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SCATTERING FOR WAVE EQUATIONS WITH DISSIPATIVE
TERMS IN LAYERED MEDIA

MITSUTERU KADOWAKI, HIDEO NAKAZAWA, KAZUO WATANABE

Abstract. In this article, we show the existence of scattering solutions to
wave equations with dissipative terms in layered media. To analyze the wave
propagation in layered media, it is necessary to handle singular points called
thresholds in the spectrum. Our main tools are Kato’s smooth perturbation
theory and some approximate operators.

1. Introduction

In this article, we study the wave propagation in Ω (layered media), expressed
as

Ω = {(x, y) : x ∈ RN , 0 < y < π},
where N ∈ N is a fixed number.

We consider wave equations with dissipative terms:

∂2
t u(x, y, t) + b(x, y)∂tu(x, y, t)−∆u(x, y, t) = 0, (x, y, t) ∈ Ω× [0,∞),

u(x, 0, t) = u(x, π, t) = 0, (x, t) ∈ RN × [0,∞),
(1.1)

where ∂t = ∂/∂t, ∆ = ∂2/∂x2
1 + ∂2/∂x2

2 + · · ·+ ∂2/∂x2
N + ∂2/∂y2, and b(x, y) is a

measurable non-negative function that decays as |x| → ∞.
We consider (1.1) as a perturbed system for

∂2
t u(x, y, t)−∆u(x, y, t) = 0, (x, y, t) ∈ Ω× (−∞,∞),

u(x, 0, t) = u(x, π, t) = 0, (x, t) ∈ RN × (−∞,∞).
(1.2)

The primary purpose of the present paper is to show the existence of scattering
solutions for b(x, y) under the following conditions (cf. Mochizuki-Nakazawa [10]):
For b0 > 0, δ ∈ (0, 1], and m ∈ N ∪ {0},

0 ≤ b(x, y) ≤ b0

( m∏
k=0

log[k](em + r)
)−1(

log[m](em + r)
)−δ

, (1.3)
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where r = |x| and

e0 = 1, em = eem−1 , log[0] s = s, log[m] s = log log[m−1] s (m ≥ 1).

For instance, if m = 0, then (1.3) is expressed as

0 ≤ b(x, y) ≤ b0(1 + r)−1−δ. (1.4)

Moreover, it can be easily observed that∫ ∞

0

( m∏
k=0

log[k](em + r)
)−1(

log[m](em + r)
)−δ

dr <∞.

Hence, (1.3) represents the short-range condition.
To explain the thresholds, we define a self-adjoint operator, L0, in L2(Ω) by

L0u = −∆u, D(L0) = {u ∈ H1
0 (Ω) : ∆u ∈ L2(Ω)}.

For z 6∈ R, we put R(z) = (L0 − z2)−1. Then we have

(R(z)ϕ)(x, y) =
2
π

∞∑
n=1

sinny
∫ π

0

sinny′(rn(z)ϕ)(x, y′)dy′, (1.5)

for ϕ ∈ C∞0 (Ω), where rn(z) = (−∆x − (z2 − n2))−1 and ∆x =
∑N

j=1 ∂
2/∂x2

j .
Therefore, σ(L0) = σac(L0) = ∪∞n=1[n

2,∞) = [12,∞). The operator rn(z) (and
accordingly R(z)) has singularity at z2 = n2. {n2}n∈N are called the thresholds of
L0.

The solution of (1.2) is represented by the superposition of several modes; that
is, the solution u of (1.2) is represented as

u(x, y, t) =
∞∑

n=1

un(x, t) sinny,

where un(x, t) is the solution of

∂2
t un(x, t)−∆xun(x, t) + n2un(x, t) = 0, (x, t) ∈ RN × (−∞,∞).

To explain the main results, we put f(t) = t(u(t), ∂tu(t)). Then (1.1) and (1.2)
can be expressed as

∂tf(t) = −iAf(t) and ∂tf(t) = −iA0f(t),

where

A0 = i

(
0 1
∆ 0

)
, B =

(
0 0
0 b(x, y)

)
, (1.6)

and A = A0 − iB.
Let ∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3, . . . , ∂/∂xN , ∂/∂y) and Ḣ1

0 (Ω) be the completion
of C∞0 (Ω) with respect to ‖∇f‖L2(Ω). Let H = Ḣ1

0 (Ω)×L2(Ω) be the Hilbert space
with the inner product

〈f, g〉 =
∫

Ω

(∇f1(x, y) · ∇g1(x, y) + f2(x, y)g2(x, y)) dx dy,

where f = t(f1, f2) and g = t(g1, g2). The norm of H is denoted by ‖ · ‖.
We define the domains of A and A0 as

D(A) = D(A0) =
{
f = t(f1, f2) ∈ H : ∆f1 ∈ L2(Ω), f2 ∈ H1

0 (Ω)
}
.
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A0 is self-adjoint, and hence, U(t) = e−itA0 (t ∈ R) is unitary. Moreover, −iA
generates a contraction semi-group V (t), t ≥ 0; see Reed-Simon [14, Theorem X-
50].

We have σ(A0) = σac(A0) = ∪∞n=1(−∞,−n] ∪ [n,∞) = (−∞,−1] ∪ [1,∞) (cf.
Proposition 3.1). {±n}n∈N are called the thresholds of A0.

The main result of this paper can be stated as follows.

Theorem 1.1. Let us assume (1.3). Then for the above defined A0 and A, it holds
that

(1) A has no real eigenvalues.
(2) The wave operator

W = s− lim
t→∞

U(−t)V (t)

exists. Moreover, W is not zero as an operator in H.

