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ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO A CLASS OF
LINEAR NON-AUTONOMOUS NEUTRAL DELAY

DIFFERENTIAL EQUATIONS

GUILING CHEN

Abstract. We study a class of linear non-autonomous neutral delay differen-
tial equations, and establish a criterion for the asymptotic behavior of their
solutions, by using the corresponding characteristic equation.

1. Introduction

Let C be the complex numbers with norm | · |. For r ≥ 0, let C = C([−r, 0], C)
be the space of continuous functions taking [−r, 0] into C with norm defined by
‖ϕ‖ = max−r≤θ≤0 |ϕ|. A functional differential equation of neutral type, or shortly
a neutral equation, is a system of the form

d

dt
Mxt = L(t)xt, t > t0 ∈ R, (1.1)

where xt ∈ C is defined by xt(θ) = x(t + θ), −r ≤ θ ≤ 0, M : C → C is continuous,
linear and atomic at zero, (see [5, page 255] for the concept of atomic at zero),

Mϕ = ϕ(0)−
∫ 0

−r

ϕ(θ) dµ(θ), (1.2)

where Var[s,0] µ → 0, as s → 0.
For (1.1), L(t) denote a family of bounded linear functionals on C. By the Riesz

representation theorem, for each t > t0, there exists a complex valued function of
bounded variation η(t, ·) on [−r, 0], normalized so that η(t, 0) = 0 and η(t, ·) is
continuous from the left in (−r, 0) such that

L(t)ϕ =
∫ 0

−r

ϕ(θ) dθη(t, θ). (1.3)

For any ϕ ∈ C, σ ∈ [t0,∞), a function x = x(σ, ϕ) defined on [σ − r, σ + A) is
said to be a solution of (1.1) on (σ, σ + A) with initial ϕ at σ if x is continuous on
[σ−r, σ+A), xσ = ϕ, Mxt is continuously differentiable on (σ, σ+A), and relation
(1.1) is satisfied on (σ, σ + A). For more information on this type of equations, see
[5].
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The initial-value problem (IVP) is stated as
d

dt
Mxt = L(t)xt t > σ,

xσ = ϕ.
(1.4)

For µ = 0 in (1.2), Mϕ = ϕ(0) and equation (1.1) becomes the retarded func-
tional differential equation

x′(t) = L(t)xt. (1.5)
Consider the characteristic equation associated with (1.5),

λ(t) =
∫ r

0

exp
(
−

∫ t

t−θ

λ(s)ds
)

dθη(t, θ) (1.6)

which is obtained by looking for solutions to (1.5) of the form

x(t) = exp
[ ∫ t

0

λ(s) ds
]
. (1.7)

The solutions of (1.6) are continuous functions λ(·) defined in [t0 − r,∞) which
satisfy (1.5).

Cuevas and Frasson [1] studied the asymptotic behavior of solutions of (1.5) with
initial condition xσ = ϕ, and obtained the following result.

Theorem 1.1. Assume that λ(t) is a solution of (1.6) such that

lim sup
t→∞

∫ r

0

θ|e−
R t

t−θ
λ(s)ds|dθ|η|(t, θ) < 1.

Then for each solution x of (1.5), we have that the limit

lim
t→∞

x(t)e−
R t

t0
λ(s)ds

exists, and

lim
t→∞

[
x(t)e−

R t
t0

λ(s)ds
]′

= 0.

Furthermore,

lim
t→∞

x′(t)e−
R t

t0
λ(s)ds = lim

t→∞
λ(t)x(t)e−

R t
t0

λ(s)ds
,

if limt→∞ λ(t)x(t)e−
R t

t0
λ(s)ds exists.

Motivated by the work in [1], we provide a generalization of [1], and consider the
asymptotic behavior of solutions to (1.4). The method for the proving our main
result is similar to the one in [1, 2]. In Section 2, we state the main results. In
Section 3, some examples will be shown as applications of the main results of this
paper.

