

0

p(t)h(t)z0(t)
Wp(z1, z0)

dt +
A

z′1(0)

]
+ z0(x)

[ ∫ 1

x

p(t)h(t)z1(t)
Wp(z1, z0)

dt +
B

z′0(1)

] (2.5)
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where z0(x, λ) is the solution of

−
(
p(x)z′0(x)

)′ + λp(x)z0(x) = 0, 0 < x < 1,

z0(0) = 1, z′0(0) = 0,
(2.6)

and z1(x, λ) is the solution of

−
(
p(x)z′1(x)

)′ + λp(x)z1(x) = 0, 0 < x < 1,

z1(1) = 1, z′1(1) = 0
(2.7)

and Wp(z1, z0) = p(t) (z1z
′
0 − z′1z0). By replacing x with 1− x in (2.6) it is easy to

verify that
z1(x) = z0(1− x)

for both positive and negative values of λ.

Remark 2.2. We have z0 and z1 as two linearly independent solutions (Frobenius
Series Solution) of (2.3). Eigenvalues of the eigenvalue problem (2.3)–(2.4) are the
zeros of z′0(1, λ). z′0(1, λ) is an analytic function of λ so its zeros are isolated and
they all will be negative. Let them be −λ0,−λ1,−λ2, . . . such that λi > 0 for
i = 0, 1, 2, . . . . Where −λ0 is the first negative zero of z′0(1, λ) or in other words
first negative eigenvalue of (2.3)–(2.4).

Since z0(x, λ) does not change its sign for −λ0 < λ < 0 and z0(0, λ) = 1 therefore
z0(x, λ) > 0 for all x ∈ [0, 1] and for all −λ0 < λ < 0.

Remark 2.3. Using (2.6) and the fact that z1(x) = z0(1 − x) it is easy to prove
that if λ > 0 then for all x ∈ (0, 1], z0(x) > 1 and z′0(x) > 0 and for all x ∈ [0, 1)
we have z1(x) > 1 and z′1(x) < 0.

Remark 2.4. Using Remark 2.2, z1(x) = z0(1 − x) and the differential equation
(2.7) it is easy to prove that if −λ0 < λ < 0 for all x ∈ [0, 1), z0(x) > 0 and
z′1(x) > 0 and for all x ∈ (0, 1] we have z′0(x) < 0 and z1(x) > 0.

Remark 2.5. Let λ > 0 and h ∈ C[0, 1]. If h ≥ 0 (or h ≤ 0) then∫ x

0

p(t)h(t)z0(t)
Wp(z1, z0)

dt and
∫ 1

x

p(t)h(t)z1(t)
Wp(z1, z0)

dt

are non-negative (or non-positive).

Remark 2.6. Let −λ0 < λ < 0 and h ∈ C[0, 1]. If h ≥ 0 (or h ≤ 0) then∫ x

0

p(t)h(t)z0(t)
Wp(z1, z0)

dt and
∫ 1

x

p(t)h(t)z1(t)
Wp(z1, z0)

dt

are non-positive (or non-negative).

Proposition 2.7 (Maximum Principle). Let λ > 0. If A ≤ 0, B ≥ 0 (or A ≥ 0,
B ≤ 0) and h ∈ C[0, 1] such that h ≥ 0 (or h ≤ 0), then w(x) ≥ 0 (or w(x) ≤ 0),
where w(x) is the solution of (2.1)-(2.2).

Proposition 2.8 (Anti-maximum Principle). Let −λ0 < λ < 0. If A ≤ 0, B ≥ 0
(or A ≥ 0, B ≤ 0) and h ∈ C[0, 1] such that h ≥ 0 (or h ≤ 0), then w(x) ≤ 0 (or
w(x) ≥ 0), where w(x) is the solution of (2.1)-(2.2).