Corollary 1.2. There exist non-trivial initial data f ∈ D(A) and f+ ∈ D(A0)
such that

lim
t→∞

‖V (t)f − U(t)f+‖ = 0. (1.7)

If V (t)f satisfies (1.7), then V (t)f is called the scattering solution to ∂tf(t) =
−iAf(t), f(0) ∈ D(A). The proof of Corollary 1.2 is obtained in the same manner
as in Kadowaki [5, Corollary 2]; hence, it is omitted here.

Remark 1.3. When we assume the Neumann conditions instead of the Dirichlet
conditions, we can obtain the same results as in Theorem 1.1.

Spectral analysis near the thresholds on layered media has been performed by
several authors (e.g., Sveshnikov [19], [20], Werner [21], and Ramm-Werner [13]).
In [20], it has been proved that the limiting absorption principle does not hold at
the thresholds in the case of N = 1. In [13], it has been shown that the limiting
amplitude principle does not hold at the thresholds for N = 1, 2 but holds N ≥ 3.

In the cases of other media, the existence of the thresholds is known. For ex-
ample, Ben-Artzi [3] and Weder [22], [23] have derived the limiting absorption
principle at the thresholds on inhomogeneous layered media in R2 and stratified
media, respectively.

Wave equations with dissipative terms have been studied by Mochizuki [8] and
Kadowaki [5]. In [8], the existence of scattering solutions has been shown for wave
equations in RN , N 6= 2 (for N = 2, see Nakazawa [11]). The above proof was based
on Kato’s smooth perturbation theory (Kato [6]). In [5], the same problem was dealt
with for stratified media. In that proof, in addition to the concept employed in [8],
an approximate operator employed by Simon [18] and the well-known properties of
compact operators have been used.

In [18], (H − i)−2H has been used as an approximate operator, where H is the
Schrödinger operator with absorption (non-self-adjoint operator). Concretely, in
that study, the set

{(H − i)−2Hv : v ∈ D(H) ∩ (L2(RN ))⊥b }
was proven to be dense in (L2(RN ))⊥b , where (L2(RN ))b is the space generated by
the eigenvector of H with real eigenvalues. The reason for using the approximate
operator is as follows. For the spectral analysis of non-self-adjoint operators, it is
difficult to use localized method for the spectrum because the spectral resolution
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theory for non-self-adjoint operators has not been established yet. Even if Ψ(λ)
belongs to C∞0 (R), it is difficult to define Ψ(H). Hence, an approximate operator
was used instead of Ψ(H).

We will prove Theorem 1.1 using the concept employed in [8] and [5]. The
existence of the thresholds makes the proof difficult. To eliminate the difficulty, we
use

√
B(A2

0 − n2)(A0 − i)−2. This operator plays an important role in the proof
(see section 2 (A3) and section 3 ). In addition, we use approximate operators of
Simon’s type:

∏p
k=q(A

2 − k2)(A − i)−l, where l = 1, 2 (see Lemma 2.1 and the
proofs for Lemma 2.5 and Theorem 2.3).

There are several other results on scattering problems for dissipative wave (hy-
perbolic) equations (e.g., Mochizuki-Nakazawa [10], Petkov [12], etc.). However,
there are no results for dissipative wave equations in layered media.

Before concluding this section, we will briefly explain the contents of the present
paper. In section 2, we will describe an abstract result (Theorem 2.3) and provide
its proof. In section 3, we will prove Theorem 1.1 by applying Theorem 2.3. In
section 4, we will provide a resolvent estimate. In section 5, we will consider the
case where b(x, y) satisfies (5.1). Hence, we will be able to show that the total
energy of all solutions of (1.1) decays (i.e., (1.1) has only dissipative solutions).

2. Abstract result

To prove Theorem 1.1, we prepare an abstract theorem (Theorem 2.3).
Let H be a separable Hilbert space with the inner product 〈·, ·〉 and the norm

‖ · ‖. Let A be a linear operator in H, and let Hb be the space generated by the
eigenvector of A with real eigenvalues. We assume that −iA generates a contraction
semi-group V (t) (t ≥ 0).

In order to conduct a density argument, we prepare subspaces of Simon’s type.

Lemma 2.1. Let l, p ∈ N. Let α1, α2, α3, . . . , αp ∈ R be a finite sequence. Then
the set

Φ = {
p∏

k=1

(A− αk){(A− i)−1}lf : f ∈ H⊥
b }

is dense in H⊥
b .

Proof. Let α ∈ R. Using the same approach as that used by Petkov [12, Lemma
1.1.6], we can prove that the set

Φ̃0 = {(A− α){(A− i)−1}lf : f ∈ D(A) ∩H⊥
b }

is dense in H⊥
b . We use

Φ0 = {(A− α){(A− i)−1}lf : f ∈ H⊥
b }.

Then since Φ̃0 ⊂ Φ0, Φ0 is also dense in H⊥
b . Thus, repeating the density argument

for Φ0, we observe that Φ is also dense in H⊥
b . �

Remark 2.2. If A is a self-adjoint operator, then the same assertion as that used
in Lemma 2.1 remains true when (A− i)−1 is replaced by (A+ i)−1.

Let A0 and B be self-adjoint operators in H. Let E(λ) be the spectral family
of A0 and {U(t)}t∈R be the unitary group {e−itA0}t∈R. We assume the following
three conditions:

(A1) σ(A0) = σac(A0) = (−∞,−m] ∪ [m,∞) for some m ≥ 0;
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(A2) B is nonnegative and A0-compact;
(A3) There exists a sequence: m = a1 < a2 < a3 < · · · < an < . . . such that

limn→∞ an = ∞, and
√
BFn(A0)Ean,an+1(A0)

is A0-smooth, where Eα,β(A0) = E((−β,−α) ∪ (α, β)) for 0 < α < β and

Fn(λ) = {(λ− an)(λ− i)−1}{(λ+ an)(λ− i)−1} = (λ2 − a2
n)(λ− i)−2.

