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POSITIVE SOLUTIONS FOR A NONLINEAR n-TH ORDER
m-POINT BOUNDARY-VALUE PROBLEM

JIEHUA ZHANG, YANPING GUO, YUDE JI

Abstract. Using the Leggett-Williams fixed point theorem in cones, we prove
the existence of at least three positive solutions to the nonlinear n-th order
m-point boundary-value problem

∆nu(k) + a(k)f(k, u) = 0, k ∈ {0, N},

u(0) = 0, ∆u(0) = 0, . . . , ∆n−2u(0) = 0, u(N + n) =

m−2X
i=1

αiu(ξi).

1. Introduction

Multi-point boundary value problems arise in a variety of areas of applied math-
ematics and physics. The solvability of two-point difference and multi-point dif-
ferential boundary value problems has been studied extensively in the literature
in recent years; see [1, 2, 3, 4, 5, 6, 8, 9, 10, 12] and their references. Guo [8]
used Leggett-Williams fixed point theorem to obtain the existence of at least three
positive solutions for the second-order m-point boundary value problem

u′′(t) + f(t, u) = 0, 0 ≤ t ≤ 1,

u(0) = 0, u(1)−
m−2∑
i=1

kiu(ξi) = 0,

where ki > 0 (i = 1, 2, . . . ,m− 2), 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, 0 <
∑m−2

i=1 kiξi <
1 are given, and f : [0, 1]× [0,∞) → [0,∞) is continuous.

Recently, Eloe and Ahmad [7] discussed the existence of at least one positive
solution for the nonlinear n-th order three-point boundary value problem

u(n)(t) + a(t)f(u) = 0, t ∈ (0, 1),

u(0) = 0, u′(0) = · · · = u(n−2)(0) = 0, u(1) = αu(η),

2000 Mathematics Subject Classification. 39A10.
Key words and phrases. Boundary value problem; positive solution; fixed point theorem;
Green’s function.
c©2011 Texas State University - San Marcos.
Submitted March 12, 2010. Published June 24, 2011.
Supported by grants: 10971045 the Natural Science Foundation of China, and
A2009000664 from the Natural Science Foundation of Hebei Province.

1



2 J. ZHANG, Y. GUO, Y. JI EJDE-2011/83

where n ≥ 2, 0 < η < 1, 0 < αηn−1 < 1, f(t) ∈ C([0, 1], [0,∞)) is either superlinear
or sublinear. The method they used is the Krasnoselskii’s fixed point theorem in
cones.

Motivated by the results [7, 11], in this paper, we investigate the existence of
positive solutions for the following nonlinear n-th order m-point boundary value
problem

∆nu(k) + a(k)f(k, u) = 0, k ∈ {0, N}, (1.1)

u(0) = 0, ∆u(0) = 0, . . . ,∆n−2u(0) = 0, u(N + n) =
m−2∑
i=1

αiu(ξi), (1.2)

where n ≥ 2, αi ≥ 0 for i = 1, 2, . . . ,m−3, and αm−2 > 0, ξi is an integer, satisfying
n = ξ0 ≤ ξ1 < ξ2 < · · · < ξm−2 < ξm−1 = N + n,

0 <

m−2∑
i=1

αi(
n−1∑
j=1

j∏
l=1

(ξi − n + l) + 1) <

n−1∑
j=1

j∏
l=1

(N + l) + 1.

We denote {i, j} = {k ∈ N : i ≤ k ≤ j} and assume that:

(A1) f : {0, N} × [0,∞) → [0,∞) is continuous;
(A2) a(k) ≥ 0, for k ∈ {0, N} and there exists k0 ∈ {ξm−2, N} such that a(k0) >

0.

This article is organized as follows. In Section 2, we present some preliminaries that
will be used to prove our main results. In Section 3, using the Leggett-Williams
fixed point theorem, we show that (1.1)–(1.2) has at least three positive solutions.

2. Preliminaries

In this section, we present some notation and lemmas, which are fundamental in
the proof of our main results.

Let E be a Banach space over R. A nonempty convex closed set K ⊂ E is said
to be a cone provided that

(i) au ∈ K for all u ∈ K and all a ≥ 0;
(ii) u,−u ∈ K implies u = 0.