Now we derive conditions on λ which will help us to prove the monotonicity of
the solutions generated by iterative scheme (1.3)-(1.4).
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Lemma 2.9. Let M and N ∈ R+. If λ > 0 such that

λ ≥ M
(
1−N

∫ 1

0

p(t)dt
)−1

,

then for all x ∈ [0, 1],

(M − λ)z0(x) + Np(x)z′0(x) ≤ 0. (2.8)

Proof. Integrating (2.6) from 0 to x and using that z′0(x) > 0 in (0, 1] we obtain

p(x)z′0(x) ≤ λz0(x)
∫ 1

0

p(t)dt.

Therefore we obtain (M − λ)z0(x) + Np(x)z′0(x) ≤ (M − λ)z0 + Nλz0(x)
∫ 1

0
p(t)dt.

Hence (2.8) will hold if (M − λ) + Nλ
∫ 1

0
p(t)dt ≤ 0. Hence the result. �

Lemma 2.10. Let M and N ∈ R+. If −λ0 < λ < 0 is such that

−
( ∫ 1

0

1
p(x)

∫ x

0

p(t) dt dx
)−1

< λ < −M

and

(M + λ)
(
1 + λ

∫ 1

0

1
p(x)

∫ x

0

p(t) dt dx
)
−Nλ

∫ 1

0

p(x)dx ≤ 0

then for all x ∈ [0, 1],

(M + λ)z0(x)−Np(x)z′0(x) ≤ 0. (2.9)

Proof. Using (2.6) and Remark 2.4 it can be deduced that z0(x) and p(x)z′0(x) are
decreasing functions of x for −λ0 < λ < 0, thus

(M + λ)z0(x)−Np(x)z′0(x) ≤ (M + λ)z0(1)−Np(1)z′0(1).

Now using (2.6) we obtain

−p(1)z′0(1) ≤ (−λ)
∫ 1

0

p(x)dx and z0(1) > 1 + λ

∫ 1

0

1
p(x)

∫ x

0

p(t) dt dx.

Which completes the proof. �

3. Well-ordered upper and lower solutions

Let us define upper and lower solutions:
A function u0 ∈ C2[0, 1] is an upper solution of (1.1)-(1.2) if

−(pu′0)
′ + p(x)f(x, u0, pu′0) ≥ 0, 0 < x < 1;

u′0(0) ≤ 0 ≤ u′0(1).
(3.1)

A function v0 ∈ C2[0, 1] is a lower solution of (1.1)-(1.2) if

−(pv′0)
′ + p(x)f(x, v0, pv′0) ≤ 0, 0 < x < 1;

v′0(0) ≥ 0 ≥ v′0(1).
(3.2)

Now, for every n, problem (1.3)-(1.4) has a unique solution yn+1 given by (2.5)
with h(x) = −f(x, y′n, py′n) + λyn, A = 0 and B = 0.

In this section we show that for the proposed scheme (1.3)-(1.4) a good choice of
λ is possible so that the solutions generated by the approximation scheme converge
monotonically to solutions of (1.1)-(1.2). We require a number of results.
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Lemma 3.1. Let λ > 0. If un is an upper solution of (1.1)-(1.2) and un+1 is
defined by (1.3)-(1.4) then un+1 ≤ un.

Proof. Let wn = un+1 − un, then

−(pw′n)′ + λpwn = (pu′n)′ − pf(x, un, pu′n) ≤ 0,

w′n(0) ≥ 0, w′n(1) ≤ 0,

and using Proposition 2.7 we have un+1 ≤ un. �

For the next proposition we use the following assumptions:
(H1) there exists upper solution (u0) and lower solution (v0) in C2[0, 1] such that

v0 ≤ u0 for all x ∈ [0, 1];
(H2) the function f : D → R is continuous on

D := {(x, y, py′) ∈ [0, 1]×R×R : v0 ≤ y ≤ u0};
(H3) there exists M ≥ 0 such that for all (x, τ, pv′), (x, σ, pv′) ∈ D,

f(x, τ, pv′)− f(x, σ, pv′) ≥ M(τ − σ), (τ ≤ σ);

(H4) there exist N ≥ 0 such that for all (x, u,pv′1), (x, u, pv′2) ∈ D,

|f(x, u, pv′1)− f(x, u, pv′2)| ≤ N |pv′2 − pv′1|.