In this article, we define a bounded operator K to be A0-smooth (Kato [6]) if
there exists a positive constant C such that∫ ∞

−∞
‖KU(t)f‖2dt ≤ C‖f‖2

for any f ∈ H (cf. Reed -Simon [15, p. 144, Lemma 2]). By (A2), −i(A0 − iB)
generates a contraction semigroup (see [14, Theorem X-50]).

Theorem 2.3. Assume (A1), (A2), (A3). Let A = A0 − iB. Then the assertion
is in Theorem 1.1 holds.

To prove the above theorem, we first find the following relations.

‖V (t)f‖2 + 2
∫ t

0

‖
√
BV (τ)f‖2dτ = ‖f‖2 (2.1)

for f ∈ D(A). Next, (2.1) implies∫ ∞

0

‖
√
BV (τ)f‖2dτ ≤ 1

2
‖f‖2. (2.2)

for f ∈ D(A). We use

W (t) = U(−t)V (t), F̃n(A0) =
n∏

j=1

Fj(A0), Ẽn(A0) =
n∑

j=1

Eaj ,aj+1(A0).

Next, we prepare the following two lemmas.

Lemma 2.4. Let f ∈ H. Then for every n ∈ N,

lim
s,t→∞

‖F̃n(A0)Ẽn(A0)(W (t)−W (s))f‖ = 0.

Proof. Put Mk = supλ∈R |Fk(λ)|. For any ε > 0, there exists h ∈ D(A) such that

‖f − h‖ < ε

2
∏n

j=1Mj
. (2.3)

Since

‖F̃n(A0)Ẽn(A0)(W (t)−W (s))h‖

≤
n∑

k=1

n∏
j=1,j 6=k

Mj‖Fk(A0)Eak,ak+1(A0)(W (t)−W (s))h‖,

it is sufficient to show that

lim
s,t→∞

‖Fk(A0)Eak,ak+1(A0)(W (t)−W (s))h‖ = 0 (2.4)
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for k = 1, 2, 3 . . . , n. Indeed, it follows from (2.3) and (2.4) that

lim sup
s,t→∞

‖F̃n(A0)Ẽn(A0)(W (t)−W (s))f‖ ≤ 2ε.

Thus, we obtain the desired result.
Now, we prove (2.4). This is proven using the same approach as that used in

Mochizuki [8]. Hence, we provide a brief overview of the proof. Let g ∈ H. Using
the equality

〈Fk(A0)Eak,ak+1(A0)(W (t)−W (s))h, g〉

=−
∫ t

s

〈
√
BV (τ)h,

√
BU(τ)Fk(A0)Eak,ak+1(A0)g〉dτ

together with (A3) and (2.2), we obtain (2.4). �

Lemma 2.5. Let f ∈ H. Then w − limt→∞ V (t)f = 0.

Proof. Let g ∈ H. For any ε > 0, there exists h ∈ H such that

‖g − F 1(A0)(A0 + i)−2h‖ < ε

‖f‖
(2.5)

by Lemma 2.1 (and Remark 2.2) for l = 2 and α1 = a1 and α2 = −a1. For ε and
h, there exists n ∈ N such that

sup
|λ|>an+1

|F 1(λ)(λ2 + i)−2| < ε

‖f‖‖h‖
. (2.6)

Moreover, for ε, h, and n, there exists ϕ ∈ H such that

‖h−
n∏

k=2

F k(A0)ϕ‖ <
ε

M1‖f‖
(2.7)

by Lemma 2.1 (and Remark 2.2) for l = 1 and α1 = a2, α2 = −a2, α3 = a3,
α4 = −a3 . . . , M1 = supλ∈R |F1(λ)|.

Let f ∈ H and τ ≥ 0. Using the values of h, ϕ, and n, we decompose 〈(W (t)−
W (s))f, U(−τ)g〉 into four parts:

〈(W (t)−W (s))f, U(−τ)g〉 =
4∑

j=1

Ij(s, t),

where

I1(s, t) = 〈(W (t)−W (s))f, U(−τ)(g − F 1(A0)(A0 + i)−2h)〉,

I2(s, t) = 〈(W (t)−W (s))f, U(−τ)(Id − Ẽn(A0))F 1(A0)(A0 + i)−2h)〉,

I3(s, t) = 〈(A0 − i)−2Ẽn(A0)F1(A0)(W (t)−W (s))f, U(−τ)(h−
n∏

k=2

F k(A0)ϕ)〉,

I4(s, t) = 〈(A0 − i)−2Ẽn(A0)F̃n(A0)(W (t)−W (s))f, U(−τ)ϕ〉.

By (2.5), (2.6), and (2.7), we have

|I1(s, t)|+ |I2(s, t)|+ |I3(s, t)| ≤ 6ε.

Hence, we have

|〈(W (t)−W (s))f, U(−τ)g〉| ≤ 6ε+ ‖(ẼnF̃n)(A0)(W (t)−W (s))f‖‖ϕ‖ (2.8)
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uniformly for τ ≥ 0. Put τ = 0 in (2.8). Then Lemma 2.4 implies that

lim sup
s,t→∞

|〈(W (t)−W (s))f, g〉| ≤ 6ε.

Since g ∈ H is arbitrary, there exists f+ ∈ H such that

w− lim
t→∞

W (t)f = f+.