A map α is said to be a nonnegative continuous concave functional on K provided
that α : K → [0,∞) is continuous and

α(tx + (1− t)y) ≥ tα(x) + (1− t)α(y)

for all x, y ∈ K and 0 ≤ t ≤ 1. Similarly, we say a map β is a nonnegative
continuous convex functional on K provided that β : K → [0,∞) is continuous and

β(tx + (1− t)y) ≤ tβ(x) + (1− t)β(y)

for all x, y ∈ K and 0 ≤ t ≤ 1.
Let α be a nonnegative continuous concave functional on K. Then, for nonneg-

ative real numbers 0 < b < d and c, we define the convex sets

Pc = {x ∈ K|‖x‖ < c},
P (α, b, d) = {x ∈ K|b ≤ α(x), ‖x‖ ≤ d}.
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Theorem 2.1 (Leggett-Williams fixed point theorem). Let A : Pc → Pc be a com-
pletely continuous operator and let α be a nonnegative continuous concave functional
on K such that α(x) ≤ ‖x‖ for all x ∈ Pc. Suppose there exist 0 < a < b < d ≤ c
such that

(C1) {x ∈ P (α, b, d)|α(x) > b} 6= ∅, and α(Ax) > b for x ∈ P (α, b, d),
(C2) ‖Ax‖ < a for ‖x‖ ≤ a, and
(C3) α(Ax) > b for x ∈ P (α, b, c), with ‖Ax‖ > d.

Then A has at least three fixed point x1, x2 and x3 such that ‖x1‖ < a, b < α(x2)
and ‖x3‖ > a with α(x3) < b.

Lemma 2.2 ([12]). Assume that u satisfies the difference inequality ∆nu(k) ≤ 0,
k ∈ {0, N}, and the homogeneous boundary conditions, u(0) = · · · = u(n− 2) = 0,
u(N + n) = 0. Then, u(k) ≥ 0, k ∈ {0, N + n}.

For a finite or infinite sequence u(0), u(1), . . . , the value k = 0 is a node for the
sequence if u(0) = 0, and a value k > 0 is a node for u if u(k) = 0 or u(k−1)u(k) < 0.
The following lemma, obtained in [12], is a discrete analogue of Rolle’s Theorem.

Lemma 2.3. Suppose that the finite sequence u(0), . . . , u(j) has Nj nodes and the
sequence ∆u(0), . . . ,∆u(j − 1) has Mj nodes. Then, Mj ≥ Nj − 1.

Theorem 2.4. Assume n ≤ ξ1 < ξ2 < · · · < ξm−2 < N + n,

0 <

m−2∑
i=1

αi(
n−1∑
j=1

j∏
l=1

(ξi − n + l) + 1) <

n−1∑
j=1

j∏
l=1

(N + l) + 1,

and y(k) ≥ 0, k ∈ {0, N}. Then, the difference equation

∆nu(k) + y(k) = 0, k ∈ {0, N}, (2.1)

coupled with the boundary conditions (1.2), has a unique solution

u(k) =


0, for k ∈ {0, n− 2},

δ
M(n−1)! , for k = n− 1,

− 1
(n−1)!

∑k−n
s=0 y(s)

∏n−1
j=1 (k − n + j − s)

+ δ
M(n−1)!σ, for k ∈ {n, N + n},

(2.2)

where

M =
( n−1∑

j=1

j∏
l=1

(N + l) + 1
)
−

m−2∑
i=1

αi

( n−1∑
j=1

j∏
l=1

(ξi − n + l) + 1
)
,

δ =
N∑

s=0

y(s)
n−1∏
j=1

(N + j − s)−
m−2∑
i=1

αi

ξi−n∑
s=0

y(s)
n−1∏
j=1

(ξi − n + j − s),

σ =
n−1∑
j=1

j∏
l=1

(k − n + l) + 1.

