Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 62, pp. 1-16. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

QUASILINEAR ELLIPTIC PROBLEMS WITH NONSTANDARD GROWTH

MOHAMED BADR BENBOUBKER, ELHOUSSINE AZROUL, ABDELKRIM BARBARA

$$
\begin{aligned}
& \text { AbStract. We prove the existence of solutions to Dirichlet problems associ- } \\
& \text { ated with the } p(x) \text {-quasilinear elliptic equation } \\
& \qquad A u=-\operatorname{div} a(x, u, \nabla u)=f(x, u, \nabla u) .
\end{aligned}
$$

These solutions are obtained in Sobolev spaces with variable exponents.

1. Introduction

Partial differential equations with non-standard growth in Lebesgue and Sobolev spaces with variable exponent have been a very active field of investigation in recent years. The present line of investigation goes back to an article by Ková(c)ik and Rákosnik [9] in 1991.

The development, mainly by Ružička 15, of a theory modelling the behavior of electro-rhelogical fluid, an important class of non-Newtonian fluids, seems to have boosted a still far from completed effort to study and understand nonlinear PDEs involving variable exponents by several researches. Samko [16, 17, 18] working based on earlier Russian work (Sharapudinov [19] and Zhikov [20]), Fan and collaborators [5, 6, 7, 8] drawing inspiration from the study of differential equations(e.g. Marcellini [14). More recently, an application to image processing was proposed by Chen, Levine and Rao [4]. To give the reader a feeling for the idea behind this application we mention that the proposed model requires the minimization over u of the energy,

$$
\begin{equation*}
E(u)=\int_{\Omega}|\nabla u(x)|^{p(x)}+|u(x)-I(x)|^{2} d x \tag{1.1}
\end{equation*}
$$

where I is a given input. Recall that in the constant exponent case, the power $p=2$ corresponds to isotropic smoothing, which corresponds to minimizing the energy,

$$
\begin{equation*}
E_{2}(u)=\int_{\Omega}|\nabla u(x)|^{2}+|u(x)-I(x)|^{2} d x \tag{1.2}
\end{equation*}
$$

Unfortunately, the smoothing will destroy all small details from the image, so this procedure is not very useful. Where as $p=1$ gives total variations smoothing which

[^0]corresponds to minimizing the energy,
\[

$$
\begin{equation*}
E_{1}(u)=\int_{\Omega}|\nabla u(x)|+|u(x)-I(x)|^{2} d x \tag{1.3}
\end{equation*}
$$

\]

The benefit of this approach not only preserves edges, it also creates edges where there were none in the original image (the so-called staircase effect).

As the strengths and weaknesses of these two methods for image restoration are opposite, it is a natural to try to combine them. That was the idea of Chen, Levine and Rao [4, looking at E_{1} and E_{2} suggests that the appropriate energy is $E(u)$ (see 1.1), where $p(x)$, is a function varying between 1 and 2 . This function should be close to 1 where there are likely to be edges, and close to 2 where there are likely not to be edges, and depends on the location, x, in the image. In this way the direction and speed of diffusion at each location depends on the local behavior.

We point out that, this model is linked with energy which can be associated to the $p(x)$-Laplacian operators; i.e.,

$$
\begin{equation*}
\Delta_{p(x)} u=\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right) \tag{1.4}
\end{equation*}
$$

Moreover, the choice of the exponent yields a variational problem which has an Euler-Lagrange equation, and the solution can be found by solving corresponding evolutionary PDE.

In this paper, we consider a problem with potential applications. This problem has already been treated for constant exponent but it seems to be more realistic to assume the exponent to be variable. More precisely, we are interested in this paper to the following Dirichlet problems

$$
\begin{gather*}
A u=f(x, u, \nabla u) \quad \text { in } D^{\prime}(\Omega), \\
u=0 \quad \text { on } \partial \Omega \tag{1.5}
\end{gather*}
$$

where Ω is a bounded open subset of $\mathbb{R}^{N}(N \geq 2)$, and $p \in \mathcal{C}(\bar{\Omega}), p(x)>1$, and where A is a Leray-Lions operator defined from $W_{0}^{1, p(x)}(\Omega)$ into its dual $W^{-1, p^{\prime}(x)}(\Omega)$ by the formula

$$
\begin{equation*}
A u=-\operatorname{div} a(x, u, \nabla u) \tag{1.6}
\end{equation*}
$$

and where $f: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a Carathéodory function which satisfies the growth condition

$$
\begin{equation*}
|f(x, r, \xi)| \leq g(x)+|r|^{\eta(x)}+|\xi|^{\delta(x)}, \tag{1.7}
\end{equation*}
$$

where $0 \leq \eta(x)<p(x)-1$ and $0 \leq \delta(x)<(p(x)-1) / p^{\prime}(x)$. In the case of nonvariables exponents, Boccardo, Murat and Puel have studied in [3 the problem (1.5) with f satisfying the condition

$$
\begin{equation*}
|f(x, r, \xi)| \leq h(|r|)\left(1+|\xi|^{p}\right) \tag{1.8}
\end{equation*}
$$

where h is an increasing function from $\mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$.
Kuo and Tsai [10], proved the existence results under the growth condition

$$
\begin{equation*}
|f(x, r, \xi)| \leq C\left(1+|r|^{\delta}+|\xi|^{p}\right) \tag{1.9}
\end{equation*}
$$