Now, we return to (2.8). It is noted that f (n)
+ := s − lims→∞(ẼnF̃n)(A0)W (s)f

exists by Lemma 2.4. Thus, we have

|〈W (t)f − f+, U(−τ)g〉| ≤ 6ε+ ‖(ẼnF̃n)(A0)W (t)f − f
(n)
+ ‖‖ϕ‖

in (2.8) as s→∞.
Substituting τ = t, we have

|〈V (t)f − U(t)f+, g〉| ≤ 6ε+ ‖(ẼnF̃n)(A0)W (t)f − f
(n)
+ ‖‖ϕ‖.

Further, as t→∞, we have

lim sup
t→∞

|〈V (t)f − U(t)f+, g〉| ≤ 6ε.

Since w − limt→∞ U(t)f+ = 0 by (A1), we have

lim sup
t→∞

|〈V (t)f, g〉| ≤ 6ε.

Thus, the proof is complete. �

As an immediate consequence of Lemma 2.5, we see that

σp(A) ∩ R = ∅, (2.9)

whose proof can be found in Kadowaki [5].

Proof of Theorem 2.3. By Lemma 2.1 and (2.9), the set

{(A− α){(A− i)−1}lf : f ∈ H}
is dense in H. We use

Fk(A) = {(A− ak)(A− i)−1}{(A+ ak)(A− i)−1}.
Let f ∈ H. Then for any ε > 0, there exists g ∈ H such that

‖f − F1(A){(A− i)−1}2g‖ < ε (2.10)

by Lemma 2.1, for l = 2 and α1 = a1 and α2 = −a1.
For ε and g, there exists n ∈ N such that

sup
|λ|>an+1

|F1(λ)(λ2 − i)−2| < ε/‖g‖. (2.11)

Moreover, for ε, g and n, there exists ϕ ∈ H such that

‖g −
n∏

k=2

Fk(A)ϕ‖ < ε

M1
(2.12)

by Lemma 2.1, for l = 1 and α1 = a2, α2 = −a2, α3 = a3, α4 = −a3, . . . ,
M1 = supλ∈R |F1(λ)|.

Using g, ϕ and n, we decompose (W (t)−W (s))f into eight parts:

(W (t)−W (s))f =
8∑

j=1

Jj(s, t),
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where

J1(s, t) = (W (t)−W (s))(f − F1(A){(A− i)−1}2g),

J2(s, t) = U(−t)
[
F1(A){(A− i)−1}2 − F1(A0)(A0 − i)−2

]
V (t)g,

J3(s, t) = −U(−s)
[
F1(A){(A− i)−1}2 − F1(A0)(A0 − i)−2

]
V (s)g,

J4(s, t) = (Id − Ẽn(A0))F1(A0)(A0 − i)−2(W (t)−W (s))g,

J5(s, t) = (A0 − i)−2Ẽn(A0)F1(A0)(W (t)−W (s))
(
g −

n∏
k=2

Fk(A)ϕ
)
,

J6(s, t) = (A0 − i)−2Ẽn(A0)F1(A0)U(−t)
( n∏

k=2

Fk(A)−
n∏

k=2

Fk(A0)
)
V (t)ϕ,

J7(s, t) = −(A0 − i)−2Ẽn(A0)F1(A0)U(−s)
( n∏

k=2

Fk(A)−
n∏

k=2

Fk(A0)
)
V (s)ϕ,

J8(s, t) = (A0 − i)−2Ẽn(A0)F̃n(A0)(W (t)−W (s))ϕ.

Then (2.10), (2.11) and (2.12) imply

‖J1(s, t)‖+ ‖J4(s, t)‖+ ‖J5(s, t)‖ ≤ 6ε.

From (A2), we find that F1(A){(A− i)−1}2−F1(A0)(A0− i)−2 and
∏n

k=2 Fk(A)−∏n
k=2 Fk(A0) are compact operators. Thus, using Lemma 2.5, we have

lim
s,t→∞

‖Jj(s, t)‖ = 0,

where j = 2, 3, 6, 7. Lemma 2.4 implies that

lim
s,t→∞

‖J8(s, t)‖ = 0.

Therefore, we have
lim sup
s,t→∞

‖(W (t)−W (s))f‖ ≤ 6ε.

This indicates the existence of W .
Finally, we show that W 6≡ 0 using the same argument as that used in [8], section

2. We assume that W ≡ 0; i.e.,

lim
t→∞

‖V (t)f‖ = 0

for any f ∈ H. Then using the same argument as that used in [5], section 3, it
follows that

‖G(A0)f‖2 ≤ ‖f‖‖(G(A)−G(A0))f‖+ ‖f‖
(1

2

∫ ∞

0

‖
√
BU(t)G(A0)f‖2dt

)1/2

,

(2.13)
where G(λ) = (λ− i)−1.

Let n ∈ N. For any α, α′, β, and β′ satisfying an < α < α′ < β′ < β <
an+1, we consider ψα,β(λ) ∈ C∞0 (R), 0 ≤ ψα,β ≤ 1 such that ψα,β has support in
(−β,−α) ∪ (α, β) and that ψα,β = 1 on [−β′,−α′] ∪ [α′, β′].

We put f = U(s)ψα,β(A0)g for any g ∈ H. Hence, it follows from (2.13) that

‖G(A0)ψα,β(A0)g‖2 ≤ ‖f‖‖(G(A)−G(A0))U(s)ψα,β(A0)g‖

+ ‖f‖
(1

2

∫ ∞

s

‖
√
BU(t)G(A0)ψα,β(A0)g‖2dt

)1/2

.
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Next, (A1) and (A2) imply

lim
s→∞

‖(G(A)−G(A0))U(s)ψα,β(A0)g‖ = 0.