Proof. Let ∆n−1u(0) = A, since u(0) = 0, ∆u(0) = 0, . . . ,∆n−2u(0) = 0, it follows
that ∆n−zu(z−1) = A, for z ∈ {1, n−1}, u(0) = · · · = u(n−2) = 0, u(n−1) = A.
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Summing (2.1) from 0 to k − 1, one gets ∆n−1u(k) = −
∑k−1

s=0 y(s) + A. Again
summing the equality above, from 1 to k − 1, it follows that

∆n−2u(k) = −
k−2∑
s1=0

s1∑
s=0

y(s) + (k − 1)A + A.

Repeat the summing in this way in proper order, we get

u(k) = −
k−n∑

sn−1=0

· · ·
s1∑

s=0

y(s) + Aσ.

It can be expressed that
k−2∑
s1=0

s1∑
s=0

y(s) =
0∑

s=0

y(s) +
1∑

s=0

y(s) + · · ·+
s2∑

s=0

y(s)

= (s2 + 1)y(0) + s2y(1.1) + · · ·+ y(s2)

=
s2∑

s=0

(s2 + 1− s)y(s),

by repeating this process coupled with the mathematical induction, we have
k−n∑

sn−1=0

· · ·
s1∑

s=0

y(s) =
1

(n− 1)!

k−n∑
s=0

y(s)
n−1∏
j=1

(k − n + j − s).

From u(N + n) =
∑m−2

i=1 αiu(ξi), we have A = δ/(M(n − 1)!). Hence, (2.2) is the
unique solution. �

Theorem 2.5. Assume that n ≤ ξ1 < ξ2 < · · · < ξm−2 < N + n and that
0 <

∑m−2
i=1 αi(

∑n−1
j=1

∏j
l=1(ξi − n + l) + 1) <

∑n−1
j=1

∏j
l=1(N + l) + 1. Then, the

Green’s function for the boundary value problem

−∆nu(k) = 0, k ∈ {0, N},

u(0) = 0, ∆u(0) = 0, . . . ,∆n−2u(0) = 0, u(N + n) =
m−2∑
i=1

αiu(ξi),

is given by

G(k, s) =


0, for k ∈ {0, n− 2},
h(ξr−1,ξr;s)

(n−1)! , for k = n− 1,
−

Qn−1
j=1 (k−n+j−s)+h(ξr−1,ξr;s)σ

(n−1)! , for 0 ≤ s ≤ k − n ≤ N,
h(ξr−1,ξr;s)σ

(n−1)! , for 0 < k − n + 1 ≤ s ≤ N,

where

h(ξr−1, ξr; s) =



Qn−1
j=1 (N+j−s)−

Pm−2
i=1 αi

Qn−1
j=1 (ξi−n+j−s)

M ,

for 0 ≤ s ≤ ξ1 − n,Qn−1
j=1 (N+j−s)−

Pm−2
i=r αi

Qn−1
j=1 (ξi−n+j−s)

M ,

for s ∈ {ξr−1 − n + 1, ξr − n}, r ∈ {2,m− 1}.
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Proof. Make the assumption that
∑m2

i=m1
f(i) = 0 for m2 < m1. For n ≤ k ≤ ξ1,

the unique solution of (2.1) (1.2) can be expressed as

u(k) =
1

M(n− 1)!
{

k−n∑
s=0

[−M

n−1∏
j=1

(k − n + j − s)

+
( n−1∏

j=1

(N + j − s)−
m−2∑
i=1

αi

n−1∏
j=1

(ξi − n + j − s)
)
σ]y(s)

+
ξ1−n∑

s=k−n+1

( n−1∏
j=1

(N + j − s)−
m−2∑
i=1

αi

n−1∏
j=1

(ξi − n + j − s)
)
σy(s)

+
m−1∑
r=2

ξr−n∑
s=ξr−1−n+1

( n−1∏
j=1

(N + j − s)−
m−2∑
i=r

αi

n−1∏
j=1

(ξi − n + j − s)
)
σy(s)}

If ξt−1 + 1 ≤ k ≤ ξt, 2 ≤ t ≤ m − 2, the unique solution of (2.1) (1.2) can be
expressed as

u(k) =
1

M(n− 1)!
{

ξ1−n∑
s=0

[−M

n−1∏
j=1

(k − n + j − s)

+
( n−1∏

j=1

(N + j − s)−
m−2∑
i=1

αi

n−1∏
j=1

(ξi − n + j − s)
)
σ]y(s)