2. Main results

For equation (1.1), the characteristic equation is

λ(t) =
∫ 0

−r

dµ(θ)λ(t + θ) exp
(
−

∫ t

t+θ

λ(s)ds
)

+
∫ 0

−r

dθη(t, θ) exp
(
−

∫ t

t+θ

λ(s)ds
)
,

(2.1)
which is obtained by looking for solutions of (1.1) of the form (1.7) and the solu-
tions of (2.1) are continuous functions defined in [σ − r,∞) satisfying (2.1). For
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autonomous neutral functional differential equations (NFDEs), the constant solu-
tions of (2.1) are the roots of the so called characteristic equation, for detailed
discussion of this type, refer to [3, 4, 5].

Theorem 2.1. Assume that λ(t) is a solution of (2.1) such that

lim sup
t→∞

χλ,t < 1, (2.2)

where

χλ,t =
∫ 0

−r

|e−
R t

t+θ
λ(s) ds| d|µ|(θ)

+
∫ 0

−r

(−θ)|e−
R t

t+θ
λ(s) ds|

(
|λ(t + θ)| d|µ|(θ) + dθ|η|(t, θ)

)
.

Then for each solution x of (1.4), we have that the limit

lim
t→∞

x(t)e−
R t

t0
λ(s) ds (2.3)

exists, and

lim
t→∞

[
x(t)e−

R t
t0

λ(s) ds
]′

= 0. (2.4)

Furthermore,

lim
t→∞

x′(t)e−
R t

t0
λ(s) ds = lim

t→∞
λ(t)x(t)e−

R t
t0

λ(s) ds (2.5)

if the limit in the right-hand side exists.

Proof. From (2.2), there exists t1 ≥ t0, such that

sup
t≥t1

χλ,t < 1.

Hence without loss of generality, we assume that t0 = 0 and define

Γλ := sup
t≥0

χλ,t < 1.

For solutions x of (1.4), we set

y(t) = x(t)e−
R t
0 λ(s) ds, t > −r.

Then (1.4) becomes

y′(t) + λ(t)y(t)−
∫ 0

−r

dµ(θ)y′(t + θ)e−
R t

t+θ
λ(s) ds

=
∫ 0

−r

y(t + θ)e−
R t

t+θ
λ(s) ds

(
λ(t + θ) dµ(θ) + dθη(t, θ)

) (2.6)

and the initial condition is equivalent to

y(t) = ϕ(t)e−
R t
0 λ(s) ds, −r ≤ t ≤ 0. (2.7)

Combining (2.7) with (2.1), for t ≥ −r, we have

y′(t) =
∫ 0

−r

dµ(θ)y′(t + θ)e−
R t

t+θ
λ(s) ds

−
∫ 0

−r

e−
R t

t+θ
λ(s) ds

∫ 0

−r

y′(s) ds
(
λ(t + θ) dµ(θ) + dθη(t, θ)

)
.

(2.8)
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From the definition of the solutions to (1.4), we know that y′(t) is continuous, Let

Mϕ,λ0 = max{|ϕ′(t)e−
R t
0 λ(s) ds − λ(t)ϕ(t)e−

R t
0 λ(s) ds| : −r ≤ t ≤ 0}.

We shall show that Mϕ is also a bound of y′ on the whole interval [−r,∞); i.e.,

|y′(t)| ≤ Mϕ,λ0 , t ≥ −r. (2.9)

For this purpose, let us consider an arbitrary number ε > 0. Then

|y′(t)| < Mϕ,λ0 + ε for t ≥ −r. (2.10)

Indeed, in the opposite case, we suppose there exists a point t∗ > 0 such that

|y′(t)| < Mϕ,λ0 + ε for − r ≤ t < t∗,

|y(t∗)| = M(λ0, µ0;φ) + ε.
(2.11)

Then combining (2.8) and (2.11), we obtain

M(λ0, µ0;φ) + ε

= y′(t∗)

≤
∣∣∣ ∫ 0

−r

y′(t∗ + θ)e−
R t∗

t∗+θ
λ(s) ds dµ(θ)