Since G(A0)Fn(A0)−1ψα,β(A0) is bounded,
√
BG(A0)ψα,β(A0) is A0-smooth by

(A3). This implies

lim
s→∞

∫ ∞

s

‖
√
BU(t)G(A0)ψα,β(A0)g‖2dt = 0.

Therefore, we obtain ψα,β(A0)g ≡ 0. Using E({±an}) = E({±an+1}) = 0 and the
decomposition of the identity on (−an+1,−an) ∪ (an, an+1), we have g ≡ 0. This
is a contradiction. �

3. Proof of Theorem 1.1

In this section, we will show that A0 and B defined in section 1 satisfy (A1),
(A2), and (A3) in section 2. (A2) is obtained from Rellich’s theorem. (A1) is
discussed as follows.

Proposition 3.1. For A0 defined in section 1, (A1) is satisfied for m = 1:

σ(A0) = σac(A0) = (−∞,−1] ∪ [1,∞).

Proof. We put

T0 =
1√
2

(√
L0 i√
L0 −i

)
.

Hence, T0 is a unitary operator from H = Ḣ0(Ω)×L2(Ω) onto L2(Ω)×L2(Ω). Put

B0 = T0A0T
−1
0 =

(√
L0 0
0 −

√
L0

)
.

A0 and B0 are unitary equivalent. As mentioned in section 1, since σ(L0) =
σac(L0) = [12,∞), we have

σ(B0) = σac(B0) = (−∞,−1] ∪ [1,∞).

Thus the proof is complete. �

To discuss (A3), we first give the following definitions. We define weighted L2-
spaces in the form

L2
Ym

(RN ) = {f(x) :
∫

RN

|Ymf(x)|2dx <∞},

L2
Y −1

m
(RN ) = {f(x) :

∫
RN

|Y −1
m f(x)|2dx <∞},

where

Ym =
( m∏

k=0

log[k](em + |x|)
)−1/2

(log[m](em + |x|))−δ/2

for the same m as in (1.3).
For the Hilbert space E , we denote the inner product, the norm, and the operator

norm from E to E by 〈·, ·〉E , ‖ · ‖E , and ‖ · ‖B(E), respectively. If E = H defined in
section 1, then we omit the suffix H.
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Lemma 3.2. Let n ∈ N. Then for every λ ∈ (−∞,−n)∪ (n,∞), there exist limits
rn(λ± i0) ∈ B(L2

Y −1
m

(RN ), L2
Ym

(RN )) such that

〈rn(λ± i0)Ymu, Ymv〉L2(RN ) = lim
κ↓0

〈rn(z)Ymu, Ymv〉L2(RN ), (3.1)

for any u, v ∈ L2(RN ), where z = λ ± iκ with κ > 0. Moreover, there exists a
positive constant C such that

‖Ymrn(λ± i0)Ym‖B(L2(RN )) ≤ C|λ2 − n2|−1/2, (3.2)

where C is independent of λ.

The above lemma will be proved in section 4. Using this lemma, we demonstrate
the following proposition.

Proposition 3.3. Let n ∈ N and ε ∈ (0, 1); further, let f ∈ H. Then the following
is observed:

(1) For any λ ∈ (−n− ε,−n) ∪ (n, n+ ε), there exists a positive constant C1,
independent of λ, such that

d

dλ
‖E(λ)

√
Bf‖2 ≤ C1(λ2 − n2)−1/2‖f‖2.

(2) For any λ ∈ (−n−1,−n−ε)∪(n+ε, n+1), there exists a positive constant
C2, independent of λ, such that

d

dλ
‖E(λ)

√
Bf‖2 ≤ C2‖f‖2.

Proof. Put ρ(z) = R(z)−R(z) with z = λ+ iκ, κ > 0, and

(ρ(λ)ϕ)(x, y) =
2
π

n∑
k=1

sin ky
∫ π

0

sin ky′((rk(λ+ i0)− rk(λ− i0))ϕ)(x, y′)dy′,

for ϕ ∈ C∞0 (Ω). Therefore, by Lemma 3.2,

lim
κ↓0

〈(ρ(z)− ρ(λ))Ymu, Ymv〉L2(RN ) = 0

holds for any u, v ∈ L2(RN ). Let f ∈ H. Using

d

dλ
‖E(λ)

√
Bf‖2 =

1
2πi

〈{(A0 − (λ+ i0))−1 − (A0 − (λ− i0))−1}
√
Bf,

√
Bf〉

and

〈{(A0 − (λ+ i0))−1 − (A0 − (λ− i0))−1}
√
Bf,

√
Bf〉 = λ〈ρ(λ)

√
bf2,

√
bf2〉L2(Ω),

we have
d

dλ
‖E(λ)

√
Bf‖2 =

1
2πi

λ〈
√
bρ(λ)

√
bf2, f2〉L2(Ω). (3.3)

To show (1) and (2), we estimate ‖
√
bρ(λ)

√
b‖2
B(L2(Ω)). Applying Parseval’s identity

to the Fourier series, the Schwarz inequality, and (1.3), we have

‖
√
bρ(λ)

√
b‖2
B(L2(Ω)) ≤ C

n∑
k=1

‖Ym(rk(λ+ i0)− rk(λ− i0))Ym‖2
B(L2(RN ))
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for some positive constant C. Hence, we only have to estimate the right-hand side
of the above inequality. By (3.2), there exists a positive constant C̃1, independent
of λ, such that

n∑
k=1

‖Ym(rk(λ+ i0)− rk(λ− i0))Ym‖2
B(L2(RN ))

=
n−1∑
k=1

‖Ym(rk(λ+ i0)− rk(λ− i0))Ym‖2
B(L2(RN ))

+ ‖Ym(rn(λ+ i0)− rn(λ− i0))Ym‖2
B(L2(RN ))

≤ C̃1(1 + |λ2 − n2|−1).

for any λ ∈ (−n− ε,−n) ∪ (n, n+ ε).
For any λ ∈ (−n − 1,−n − ε) ∪ (n + ε, n + 1), there exists a positive constant

C̃2, independent of λ, such that
n∑

k=1

‖Ym(rk(λ+ i0)− rk(λ− i0))Ym‖2
B(L2(RN )) ≤ C̃2.