+
t−1∑
r=2

ξr−n∑
s=ξr−1−n+1

[−M

n−1∏
j=1

(k − n + j − s)

+
( n−1∏

j=1

(N + j − s)−
m−2∑
i=r

αi

n−1∏
j=1

(ξi − n + j − s)
)
σ]y(s)

+
k−n∑

s=ξt−1−n+1

[−M

n−1∏
j=1

(k − n + j − s)

+
( n−1∏

j=1

(N + j − s)−
m−2∑
i=t

αi

n−1∏
j=1

(ξi − n + j − s)
)
σ]y(s)

+
ξt−n∑

s=k−n+1

(
n−1∏
j=1

(N + j − s)−
m−2∑
i=t

αi

n−1∏
j=1

(ξi − n + j − s)
)
σy(s)

+
m−1∑

r=t+1

ξr−n∑
s=ξr−1−n+1

(
n−1∏
j=1

(N + j − s)−
m−2∑
i=r

αi

n−1∏
j=1

(ξi − n + j − s)
)
σy(s)}.

For ξm−2 + 1 ≤ k ≤ N + n, the unique solution of (2.1) (1.2) can be expressed as

u(k) =
1

M(n− 1)!
{

ξ1−n∑
s=0

[−M

n−1∏
j=1

(k − n + j − s)

+
( n−1∏

j=1

(N + j − s)−
m−2∑
i=1

αi

n−1∏
j=1

(ξi − n + j − s)
)
σ]y(s)
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+
m−2∑
r=2

ξr−n∑
s=ξr−1−n+1

[−M

n−1∏
j=1

(k − n + j − s)

+
( n−1∏

j=1

(N + j − s)−
m−2∑
i=r

αi

n−1∏
j=1

(ξi − n + j − s)
)
σ]y(s)

+
k−n∑

s=ξm−2−n+1

(
−M

n−1∏
j=1

(k − n + j − s) + σ

n−1∏
j=1

(N + j − s)
)
y(s)

+
N∑

s=k−n+1

( n−1∏
j=1

(N + j − s)
)
σy(s).

Therefore, the unique solution of (2.1) (1.2) is u(k) =
∑N

s=0 G(k, s)y(s). By the
method which Eloe has recently used to obtain the sign of Green’s function and
related inequalities in [6], it can be verified directly that G(k, s) ≥ 0 on {0, N +
n} × {0, N}. So, u(k) ≥ 0, k ∈ {0, N + n}. The proof is complete. �

Theorem 2.6. Assume that n ≤ ξ1 < ξ2 < · · · < ξm−2 < N + n, and that
0 <

∑m−2
i=1 αi(

∑n−1
j=1

∏j
l=1(ξi − n + l) + 1) <

∑n−1
j=1

∏j
l=1(N + l) + 1. If u satisfies

∆nu(k) ≤ 0, k ∈ {0, N}, with the nonlocal conditions (1.2), then

min
k∈{ξm−2,N+n}

u(k) ≥ γ‖u‖, (2.3)

where

γ = min
{αm−2(N + n− ξm−2)

N + n− αm−2ξm−2
,

αm−2

∏n−2
i=0 (ξm−2 − i)∏n−2

i=0 (N + n− i)
,

α1

∏n−2
i=0 (ξ1 − i)∏n−2

i=0 (N + n− i)
,∏n−2

i=0 (ξm−2 − i)∏n−2
i=0 (N + n− i)

}
.

Proof. We will show the details in the case that u satisfies the strict difference
inequality ∆nu(k) < 0, k ∈ {0, N}. Once (2.3) is obtained for functions satisfying
the strict inequality, one assumes that u satisfies the difference inequality and sets

u(ε, k) = u(k) + ε
( n−2∏

j=0

(k − j)
)

×
( (N + n)

∏n−2
j=0 (N + n− j)−

∑m−2
i=1 αiξi

∏n−2
j=0 (ξi − j)∏n−2

j=0 (N + n− j)−
∑m−2

i=1 αi

∏n−2
j=0 (ξi − j)

− k
)
.

Then for each ε > 0, u(ε, k) satisfies the strict difference inequality and the nonlocal
conditions (1.2). Thus, (2.3) holds for each ε > 0 and by limiting, it holds for ε = 0.