Proposition 3.2. Assume (H1)–(H4), and let λ > 0 such that

λ ≥ M
(
1−N

∫ 1

0

p(t)dt
)−1

.

Then the functions un+1 defined recursively by (1.3)-(1.4) are such that for all
n ∈ N,

(i) un is an upper solution of (1.1)-(1.2).
(ii) un+1 ≤ un.

Proof. We prove the claims by the principle of mathematical induction. Since u0

is an upper solution and by Lemma 3.1 u0 ≥ u1, therefore both the claims are true
for n = 0.

Further, let the claims be true for n − 1; i.e., un−1 is an upper solution and
un−1 ≥ un. Now we are required to prove that un is an upper solution and un+1 ≤
un. To prove this let w = un − un−1, then we have

−(pu′n)′ + pf(x, un, pu′n) ≥ p[(M − λ)w −N(signw′)pw′].

Thus to prove that un is an upper solution we require to prove that

(M − λ)w −N(signw′)pw′ ≥ 0. (3.3)

Now, since w satisfies

−(pw′)′ + λpw = (pu′n−1)
′ − pf(x, un−1, pu′n−1) ≤ 0, w′(0) ≥ 0, w′(1) ≤ 0,

from Proposition 2.7 we have w ≤ 0 for λ > 0. Now, putting the value of w from
(2.5) in (3.3) and in view of h = (pu′n−1)

′ − pf(x, un−1, pu′n−1) ≤ 0 we deduce that
to prove (3.3) it is sufficient to prove that

(M − λ)z0 −N(sign w′)pz′0 ≤ 0

and
(M − λ)z1 −N(sign w′)pz′1 ≤ 0



6 A. K. VERMA EJDE-2012/04

for all x ∈ [0, 1]. Since z1 = z0(1− x), using Remark 2.5, above inequalities will be
true if for all x ∈ [0, 1] we have

(M − λ)z0(x) + Np(x)z′0(x) ≤ 0,

and which is true (by Lemma 2.9). Therefore (3.3) holds and hence un is an upper
solution.

Now applying Lemma 3.1 we deduce that un+1 ≤ un. This completes the proof.
�

Similarly we can prove the following two results (Lemma 3.3, Proposition 3.4)
for lower solutions.

Lemma 3.3. Let λ > 0. If vn is a lower solution of (1.1)-(1.2) and vn+1 is defined
by (1.3)-(1.4) then vn ≤ vn+1.

Proposition 3.4. Assume that (H1)–(H4) hold and let λ > 0 be such that λ ≥
M

(
1 − N

∫ 1

0
p(t)dt

)−1. Then the functions vn+1 defined recursively by (1.3)-(1.4)
are such that for all n ∈ N,

(i) vn is a lower solution of (1.1)-(1.2).
(ii) vn ≤ vn+1.

In the next result we prove that upper solution un is larger than lower solution
vn for all n.

Proposition 3.5. Assume that (H1)–(H4) hold and let λ > 0 such that λ ≥ M
(
1−

N
∫ 1

0
p(t)dt

)−1 and for all x ∈ [0, 1]

f(x, v0, pv′0)− f(x, u0, pu′0) + λ(u0 − v0) ≥ 0.

Then for all n ∈ N, the functions un and vn defined recursively by (1.3)-(1.4) satisfy
vn ≤ un.

Proof. We define a function

hi(x) = f(x, vipv′i)− f(x, ui, pu′i) + λ(ui − vi), i ∈ N.

It is easy to see that for all i ∈ N, wi = ui − vi satisfies the differential equation

−(pw′i)
′ + λpwi = p{f(x, vi−1, pv′i−1)− f(x, ui−1, pu′i−1) + λ(ui−1 − vi−1)}

= phi−1 .

