Electron. J. Diff. Equ., Vol. 2011 (2011), No. 79, pp. 1-9.

Existence and asymptotic behaviour of positive solutions for semilinear elliptic systems in the Euclidean plane

Abdeljabbar Ghanmi, Faten Toumi

Abstract:
We study the semilinear elliptic system
$$
 \Delta u=\lambda p(x)f(v),\Delta v=\lambda q(x)g(u),
 $$
in an unbounded domain D in $ \mathbb{R}^2$ with compact boundary subject to some Dirichlet conditions. We give existence results according to the monotonicity of the nonnegative continuous functions f and g. The potentials p and q are nonnegative and required to satisfy some hypotheses related on a Kato class.

Submitted March 31, 2011. Published June 20, 2011.
Math Subject Classifications: 34B27, 35J45, 45M20.
Key Words: Green function; semilinear elliptic systems; positive solution.

Show me the PDF file (230 KB), TEX file, and other files for this article.

Abdeljabbar Ghanmi
Département de Mathématiques
Faculté des Sciences de Tunis
Campus Universitaire, 2092 Tunis, Tunisia
email: ghanmisl@yahoo.fr
Faten Toumi
Département de Mathématiques
Faculté des Sciences de Tunis
Campus Universitaire, 2092 Tunis, Tunisia
email: faten.toumi@fsb.rnu.tn

Return to the EJDE web page