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ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO A CLASS OF
LINEAR NON-AUTONOMOUS NEUTRAL DELAY
DIFFERENTIAL EQUATIONS

GUILING CHEN

ABSTRACT. We study a class of linear non-autonomous neutral delay differen-
tial equations, and establish a criterion for the asymptotic behavior of their
solutions, by using the corresponding characteristic equation.

1. INTRODUCTION

Let C be the complex numbers with norm | - |. For » > 0, let C = C([-r,0],C)
be the space of continuous functions taking [—r,0] into C with norm defined by
llol] = max_,<p<o |- A functional differential equation of neutral type, or shortly
a neutral equation, is a system of the form

d
%Ml't = L(t)xh t> t() S R, (11)
where x; € C is defined by z:(0) = z(t +0), —r <0 <0, M : C — C is continuous,
linear and atomic at zero, (see [5l, page 255] for the concept of atomic at zero),

0

Mo = o(0) - / 2(6) du(6), (1.2)

-T

where Varj; gy — 0, as s — 0.

For , L(t) denote a family of bounded linear functionals on C. By the Riesz
representation theorem, for each t > ¢y, there exists a complex valued function of
bounded variation 7(¢,-) on [—r,0], normalized so that n(¢,0) = 0 and 75(t,-) is
continuous from the left in (—r,0) such that

0
Ltk = [ o(®)dontc.0). (13)

For any ¢ € C, 0 € [tg,0), a function x = z(0,¢) defined on [0 —r,o + A) is
said to be a solution of (L.1)) on (0,0 + A) with initial ¢ at o if  is continuous on
[c—r,c+A), xzo = ¢, Mz, is continuously differentiable on (o, 0+ A), and relation
(1.1) is satisfied on (o, 0 + A). For more information on this type of equations, see
[5].
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The initial-value problem (IVP) is stated as
d
S Mz, = L)z, t>o,
g Mo = Lt 7 (1.4)
Ty = .
For 4 =0 1in (1.2), My = ©(0) and equation (1.1) becomes the retarded func-
tional differential equation
2/ (t) = L(t)zy. (1.5)
Consider the characteristic equation associated with (1.5]),

At) = /OT exp (— /tt )\(s)ds) dgn(t,0) (1.6)

-6
which is obtained by looking for solutions to (1.5]) of the form

2(t) = exp [/Ot A(s) ds] (1.7)

The solutions of (1.6) are continuous functions A(-) defined in [tg — 7, 00) which
satisfy (|1.5)).

Cuevas and Frasson [I] studied the asymptotic behavior of solutions of (1.5]) with
initial condition z, = ¢, and obtained the following result.

Theorem 1.1. Assume that A\(t) is a solution of (1.6) such that

limsup/ Ole” Jize A gy Inl (¢, 0) < 1.

t—oo 0

Then for each solution x of (L.5)), we have that the limit

thm x(t)e_ ffo A(s)ds

exists, and

t—oo

+ /
lim {x(t)ei Jig M _ g,
Furthermore,

Jim 2 (t)e” Jio s _ iy At)z(t)e Jig Mo)ds,

t—oo
if imy oo A(t)z(t)e Jio A5 pists.

Motivated by the work in [I], we provide a generalization of [I], and consider the
asymptotic behavior of solutions to . The method for the proving our main
result is similar to the one in [Il 2]. In Section 2, we state the main results. In
Section 3, some examples will be shown as applications of the main results of this

paper.
2. MAIN RESULTS

For equation (|1.1]), the characteristic equation is
t t

0 0
A(t) = / dp(O)A(t + 0) exp (—/ )\(s)ds) +/ den(t, 0) exp (—/ A(s)ds),
—r t+6 —r t+0
(2.1)
which is obtained by looking for solutions of (|1.1)) of the form (1.7) and the solu-
tions of (2.1)) are continuous functions defined in [0 — 7, 00) satisfying (2.1). For
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autonomous neutral functional differential equations (NFDEs), the constant solu-
tions of (2.1) are the roots of the so called characteristic equation, for detailed
discussion of this type, refer to [3] 4 [5].