To prove this proposition we use again the principle of mathematical induction. For
i = 1 we have h0 ≥ 0 and w1 is the solution of (2.1)-(2.2) with A = 0 and B = 0.
Using Proposition 2.7 we deduce that w1 ≥ 0; i.e., u1 ≥ v1.

Now, let n ≥ 2, hn−2 ≥ 0 and un−1 ≥ vn−1, then we are required to prove that
hn−1 ≥ 0 and un ≥ vn. First we show that for all x ∈ [0, 1] the function hn−1 is
non-negative. Indeed we have

hn−1 = f(x, vn−1, pv′n−1)− f(x, un−1, pu′n−1) + λ(un−1 − vn−1)

≥ −[(M − λ)wn−1 + N(sign w′n−1)pw′n−1].

Here wn−1 is a solution of (2.1) with h(x) = hn−2 ≥ 0, A = 0 and B = 0.
Arguments similar to the Proposition 3.2 can be used to prove that hn−1 ≥ 0.
Now, we have hn−1 ≥ 0, w′n(0) = 0 and w′n(1) = 0 thus from Proposition 2.7 we
deduce that wn ≥ 0, i.e., un ≥ vn.

�
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For the next lemma we use the assumption
(H5) For all (x, u, pu′) ∈ D, |f(x, u, pu′)| ≤ ϕ(|pu′|) where ϕ : [0,∞) → (0,∞) is

continuous and satisfies∫ ∞

0

ds

ϕ(s)
>

∫ 1

0

p(x)dx.

Lemma 3.6. If f(x, u, pu′) satisfies (H1), (H2), (H5), then there exists R0 > 0
such that any solution of

−(pu′)′ + pf(x, u, pu′) ≥ 0, 0 < x < 1, u′(0) = 0 = u′(1)

with u ∈ [v0, u0] for all x ∈ [0, 1], satisfies ‖pu′‖∞ < R0.

Proof. Consider an interval [x, x0] ⊂ [0, 1] such that for all s ∈ [x, x0),

u′(s) < 0 and u′(x0) = 0.

Now using (H5) we have
(pu′)′ ≤ pϕ(|pu′|)

and after integrating it from x to x0 and using (H5) we have −pu′ ≤ R0. Similarly
for the interval [x0, x] we have pu′ ≤ R0. Thus ‖pu′‖∞ ≤ R0. �

In the same way we can prove the following result for lower solutions.

Lemma 3.7. If f(x, v, pv′) satisfies (H1), (H2), (H5), then there exists R0 > 0
such that any solution of

−(pv′)′ + pf(x, v, pv′) ≤ 0, 0 < x < 1, v′(0) = 0 = v′(1)

with v ∈ [v0, u0] for all x ∈ [0, 1], satisfies ‖pv′‖∞ < R0.

Now we are in a situation to prove the our final result for the case when upper
and lower solutions are well ordered.

Theorem 3.8. Assume (H1)–(H5) hold. Let λ > 0 be such that

λ ≥ M
(
1−N

∫ 1

0

p(t)dt
)−1

and for all the x ∈ [0, 1],

f(x, v0, pv′0)− f(x, u0, pu′0) + λ(u0 − v0) ≥ 0.

Then the sequences un and vn defined by (1.3)–(1.4) converge monotonically to so-
lutions ũ(x) and ṽ(x) of (1.1)-(1.2). Any solution z(x) of (1.1)-(1.2) in D satisfies

ṽ(x) ≤ z(x) ≤ ũ(x).

Proof. Using Lemma 3.1 to Lemma 3.7 and Proposition 3.2 to Proposition 3.5 we
deduce that sequences {un} and {vn} are monotonic (u0 ≥ u1 ≥ u2 · · · ≥ un ≥
vn · · · ≥ v2 ≥ v1 ≥ v0) and are bounded by v0 and u0 in C[0, 1] and by Dini’s
theorem they converge uniformly to ũ and ṽ (say). We can also deduce that the se-
quences {pu′n} and {pv′n} are uniformly bounded and equi-continuous in C[0, 1] and
by Arzela-Ascoli theorem there exists uniformly convergent subsequences {pu′nk

}
and {pv′nk

} in C[0, 1]. It is easy to observe that un → ũ and vn → ṽ implies
pu′n → pũ′ and pṽ′n → pṽ′.

