Electron. J. Diff. Equ., Vol. 2011 (2011), No. 88, pp. 1-12.

Asymptotic behavior of ground state solutions for sublinear and singular nonlinear Dirichlet problems

Rym Chemmam, Abdelwaheb Dhifli, Habib Maagli

Abstract:
In this article, we are concerned with the asymptotic behavior of the classical solution to the semilinear boundary-value problem
$$
 \Delta u+a(x)u^{\sigma }=0
 $$
in $\mathbb{R}^n$, $u>0$, $\lim_{|x|\to \infty }u(x)=0$, where $\sigma <1$. The special feature is to consider the function $a$ in $C_{loc}^{\alpha }(\mathbb{R}^n)$, $0<\alpha <1$, such that there exists $c>0$ satisfying
$$
 \frac{1}{c}\frac{L(|x| +1)}{(1+|x| )^{\lambda }}
 \leq a(x)\leq c\frac{L(|x| +1)}{(1+|x| )^{\lambda }},
 $$
where $L(t):=\exp \big(\int_1^t\frac{z(s)}{s}ds\big)$, with $z\in C([1,\infty ))$ such that $\lim_{t\to \infty } z(t)=0$. The comparable asymptotic rate of $a(x)$ determines the asymptotic behavior of the solution.

Submitted April 13, 2011. Published July 5, 2011.
Math Subject Classifications: 31B05, 31C35, 34B27, 60J50.
Key Words: Asymptotic behavior; Dirichlet problem; ground sate solution; singular equations; sublinear equations.

Show me the PDF file (266 KB), TEX file, and other files for this article.

Rym Chemmam
Département de Mathématiques, Faculté des Sciences de Tunis
Université Tunis El Manar, Campus universitaire
2092 Tunis, Tunisia
email: Rym.Chemmam@fst.rnu.tn
Abdelwaheb Dhifli
Département de Mathématiques, Faculté des Sciences de Tunis
Université Tunis El Manar, Campus universitaire
2092 Tunis, Tunisia
email: dhifli_waheb@yahoo.fr
Habib Mâagli
Département de Mathématiques, Faculté des Sciences de Tunis
Université Tunis El Manar, Campus universitaire
2092 Tunis, Tunisia
email: habib.maagli@fst.rnu.tn

Return to the EJDE web page