Theorem 2.1. Assume that A(t) is a solution of (2.1) such that
limsup xx: < 1, (2.2)

t—o00
where

0 t
Yai = / e Jo X4 11 ()

T

0
+ [0 HX OB (7t )] dlul(6) + ol 2,6)).

T

Then for each solution x of (L.4), we have that the limit

lim a(t)e” Jig Mo ds (2.3)
exists, and
+ ’
lim [m(t)ei Jig 2) ds} = 0. (2.4)
t—oo
Furthermore,
tlim 2 (t)e” Jig M) ds tlim At)x(t)e Jig Mo ds (2.5)

if the limit in the right-hand side exists.
Proof. From ([2.2)), there exists t; > tg, such that

sup xa¢ < 1.
t>ty

Hence without loss of generality, we assume that t) = 0 and define

Ty:=supxy: <1
t>0

For solutions x of (1.4]), we set
y(t) = a(t)e OOt > .
Then (1.4) becomes
0

Y () +AOy() — [ dp(0)y (t + )e Jrro M) ds
0 N (2.6)
= / y(t + 0)6_ f,ﬁ;.e A(s) ds ()\(t + 9) d,u(@) n d‘gn(t 0))

-7

and the initial condition is equivalent to

y(t) = @(t)e” Jo Als) ds’ —r<t<0. @7
Combining (2.7)) with (2.1)), for t > —r, we have
0 t
yl(t) = d//&(e)yl(t + 9)6_ ft+9 A(s) ds
o (2.8)

- /OT e~ Jrvo Ms)ds /OT y'(s) ds (/\(t +0)du(0) + den(t, 9))
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From the definition of the solutions to (1.4]), we know that y'(t) is continuous, Let
My 5, = max{|ig/(t)e™ Jo M9 — \(#)g(t)e™ Jo X ds] - —r <1 < 0}

We shall show that M, is also a bound of y' on the whole interval [—r, 00); i.e.,

[y ()] < Mg,y t> - (2.9)
For this purpose, let us consider an arbitrary number € > 0. Then
|y ()] < My oy, +€ fort>—r. (2.10)

Indeed, in the opposite case, we suppose there exists a point t* > 0 such that
[y ()] < My, +e for —r <t <t

: (2.11)
ly(t*)| = M (Ao, po; ¢) + €.
Then combining (2.8]) and 7 we obtain
M (Ao, po; @) + €
=y'(t")
0 .
<| / Y+ 0)e™ a0 Xt gy )|
0 . 0
n ‘ / o= J Lo () ds / Y (s) ds()\(t* +0) du(6) + dgn(t*,ﬁ))‘
- - (2.12)

0 "
< O, +){ [l 02O daf )

0 x
4 [ e IO (3 +0) ) + dalal(e”,0)) }

= (M‘P1>\0 + E)Fx\
< (Mtpq)\o + 5)7

which is a contradiction, so (2.10) holds. Since ([2.10)) holds for every ¢ > 0, it
follows that |y (t)] < My »,, for all t > —r. By using (2.8)) and (2.9), for ¢ > 0 we

have

0
O] [y oe e 0m au0)
0 . 0
+\ / e~ iraA(s)ds / Y (5) ds()\(t—i-H) dp(9) + dw(t,&))‘
0 t
<Moo { [ Je FX % dlul0) (2.13)

0 t
+ [0l Fa X8 (13t + 6) dlul(6) + dalit,6)) }

—Tr

= <P7>\0F>\v

which means, for ¢t > 0,
‘y/(t” < M597)\0F>\0'
One can show by induction, that y'(¢) satisfies

[y ()] < My x, (D)™ fort>nr—r, (n=0,1,2,3,...). (2.14)
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Since 0 < xx < 1, it follows that y/(t) tends to zero as t — co. So we proved (2.4).
In the following, we will show holds.