∣∣∣
+

∣∣∣ ∫ 0

−r

e−
R t∗

t∗+θ
λ(s) ds

∫ 0

−r

y′(s) ds
(
λ(t∗ + θ) dµ(θ) + dθη(t∗, θ)

)∣∣∣
≤ (Mϕ,λ0 + ε)

{∫ 0

−r

|e−
R t∗

t∗+θ
λ(s) ds| d|µ|(θ)

+
∫ 0

−r

(−θ)|e−
R t∗

t∗+θ
λ(s) ds|

(
|λ(t∗ + θ)| d|µ|(θ) + dθ|η|(t∗, θ)

)}
= (Mϕ,λ0 + ε)Γλ

< (Mϕ,λ0 + ε),

(2.12)

which is a contradiction, so (2.10) holds. Since (2.10) holds for every ε > 0, it
follows that |y′(t)| ≤ Mϕ,λ0 , for all t ≥ −r. By using (2.8) and (2.9), for t ≥ 0 we
have

|y′(t)| ≤
∣∣∣ ∫ 0

−r

y′(t + θ)e−
R t

t+θ
λ(s)ds dµ(θ)

∣∣∣
+

∣∣∣ ∫ 0

−r

e−
R t

t+θ
λ(s) ds

∫ 0

−r

y′(s) ds
(
λ(t + θ) dµ(θ) + dθη(t, θ)

)∣∣∣
≤ Mϕ,λ0

{∫ 0

−r

|e−
R t

t+θ
λ(s) ds| d|µ|(θ)

+
∫ 0

−r

(−θ)|e−
R t

t+θ
λ(s) ds|

(
|λ(t + θ)| d|µ|(θ) + dθ|η|(t, θ)

)}
= Mϕ,λ0Γλ,

(2.13)

which means, for t ≥ 0,
|y′(t)| ≤ Mϕ,λ0Γλ0 .

One can show by induction, that y′(t) satisfies

|y′(t)| ≤ Mϕ,λ0(Γλ)n for t ≥ nr − r, (n = 0, 1, 2, 3, . . . ). (2.14)
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Since 0 ≤ χλ,t < 1, it follows that y′(t) tends to zero as t →∞. So we proved (2.4).
In the following, we will show (2.3) holds.

To prove that limt→∞ y(t) exists, we consider (2.14). For an arbitrary t ≥ 0,
we set n = [t/r] + 1 (the greatest integer less than or equal to t/r + 1), then from
n = [t/r] + 1 ≤ t/r + 1 ≤ [t/r] + 2 = n + 1, we have t/r ≤ n. From (2.14),

|y′(t)| ≤ Mϕ,λ0(Γλ)n ≤ Mϕ,λ0(Γλ)t/r for t ≥ nr − r. (2.15)

Now we use the Cauchy convergence criterion, for t > T ≥ 0, from (2.15), we have

|y(t)− y(T )| ≤
∫ t

T

|y′(s)| ds ≤
∫ t

T

Mϕ,λ0(Γλ)s/r ds

= Mϕ,λ0

r

ln Γλ

[
(Γλ)s/r

]s=t

s=T

= Mϕ,λ0

r

ln Γλ

[
(Γλ)t/r − (Γλ)T/r

]
.

(2.16)

Let T →∞, we have t →∞, and by (2.16), we have

Mϕ,λ
r

ln Γλ

[
(Γλ)t/r − (Γλ)T/r

]
→ 0;

and limT→∞ |y(t)− y(T )| = 0. The Cauchy convergence criterion implies the exis-
tence of limt→∞ y(t). We obtain (2.5) by a straight forward application of (2.4). �

Remark 2.2. Under the conditions of Theorem 2.1, a solution of (1.4) can not
grow faster than the exponential function; i.e., there exists a constant M > 0, such
that

|x(t)| ≤ Me
R t
0 λ(s) ds, for t ≥ 0. (2.17)

From (2.17), it is not difficult to show that:

• Every solution of (1.4) is bounded if and only if lim supt→∞
∫ t

0
λ(s) ds < ∞;

• Every solution of (1.4) tends to zero if and only if lim supt→∞
∫ t

0
λ(s) ds →

−∞.