Thus,

‖
√
bρ(λ)

√
b‖B(L2(Ω)) ≤

{
C̃1|λ2 − n2|−1/2 if n < |λ| < n+ ε,

C̃2 if n+ ε < |λ| < n+ 1.

This together with (3.3) prove (1) and (2). �

Proof of (A3). From Proposition 3.3, we may put an = n. We take ε ∈ (0, 1).
Substitute z = µ + iκ for κ > 0 and Kε(n) =

√
BFn(A0)En,n+ε(A0). It follows

from the well-known formula

Im〈(A0 − z)−1Kε(n)∗f,Kε(n)∗f〉

=
( ∫ −n

−n−ε

+
∫ n+ε

n

) κ

(λ− µ)2 + κ2
|(λ− i)−2(λ2 − n2)|2 d

dλ
‖E(λ)

√
Bf‖2dλ.

Thus, using Proposition 3.3 (1) and the well-known identity∫ ∞

−∞

κ

(λ− µ)2 + κ2
dλ = π,

we have
sup

Im z 6=0,f∈H
| Im〈(A0 − z)−1Kε(n)∗f,Kε(n)∗f〉| ≤ C‖f‖2

for some C > 0. This implies that Kε(n) =
√
BFn(A0)En,n+ε(A0) is A0-smooth

(cf. Kato [6] or Reed-Simon [15]).
By Proposition 3.3 (2), we can show that

√
BEn+ε,n+1(A0) is A0−smooth in

the same manner as that mentioned above. Since Fn(A0) is bounded, the operator√
BFn(A0)En+ε,n+1(A0) is also A0−smooth. Thus

√
BFn(A0)En,n+1(A0) is A0-

smooth because of E({±(n+ ε)}) = 0 (σp(A0) = ∅). �

Remark 3.4. From [5, Proposition 3.5] and [17, Lemma 5], the following state-
ments are obtained.
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(1) Let N ≥ 3 and s ≥ 1. Then for any λ ∈ (−n − 1,−n) ∪ (n, n + 1), there
exists a positive constant C, independent of λ, such that

‖Zsrn(λ± i0)Zs‖B(L2(RN )) ≤ C,

where Zs = (1 + |x|2)−s/2.
(2) Let s > 1. Then for any λ ∈ (−n−1,−n)∪(n, n+1), there exists a positive

constant C, independent of λ, such that

‖Zs{rn(λ+ i0)− rn(λ− i0)}Zs‖B(L2(R2)) ≤ C.

Thus, assuming (1.4) with δ ≥ 1 (if N ≥ 3) and δ > 1 (if N = 2), we need not
insert Fn(A0) in assumption (A3).

Proof. We omit the proof of (1), refer to [5], and provide a brief sketch of the proof
of (2). Put

E0(
√
λ2 − n2)(x′, x) =

i

4
H+

0 (
√
λ2 − n2|x− x′|)− i

4
H−

0 (
√
λ2 − n2|x− x′|)− i

2
,

where H±
0 are the Hankel functions of order zero with H−

0 = H+
0 . Let g ∈ C∞0 (R2).

By [17, Lemma 5], for any ε > 0, there exists a C > 0 such that

|E0(
√
λ2 − k2)(x′, x)| ≤ C(λ2 − k2)ε/2|x′ − x|ε.

In addition, using

((rk(λ+ i0)− rk(λ− i0))g)(x) =
∫

R2

( i
2

+ E0(
√
λ2 − k2)(x′, x)

)
g(x′)dx′,

we obtain the desired estimate. �

Remark 3.5. In the case of N = 1, for n ∈ N, we provide a concrete example
of BE((n, n + 1)), which is not A0-smooth. We put b(x, y) = χ(0,π)(x) and f =
t(0, χ(0,π)(x) sinny). Then we have

sup
κ6=0

| Im〈(A0 − (n− iκ))−1E((n, n+ 1))
√
Bf,E((n, n+ 1))

√
Bf〉| = ∞

Indeed, since Green’s function of rn(z) is

i

2
√
z2 − n2

ei
√

z2−n2|x|,

where Im
√
z2 − n2 > 0. By (3.3), we have

d

dλ
‖E(λ)

√
Bf‖2 =

π2

2
sin2

√
λ2−n2

2 π(√
λ2−n2

2 π
)2

λ√
λ2 − n2

.
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Therefore, we can obtain the estimate

|2 Im〈(A0 − (n− iκ))−1E((n, n+ 1))
√
Bf,E((n, n+ 1))

√
Bf〉|

=
∣∣〈E((n, n+ 1))

√
Bf,

{(A0 − (n+ iκ))−1 − (A0 − (n− iκ))−1}E((n, n+ 1))
√
Bf

〉∣∣
=

∫ n+1

n

π2κ

(λ− n)2 + κ2

sin2
√

λ2−n2

2 π(√
λ2−n2

2 π
)2

λ√
λ2 − n2

dλ

≥ Cn

∫ n+1

n

κ

(λ− n)2 + κ2

1√
λ2 − n2

dλ

for some C > 0. Integrating by parts and using Fatou’s lemma, we have

lim inf
κ→0

∫ n+1

n

κ

(λ− n)2 + κ2

1√
λ2 − n2

dλ ≥ π

2
√

2n+ 1
+

∫ n+1

n

πλ

2(λ2 − n2)
3
2
dλ = ∞

Therefore,
√
BE((n, n+ 1)) is not A0-smooth.