To prove that lim; ., y(t) exists, we consider . For an arbitrary t > 0,
we set n = [t/r] + 1 (the greatest integer less than or equal to ¢/r + 1), then from
n=[t/r]+1<t/r+1<[t/r]+2=n+1, we have t/r <n. From (2.14),

[y (t)] < My a, (Ta)" < My 5, (TA)Y" for t > nr —r. (2.15)

Now we use the Cauchy convergence criterion, for ¢ > T > 0, from ([2.15)), we have

y(t) — y(T)| < /T 1y (s)] ds < /T My r(Ta)*/" ds

s=t

- S s/ 2.16

Me.xo InTy {(FA) L:T ( )
T T T

= Moo o | (T2 = (077,

Let T' — oo, we have t — oo, and by (2.16)), we have

r
F t/’r’ _ F T/Ti| .
M [ = @) = o
and limp_, o |y(t) — y(T)| = 0. The Cauchy convergence criterion implies the exis-

tence of lim;—, o y(t). We obtain (2.5)) by a straight forward application of (2.4). O

M,

Remark 2.2. Under the conditions of Theorem a solution of ([1.4]) can not
grow faster than the exponential function; i.e., there exists a constant M > 0, such
that
lz(t)] < Melo X&) ds - for ¢ > 0. (2.17)
From (2.17)), it is not difficult to show that:
e Every solution of ((1.4]) is bounded if and only if lim sup,_, ., fot A(8) ds < o0
e Every solution of ([1.4) tends to zero if and only if lim sup,_, fg A(s)ds —

—0Q.

Remark 2.3. If the characteristic equation (2.1)) has a constant solution A(t) = Ag,
then from Theorem lim;_, o 2(t)e= 20! exists.

3. EXAMPLES

Example 3.1. Consider the linear differential equation with distributed delay

0
2 (1) — %x'(t— 1) = L ggig; o, t>1. (3.1)

This equation can be written in the form by setting p(f) = —1/2 for 6 < —1,
p(0) =0 for 6 > —1,n(t,0) =Int+ 3 In(t+6) for ¢ > 1 and 6 € [—1,0]. Since both
0 — n(t,0) and 6 — p(0) are increasing functions, |u| = u,|n| = 7.

The characteristic equation associated with is

At) = )‘(t; b exp [— /til)\(s) ds} + /_01 2(t19) exp [— t;)\(s) ds} de, (3.2)

which has a solution

A(t) =1/t (3.3)
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For this A(¢) and for ¢ > 1, using the expression of x» ., we have

1 I, 1 o 9 b ds 1
“(1-2)+— | Zld==<1 ast— .
2( t)+4t+/12(t+9)eXp[ /Hes}de 2< ast — oo

Hence the hypothesis (2.2)) of Theorem is fulfilled. So we obtain that

t t)1’ "(t
tlim ? exists, tlim [&] =0 and tlim z(®) =0. (3.4)
Example 3.2. Consider the equation with variable delay
2 t—T1(t
2 () — 2/t —1) = _alt=Tlt) (3.5)

3 3t+c—1(t)’
where ¢ € Rand 7 : [0,00) — [—1, 0] is a continuous function such that t+c—7(t) >
0 for t > tg. Equation can be written in the form by letting u(0) = —2/3
for 0 < —1, u(0) =0 for 0 > —1, n(t,0) =0 for 0 < 7(t), n(t,0) = (t+c—7(t))/3
for 8 > 7(¢). Since both 6 — n(t,0) and § — u(6) are increasing functions, we have
that [u] =, [n] = 7.
The characteristic equation associated with is

2A(t — 1) /t 1 /f
At) = ————= — A(s)ds| + —————— - A(s)d 3.6
02l [ ] g e o] 00
and we have that a solution of (3.6)) is

1
A(t) = . 3.7
)= (37)
For (3.7, the left hand side of (2.2)) reads as
2 1 1 0 .
I [7 (1 - ) / —g)|e= H-o M5\ gy 12,0
imsup | ) e 71( e |doln|(t,0)
. 2 7(t) 2
=1 [f - ] =21
TSPI3 T30+ o) T3 °

and hence hypothesis (2-2) of Theorem [2.1]is fulfilled and therefore, for all solutions
x(t) of (3.5)), we have that
t t) 1’
lim ®) exists, and lim {x( )] =0
t—oo t C t—oo Lt + C

Manipulating further the limits in (3.5)), we are able to establish that z(t) = O(t)
and z’'(t) = o(t) as t — co.

(3.8)
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