Remark 2.3. If the characteristic equation (2.1) has a constant solution λ(t) = λ0,
then from Theorem 2.1, limt→∞ x(t)e−λ0t exists.

3. Examples

Example 3.1. Consider the linear differential equation with distributed delay

x′(t)− 1
2
x′(t− 1) =

∫ 0

−1

x(t + θ)
2(t + θ)

dθ, t > 1. (3.1)

This equation can be written in the form (1.1) by setting µ(θ) = −1/2 for θ ≤ −1,
µ(θ) = 0 for θ > −1, η(t, θ) = ln t+ 1

2 ln(t+ θ) for t > 1 and θ ∈ [−1, 0]. Since both
θ 7→ η(t, θ) and θ 7→ µ(θ) are increasing functions, |µ| = µ, |η| = η.

The characteristic equation associated with (3.1) is

λ(t) =
λ(t− 1)

2
exp

[
−

∫ t

t−1

λ(s) ds
]

+
∫ 0

−1

1
2(t + θ)

exp
[
−

∫ t

t+θ

λ(s) ds
]
dθ, (3.2)

which has a solution
λ(t) = 1/t. (3.3)



6 G. CHEN EJDE-2011/85

For this λ(t) and for t > 1, using the expression of χλ,t, we have

1
2
(
1− 1

t

)
+

1
4t

+
∫ 0

−1

−θ

2(t + θ)
exp

[
−

∫ t

t+θ

ds

s

]
dθ =

1
2

< 1 as t →∞.

Hence the hypothesis (2.2) of Theorem 2.1 is fulfilled. So we obtain that

lim
t→∞

x(t)
t

exists, lim
t→∞

[x(t)
t

]′
= 0 and lim

t→∞

x′(t)
t

= 0. (3.4)

Example 3.2. Consider the equation with variable delay

x′(t)− 2
3
x′(t− 1) =

x(t− τ(t))
3(t + c− τ(t))

, t > t0. (3.5)

where c ∈ R and τ : [0,∞) → [−1, 0] is a continuous function such that t+c−τ(t) >
0 for t > t0. Equation (3.5) can be written in the form (1.1) by letting µ(θ) = −2/3
for θ ≤ −1, µ(θ) = 0 for θ > −1, η(t, θ) = 0 for θ < τ(t), η(t, θ) = (t + c− τ(t))/3
for θ > τ(t). Since both θ 7→ η(t, θ) and θ 7→ µ(θ) are increasing functions, we have
that |µ| = µ, |η| = η.

The characteristic equation associated with (3.5) is

λ(t) =
2λ(t− 1)

3
exp

[
−

∫ t

t−1

λ(s)ds
]

+
1

3(t + c− τ(t))
exp

[
−

∫ t

t−τ(t)

λ(s)ds
]

(3.6)

and we have that a solution of (3.6) is

λ(t) =
1

t + c
. (3.7)

For (3.7), the left hand side of (2.2) reads as

lim sup
t→∞

[2
3

(
1− 1

t + c

)
+

1
6(t + c)

+
∫ 0

−1

(−θ)|e−
R t

t−θ
λ(s)ds|dθ|η|(t, θ)

]
= lim sup

t→∞

[2
3
− τ(t)

3(t + c)

]
=

2
3

< 1.

and hence hypothesis (2.2) of Theorem 2.1 is fulfilled and therefore, for all solutions
x(t) of (3.5), we have that

lim
t→∞

x(t)
t + c

exists, and lim
t→∞

[ x(t)
t + c

]′
= 0. (3.8)

Manipulating further the limits in (3.5), we are able to establish that x(t) = O(t)
and x′(t) = o(t) as t →∞.
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