4. Proof of Lemma 3.2

Without loss of generality, we may assume n = 0. Hence, we only have to prove
the following lemma.

Lemma 4.1. For every λ ∈ R\{0}, there exist limits

r0(λ± i0) ∈ B(L2
Y −1

m
(RN ), L2

Ym
(RN ))

such that

〈r0(λ± i0)Ymu, Ymv〉L2(RN ) = lim
κ↓0

〈r0(z)Ymu, Ymv〉L2(RN ),

for any u, v ∈ L2(RN ), where z = λ ± iκ with κ > 0. Moreover, there exists a
positive constant C such that

‖Ymr0(λ± i0)Ym‖B(L2(RN )) ≤ C|λ|−1,

where C is independent of λ.

To prove Lemma 4.1, we define a Besov space (introduced by Agmon-Hörmander
[2])

B1/2(RN ) =
{
f(x) : ‖f‖B1/2 =

∑
j≥1

R
1/2
j {

∫
Dj

|f(x)|2dx}1/2 <∞
}
,

where R−1 = 0, Rj = 2j−1 (j = 1, 2, 3 . . . ) and Dj = {x ∈ RN : Rj−2 <
|x| < Rj−1}. The dual space of B1/2(RN ) with respect to L2(RN ) is denoted
by B∗1/2(R

N ).
The following result is well known (cf. Agmon [1, Theorems 3.1 and 3.2]).

Lemma 4.2. For every λ ∈ R\{0}, there exist limits

r0(λ± i0) ∈ B(B1/2(RN ), B∗1/2(R
N ))

such that
〈r0(λ± i0)u, v〉L2(RN ) = lim

κ↓0
〈r0(z)u, v〉L2(RN )
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for any u, v ∈ B1/2(RN ), where z = λ ± iκ with κ > 0. Moreover, there exists a
positive constant C such that

‖r0(λ± i0)‖B(B1/2(RN ),B∗
1/2(RN )) ≤ C|λ|−1,

where C is independent of λ.

Remark 4.3. The proof of (2) for N = 1 was not mentioned in [1]. However, it is
not difficult. The proof of (2), according to Isozaki [4, section 5.3], we can done as
follows.

|〈( d
2

dx2
− z2)−1u, v〉L2(R)| =

∣∣ ∫∫
R2

i

2z
eiz|x−y|u(y)dyv(x)dx

∣∣
≤ 1

2|z|

∫
R
|u(y)|dy

∫
R
|v(x)|dx

=
1

2|z|

( ∞∑
j=1

∫
Dj

|u(y)|dy
)( ∞∑

j=1

∫
Dj

|v(x)|dx
)

≤ 1
|z|
‖u‖B1/2‖v‖B1/2 .

Now Lemma 4.1 follows from Lemma 4.2 and the relation between L2
Ym

=
L2

Ym
(RN ) and B1/2 = B1/2(RN ) (cf. Roach-Zhang [16] (m = 1) and Nakazawa

[11] (m ≥ 1)):

L2
Y −1
0

⊂ L2
Y −1
1

⊂ · · · ⊂ L2
Y −1

m
⊂ B1/2 ⊂ L2 ⊂ B∗1/2 ⊂ L2

Ym
⊂ · · · ⊂ L2

Y1
⊂ L2

Y0
.

(4.1)

Proof. Since (4.1) follows from the duality and

L2
Y −1

m
⊂ L2

Y −1
m+1

⊂ B1/2, (4.2)

we only have to prove only (4.2). First, for any k ∈ N ∪ {0} satisfying k ≤ m − 1
and an arbitrarily fixed positive number δ, we have:

log[k](em + r) ≤ em−k

em−k−1
log[k](em−1 + r), (4.3)

[log[m](em + r)]1+δ ≤ 1 + δ

δ
[log[m−1](em−1 + r)]δ. (4.4)

Indeed, substituting

f(r) =
em−k

em−k−1
log[k](em−1 + r)− log[k](em + r)

and
g(r) =

1 + δ

δ
[log[m−1](em−1 + r)]δ − [log[m](em + r)]1+δ,

we can easily verify that f ′(r), g′(r) ≥ 0 and f(0) = 0, g(0) = 1/δ > 0. Therefore,
(4.3) and (4.4) hold. Hence, there exists a positive number Mm ≥ {em(1 + δ)}/δ
such that[m−1∏

k=0

log[k](em + r)
][

log[m](em + r)
]1+δ

≤Mm

{
(1 + r)1+δ if m = 1,
[
∏m−2

k=0 log[k](em−1 + r)][log[m−1](em−1 + r)]1+δ if m ≥ 2.
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Thus, we obtain
L2

Y −1
m

⊂ L2
Y −1

m+1
. (4.5)

Put ϕ(r) = {
∏m

k=0 log[k](em + r)}1/2{log[m](em + r)}δ/2. From the Schwarz
inequality, for any f ∈ C∞0 (RN ), we have

‖f‖B1/2 =
∑
j≥1

R
1/2
j

( ∫
Dj

ϕ(r)−2 · |ϕ(r)f(x)|2dx
)1/2

≤
{ ∑

j≥1

Rj

(
max
Dj

ϕ(r)−2
)}1/2

( ∑
j≥1

∫
Dj

|ϕ(r)f(x)|2dx
)1/2

= M(ϕ)‖f‖ϕ,

where
M(ϕ) ≡

{ ∑
j≥1

Rj

(
max
Dj

ϕ(r)−2
)}1/2

.