Under the assumption ∆nu(k) < 0, k ∈ {0, N}, we have to distinguish two cases.
Case (i): 0 <

∑m−2
i=1 αi < 1. Suppose u(ξr) = maxi∈{1,m−2} u(ξi), then u(N +

n) =
∑m−2

i=1 αiu(ξi) ≤
∑m−2

i=1 αiu(ξr) < u(ξr). It follows by repeated applications
of Lemma 2.3 that for each j ∈ {1, n − 1}, ∆ju has precisely one node, kj ∈
{n − 1 − j, N + n − j} and kj+1 < kj , j ∈ {1, n − 2}. Assume that ‖u‖ = u(k), if
∆u vanishes and ‖u‖ is attained at more than one point, choose k to be the largest
value producing ‖u‖, then that node occurs at k1 = k − 1. Otherwise, k1 = k.
Moreover, with the strict difference inequality ∆nu(k) < 0, k ∈ {0, N}, we know
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that u is increasing on {n−2, k} and decreasing, concave down on {k, N +n}. And,
if k 6= kj , k ∈ {n− 1− j, N + n− j}, ∆ju does not have a node at k. So, it is easy
to see that mink∈{ξm−2,N+n} u(k) = u(N + n).

First assume that k ≤ ξm−2 < N + n. Since u(N + n) =
∑m−2

i=1 αiu(ξi) ≥
αm−2u(ξm−2), and by the decreasing, negative concavity nature of u, we have

u(k) ≤ u(N + n) +
u(N + n)− u(ξm−2)

N + n− ξm−2

(
k − (N + n)

)
≤ u(N + n) +

( 1
αm−2

u(N + n)− u(N + n)
) N + n

N + n− ξm−2

=
N + n− αm−2ξm−2

αm−2(N + n− ξm−2)
u(N + n);

i.e.,

min
k∈{ξm−2,N+n}

u(k) ≥ αm−2(N + n− ξm−2)
N + n− αm−2ξm−2

‖u‖.

Second, if ξm−2 < k < N + n, let

h(k) = u(k)−
‖u‖

∏n−2
i=0 (k − i)∏n−2

i=0 (k − i)
, k ∈ {0, k}.

We can prove directly that ∆nh(k) < 0, k ∈ {0, k − n}, h(0) = · · · = h(n− 2) = 0,
h(k) = 0. Apply Lemma 2.2, it follows that h(k) ≥ 0; i.e.,

u(k) ≥
‖u‖

∏n−2
i=0 (k − i)∏n−2

i=0 (k − i)
, k ∈ {0, k}.

So, in particular,

u(ξm−2) ≥
‖u‖

∏n−2
i=0 (ξm−2 − i)∏n−2
i=0 (k − i)

>
‖u‖

∏n−2
i=0 (ξm−2 − i)∏n−2

i=0 (N + n− i)
, (2.4)

which implies

u(N + n) =
m−2∑
i=1

αiu(ξi) ≥ αm−2u(ξm−2) ≥
αm−2

∏n−2
i=0 (ξm−2 − i)∏n−2

i=0 (N + n− i)
‖u‖.

Case (ii):
∑m−2

i=1 αi ≥ 1. Again, using the argument given in the first case, we
obtain the similar nature of u.

Firstly, suppose u(ξm−2) > u(N + n), then mink∈{ξm−2,N+n} u(k) = u(N + n),
which implies ξ1 < k < N + n. In fact, if n − 2 < k ≤ ξ1, then u(ξ1) ≥ u(ξ2) ≥
· · · ≥ u(ξm−2) > u(N + n), and

u(N + n) =
m−2∑
i=1

αiu(ξi) >

m−2∑
i=1

αiu(N + n) ≥ u(N + n).

Which is a contradiction. Thus (2.4) is readily modified to obtain

u(ξ1) ≥
‖u‖

∏n−2
i=0 (ξ1 − i)∏n−2

i=0 (N + n− i)
,
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which implies

u(N + n) =
m−2∑
i=1

αiu(ξi) ≥ α1u(ξ1) ≥
α1

∏n−2
i=0 (ξ1 − i)∏n−2

i=0 (N + n− i)
‖u‖.