Solution of (1.3)-(1.4) is given by (2.5) where h(x) = −pf(x, yn−1, py′n−1) +
λpyn−1. Since the sequences are uniformly convergent taking limit as n → ∞ we
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obtain ũ and ṽ as the solutions of the nonlinear boundary value problem (1.1)-
(1.2). Any solution z(x) in D plays the role of u0. Hence z(x) ≥ ṽ(x). Similarly
one concludes that z(x) ≤ ũ(x). �

Remark 3.9. When the source function is derivative independent; i.e., N = 0. In
this case we can choose λ = M .

4. Upper and lower solutions in reverse order

In this section we consider the case when the upper and lower solutions are in
reverse order; i.e., u0(x) ≤ v0(x). For this we require opposite one-sided Lipschitz
condition and we assume that

(F1) there exists upper solution (u0) and lower solution (v0) in C2[0, 1] such that
u0 ≤ v0 for all x ∈ [0, 1];

(F2) the function f : D0 → R is continuous on

D0 := {(x, y, py′) ∈ [0, 1]×R×R : u0 ≤ y ≤ v0};
(F3) there exists M ≥ 0 such that for all (x, τ̃ , pv′), (x, σ̃, pv′) ∈ D0,

f(x, σ̃, pv′)− f(x, τ̃ , pv′) ≥ −M(σ̃ − τ̃), (τ̃ ≤ σ̃);

(F4) there exist N ≥ 0 such that for all (x, u,pv′1), (x, u, pv′2) ∈ D0,

|f(x, u, pv′1)− f(x, u, pv′2)| ≤ N |pv′2 − pv′1|.
Here we define the approximation scheme by (1.3)-(1.4) and use Anti-maximum
principle. We make a good choice of λ so that the sequences thus generated converge
to the solution of the nonlinear problem. Similar to the Section 3 we require the
following Lemmas and Propositions.

Lemma 4.1. Let −λ0 < λ < 0. If un is an upper solution of (1.1)-(1.2) and un+1

is defined by (1.3)-(1.4) then un+1 ≥ un.

Proof. Let wn = un+1 − un, then

−(pw′n)′ + λpwn = (pu′n)′ − pf(x, un, pu′n) ≤ 0,

w′n(0) ≥ 0, w′n(1) ≤ 0,

and using Proposition 2.7 we have un+1 ≥ un. �

Proposition 4.2. Assume that (F1)–(F4) hold. Let −λ0 < λ < 0 be such that
M + λ ≤ 0 and (M + λ)

(
1 + λ

∫ 1

0
1

p(x)

∫ x

0
p(t) dt dx

)
−Nλ

∫ 1

0
p(x)dx ≤ 0. Then the

functions un+1 defined recursively by (1.3)-(1.4) are such that for all n ∈ N,
(i) un is an upper solution of (1.1)-(1.2).
(ii) un+1 ≥ un.

Proof. Using Remark 2.4, Remark 2.6, Lemma 2.10, Lemma 4.1 and on the lines
of the proof of Proposition 3.2 this proposition can be deduced easily. �

In the same way we can prove the following results for the lower solutions.

Lemma 4.3. Let −λ0 < λ < 0. If vn is a lower solution of (1.1)-(1.2) and vn+1

is defined by (1.3)-(1.4) then vn ≥ vn+1.

Proposition 4.4. Assume that (F1)–(F4) hold. Let −λ0 < λ < 0 be such that
M + λ ≤ 0 and (M + λ)

(
1 + λ

∫ 1

0
1

p(x)

∫ x

0
p(t) dt dx

)
−Nλ

∫ 1

0
p(x)dx ≤ 0. Then the

functions vn+1 defined recursively by (1.3)-(1.4) are such that for all n ∈ N,
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(i) vn is a lower solution of (1.1)-(1.2).
(ii) vn ≥ vn+1.