Hence, we have
L2

Y −1
m

⊂ B1/2 (4.6)

because

M(ϕ)2 =
∑
j≥1

Rjϕ(Rj−1)−2

= ϕ(0)−2 + 22
∑
j≥2

2j−3ϕ(Rj−1)−2

≤ ϕ(0)−2 + 22

∫ ∞

0

ϕ(r)−2dr <∞.

Thus, from (4.5) and (4.6) we obtain (4.2). �

5. Total energy decay

In this section, we assume that the function b(x, y) satisfies

b0

( m∏
k=0

log[k](em + r)
)−1

≤ b(x, y) ≤ b1 (5.1)

for some b0, b1 > 0 and m ∈ N ∪ {0}.
Under assumption (5.1), the operator −iA defined in section 1 generates a con-

traction semi-group V (t)(t ≥ 0). Hence, we obtain the following theorem.

Theorem 5.1. For any f ∈ H, limt→∞ ‖V (t)f‖ = 0.

The above theorem is an immediate consequence of the usual density argument
and the following proposition.

Proposition 5.2. Let ε satisfy 0 < ε ≤ min{1, b0/2}. Assume the initial data
f = t(f1, f2) ∈ C∞0 (Ω)× C∞0 (Ω). Then

‖V (t)f‖ ≤ C2{log[m](em + t)}−ε/2

for a positive constant C2 = C2(f1, f2, b0, b1, ε) > 0.
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This result is proved using the same arguments as those used in [10, section 2].
Here, we provide a brief summary of the proof.

Let u be the unique solution of (1.1) with initial data f = t(f1, f2) ∈ C∞0 (Ω) ×
C∞0 (Ω) ⊂ D(A). Let ϕ be a function defined by ϕ(s) = {log[m](em + s)}ε (0 < ε ≤
1). Multiplying both sides of (1.1) with ∂t{ϕ(r + t)u}, we obtain

∂tX(x, y, t) +∇ · Y (x, y, t) + Z(x, y, t) = 0, (5.2)

where

X(x, y, t) =
ϕ

2
(|∂tu|2 + |∇u|2) +

ϕ′b− ϕ′′

2
|u|2 + ϕ′Re(∂tuu),

Y (x, y, t) = −{ϕRe(∇u∂tu) + ϕ′Re(∇uu)},

Z(x, y, t) =
(
ϕb− 3ϕ′

2
)
|∂tu|2 +

ϕ′

2
|∇u|2 + ϕ′Re(∂ru∂tu) + ϕ′′Re(∂ruu)

+
ϕ′′′ − ϕ′′b

2
|u|2.

To prove Proposition 5.2, we state the following four lemmas.

Lemma 5.3. Let ε satisfy 0 < ε ≤ min{1, b0/2}. Then

Z(x, y, t) ≥ −∂t

(ϕ′′|u|2
2

)
.

Proof. It holds that

Z(x, y, t) ≥ (bϕ− 2ϕ′)|∂tu|2 +
1
2
(
2ϕ′′′ − bϕ′′ − ϕ′′

2

ϕ′
)
|u|2 − ∂t

(ϕ′′|u|2
2

)
.

From the assumption of b(x, y) and the definition of ϕ, we can easily verify that
bϕ − 2ϕ′ and 2ϕ′′′ − ϕ′′2

ϕ′ are non-negative if ε is chosen as b0
2 ≥ ε. This provides

the conclusion. �

Lemma 5.4. Let ε satisfy 0 < ε ≤ min{1, b0/2}. Then∫
Ω

(
X − ϕ′′|u|2

2

∣∣
t=τ

)
dx dy ≤

∫
Ω

(
X − ϕ′′|u|2

2

∣∣
t=0

)
dx dy.

Proof. From (5.2) and Lemma 5.3, we obtain

∂t

(
X(x, y, t)− ϕ′′|u|2

2

)
+∇ · Y (x, y, t) ≤ 0. (5.3)

Since V (t)f = t(u(t), ∂tu(t)) ∈ D(A), we have u(x, 0, t) = ∂tu(x, 0, t) = u(x, π, t) =
∂tu(x, π, t) = 0 in the trace sense. Thus, integration of (5.3) by parts over Ω× [0, τ ]
provides the conclusion. �

Lemma 5.5. Let ε satisfy 0 < ε ≤ min{1, b0/2} and µ satisfy 1/2 ≤ µ < 1. Then∫
Ω

(
X − ϕ′′|u|2

2

∣∣
t=τ

)
dx dy ≥ (1− µ)

2
{log[m](em + τ)}ε‖V (τ)f‖2.

Proof. Using (5.1) and the definition of ϕ(r + t), we find

X − ϕ′′|u|2

2

∣∣
t=τ

≥ (1− µ)ϕ
2

(|∂tu|2 + |∇u|2).

For more details, refer the reader to [10, Lemmas 2.1 and 2.2]. This provides the
conclusion. �
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The proof of the following lemma is obvious and is omitted.

Lemma 5.6. There exists a positive constant C1 = C1(b1, ε) such that∫
Ω

(
X − ϕ′′|u|2

2

∣∣
t=0

)
dx dy

≤ C1

( ∫
Ω

{log[m](em + r)}ε{|∇f1(x, y)|2 + |f2(x, y)|2} dx dy + ‖f1‖2
L2(Ω)

)
.

Then Proposition 5.2 follows from Lemmas 5.4, 5.5, and 5.6.
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