Secondly, if u(ξm−2) ≤ u(N + n), then mink∈{ξm−2,N+n} u(k) = u(ξm−2); thus,
ξm−2 ≤ k ≤ N + n. Hence, we have (2.4). The proof is complete. �

3. Main results

In this section, we will impose suitable growth conditions on f , which enable us
to apply Theorem 2.1 to obtain three positive solutions for (1.1)) (1.2).

Let E =
{
u : {0, N + n} → R

}
, and choose the cone K ⊂ E,

K =
{
u ∈ E : u(k) ≥ 0, k ∈ {0, N + n}, and min

k∈{ξm−2,N+n}
u(k) ≥ γ‖u‖

}
.

Define an operator A by

Au(k) =
N∑

s=0

G(k, s)a(s)f
(
s, u(s)

)
.

Obviously, u is a solution of (1.1) (1.2) if and only if u is a fixed point of operator
A.

Finally, we define the nonnegative continuous concave functional α on K by

α(u) = min
k∈{ξm−2,N+n}

u(k).

Note that, for each u ∈ K, α(u) ≤ ‖u‖.
For of convenience, we denote

λ1 = max
k∈{0,N+n}

N∑
s=0

G(k, s)a(s), λ2 = min
k∈{ξm−2,N+n}

N∑
s=ξm−2

G(k, s)a(s).

Then 0 < λ2 < λ1. To present our main result, we assume there exist constants
0 < a < b < min{γ, λ2

λ1
}c such that

(H1) f(k, u) ≤ c/λ1, for (k, u) ∈ {0, N + n} × [0, c];
(H2) f(k, u) < a/λ1, for (k, u) ∈ {0, N + n} × [0, a];
(H3) f(k, u) > b/λ2, for (k, u) ∈ {ξm−2, N + n} × [b, b/γ].

Theorem 3.1. Under assumptions (H1)–(H3), the boundary value problem (1.1)
(1.2) has at least three positive solutions u1, u2 and u3 satisfying

‖u1‖ < a, b < min
k∈{ξm−2,N+n}

u2(k), ‖u3‖ > a, min
k∈{ξm−2,N+n}

u3(k) < b. (3.1)

Proof. First, We note that A : Pc → Pc is completely continuous. If u ∈ Pc, then
‖u‖ ≤ c, and by condition (H1), we have

‖Au‖ = max
k∈{0,N+n}

N∑
s=0

G(k, s)a(s)f
(
s, u(s)

)
≤ c

λ1
max

k∈{0,N+n}

N∑
s=0

G(k, s)a(s) = c.

Hence, A : Pc → Pc. Standard applications of Arzela-Ascoli theorem imply that
A is completely continuous. In an analogous argument, the condition (H2) implies
the condition (C2) of Theorem 2.1.
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We now show that condition (C1) of Theorem 2.1 is satisfied. Obviously,

{u ∈ P (α, b,
b

γ
) : α(u) > b} 6= ∅.

If u ∈ P (α, b, b
γ ), then b ≤ u(k) ≤ b

γ , for k ∈ {ξm−2, N + n}. By condition (H3),
we obtain

α(Au) = min
k∈{ξm−2,N+n}

N∑
s=0

G(k, s)a(s)f
(
s, u(s)

)
≥ min

k∈{ξm−2,N+n}

N∑
s=ξm−2

G(k, s)a(s)f
(
s, u(s)

)
>

b

λ2
min

k∈{ξm−2,N+n}

N∑
s=ξm−2

G(k, s)a(s) = b.

Therefore, condition (C1) of Theorem 2.1 is satisfied.
Finally, we show that condition (C3) of Theorem 2.1 also holds. If u ∈ P (α, b, c)

and ‖Au‖ > b
γ , then

α(Au) = min
k∈{ξm−2,N+n}

Au(k) ≥ γ‖Au‖ > b.

So, condition (C3) of Theorem 2.1 is satisfied.
Applying Theorem 2.1, we know that the boundary value problem (1.1) (1.2)

has at least three positive solutions u1, u2 and u3 satisfying (3.1). The proof is
complete. �
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