In the next result we prove that lower solution vn is larger than upper solution
un for all n.

Proposition 4.5. Assume that (F1)–(F4) hold. Let −λ0 < λ < 0 be such that
M + λ ≤ 0 and

(M + λ)
(
1 + λ

∫ 1

0

1
p(x)

∫ x

0

p(t) dt dx
)
−Nλ

∫ 1

0

p(x)dx ≤ 0

and for all x ∈ [0, 1]

f(x, v0, pv′0)− f(x, u0, pu′0) + λ(u0 − v0) ≥ 0.

Then for all n ∈ N, the functions un and vn defined recursively by (1.3)-(1.4) satisfy
vn ≥ un.

Now similar to the Lemma 3.6 and Lemma 3.7 we state the following two results.
These results establish a bound on p(x)u′(x) and p(x)v′(x). We use the assumption

(F5) For all (x, u, pu′) ∈ D0, |f(x, u, pu′)| ≤ ϕ(|pu′|) where ϕ : [0,∞) → (0,∞)
is continuous and satisfies∫ ∞

0

ds

ϕ(s)
>

∫ 1

0

p(x)dx.

Lemma 4.6. If f(x, u, pu′) satisfies (F1), (F2), (F5), then there exists R0 > 0 such
that any solution of

−(pu′)′ + pf(x, u, pu′) ≥ 0, 0 < x < 1, u′(0) = 0 = u′(1)

with u ∈ [u0, v0] for all x ∈ [0, 1], satisfies ‖pu′‖∞ < R0.

Lemma 4.7. If f(x, v, pv′) satisfies (F1), (F2),(F5), then there exists R0 > 0 such
that any solution of

−(pv′)′ + pf(x, v, pv′) ≤ 0, 0 < x < 1, v′(0) = 0 = v′(1)

with v ∈ [u0, v0] for all x ∈ [0, 1], satisfies ‖pv′‖∞ < R0.

Finally we arrive at the theorem similar to the Theorem 3.8.

Theorem 4.8. Assume (F1)–(F5) hold. Let −λ0 < λ < 0 be such that M + λ ≤ 0
and (M + λ)

(
1 + λ

∫ 1

0
1

p(x)

∫ x

0
p(t) dt dx

)
−Nλ

∫ 1

0
p(x)dx ≤ 0 and for all x ∈ [0, 1],

f(x, v0, pv′0)− f(x, u0, pu′0) + λ(u0 − v0) ≥ 0.

Then the sequences un and vn defined by (1.3)–(1.4) converge monotonically to
solutions ũ(x) and ṽ(x) of (1.1)-(1.2). Any solution z(x) of (1.1)-(1.2) in D0

satisfies
ũ(x) ≤ z(x) ≤ ṽ(x).

Proof. Using Lemma 4.1 to Lemma 4.7 and Proposition 4.2 to Proposition 4.5 we
deduce that

u0 ≤ u1 ≤ u2 ≤ · · · ≤ un ≤ vn · · · ≤ v1 ≤ v0.

Now similar to the proof of Theorem 3.8 the result of this theorem can be deduced.
�

Remark 4.9. When the source function is derivative independent; i.e., N = 0. In
this case we can choose λ = −M .
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Conclusion. This work fills the gap existing in the literature for reverse ordered
upper and lower solutions. Some new existence results have been established. This
work also generalize our earlier work [3]. We establish existence results under quite
general conditions on p(x) and f(x, y, py′). In this work we do not have Bessel
functions and therefore we have to analyze the differential equation with general
function p(x). We prove some differential inequalities which enables us to prove
the monotonicity of the sequences {un} and {vn}. As future scope of the present
work we can further consider the following differential equation and generalize the
present work even further.

−
(
p(x)y′(x)

)′ + q(x)f
(
x, y(x), p(x)y′(x)

)
= 0, 0 < x < 1.

Here q(x) is an integrable function on [0, 1] such that q(x) > 0 in (0, 1).
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