However, in the case of variable exponent, we can list the work of Fan and Zhang [11] who studied the particular case

$$
\begin{gather*}
-\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)=f(x, u) \quad x \in \Omega \\
u=0 \quad \text { on } \partial \Omega \tag{1.10}
\end{gather*}
$$

where f satisfies the growth condition

$$
\begin{equation*}
|f(x, r)| \leq C_{1}+C_{2}|r|^{\beta(x)-1} \tag{1.11}
\end{equation*}
$$

with $1 \leq \beta<p^{-}:=\operatorname{essinf}_{x \in \bar{\Omega}} p(x)$ and we denote $p^{+}:=\operatorname{ess}_{\sup }^{x \in \bar{\Omega}}{ }^{p}(x)$.
The aim of this article is to study the existence of a solution to the problem 1.5 in the Sobolev spaces with variable exponents. The model example of our problem is

$$
\begin{gather*}
-\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)=|u|^{\eta(x)}+|\nabla u|^{\delta(x)}+g(x) \quad \text { in } D^{\prime}(\Omega) \tag{1.12}\\
u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

where $p \in \mathcal{C}_{+}(\Omega), 1<p^{-} \leq p(x) \leq p^{+}<N, g \in L^{p^{\prime}(x)}(\Omega), \eta$ and δ are two continuous functions on Ω such that $0 \leq \eta(x)<p(x)-1$ and $0 \leq \delta(x)<\frac{p(x)-1}{p^{\prime}(x)}$. Let us point that our work can be seen as a generalization of [11], 10] and [3] in the sense that in the first work the authors have considered $A u=-\triangle_{p(x)} u$, $f=f(x, u)$, however in the two last works the exponent is constant $p(x)=p$.

This article is organized as follows: In section 2, we introduce the mathematical preliminaries. In section 3, we introduce basic assumptions and we give and prove some main lemmas. Section 4, is devoted to the proof of our general existence result.

2. Preliminaries

For each open bounded subset Ω of $\mathbb{R}^{N}(N \geq 2)$, we denote

$$
\mathcal{C}_{+}(\bar{\Omega})=\{p \in \mathcal{C}(\bar{\Omega}): p(x)>1 \text { for any } x \in \bar{\Omega}\}
$$

and we define the variable exponent Lebesque space by:

$$
L^{p(x)}(\Omega)=\left\{u \text { is a measurable real-valued function, } \int_{\Omega}|u(x)|^{p(x)} d x<\infty\right\}
$$

We can introduce the norm on $L^{p(x)}(\Omega)$ by

$$
|u|_{p(x)}=\inf \left\{\lambda>0, \int_{\Omega}\left|\frac{u(x)}{\lambda}\right|^{p(x)} \leq 1\right\}
$$

Remark 2.1. Note that the variable exponent Lebesgue spaces resemble classical Lebesgue spaces in many respects: they are Banach spaces (Ková(c)ik and Rákosnik [9, Theorem 2.5]), the Hölder inequality holds (Ková(c)ik and Rákosnik [9, Theorem $2.1]$), they are reflexive if and only if $1<p^{-} \leq p^{+}<\infty$, (Ková(c)ik and Rákosnik [9, Coro. 2.7]) and continuous functions are dense, if $p^{+}<\infty$ (Ková(c)ik and Rákosnik [9, Theorem 2.11]).

We denote by $L^{p^{\prime}(x)}(\Omega)$ the conjugate space of $L^{p(x)}(\Omega)$ where $\frac{1}{p(x)}+\frac{1}{p^{\prime}(x)}=1$ (see [12], [22]).

Proposition 2.2 (Generalized Hölder inequality [12, 22]).
(i) For any $u \in L^{p(x)}(\Omega)$ and $v \in L^{p^{\prime}(x)}(\Omega)$, we have

$$
\left|\int_{\Omega} u v d x\right| \leq\left(\frac{1}{p^{-}}+\frac{1}{p^{\prime-}}\right)|u|_{p(x)}|v|_{p^{\prime}(x)}
$$

(ii) If $p_{1}(x), p_{2}(x) \in \mathcal{C}_{+}(\bar{\Omega}), p_{1}(x) \leq p_{2}(x)$ for any $x \in \bar{\Omega}$, then $L^{p_{2}(x)}(\Omega) \hookrightarrow$ $L^{p_{1}(x)}(\Omega)$, and the imbedding is continuous.

Proposition 2.3 ([12],[21]). If $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function and satisfies

$$
|f(x, s)| \leq a(x)+b|s|^{p_{1}(x) / p_{2}(x)} \quad \text { for any } x \in \Omega, s \in \mathbb{R}
$$

where $p_{1}, p_{2} \in \mathcal{C}_{+}(\bar{\Omega}), a(x) \in L^{p_{2}(x)}(\Omega), a(x) \geq 0$ and $b \geq 0$ is a constant, then the Nemytskii operator from $L^{p_{1}(x)}(\Omega)$ to $L^{p_{2}(x)}(\Omega)$ defined by $\left(N_{f}(u)\right)(x)=f(x, u(x))$ is a continuous and bounded operator.

Proposition 2.4 ([12], [22]). Let $\rho(u)=\int_{\Omega}|u|^{p(x)} d x$ for $u \in L^{p(x)}(\Omega)$. Then the following assertions hold:
(i) $|u|_{p(x)}<1$ (resp. $=1,>1$) if and only if $\rho(u)<1($ resp $.=1,>1)$;
(ii) $|u|_{p(x)}>1$ implies $|u|_{p(x)}^{p^{-}} \leq \rho(u) \leq|u|_{p(x)}^{p^{+}} ;|u|_{p(x)}<1$ implies $|u|_{p(x)}^{p^{+}} \leq$ $\rho(u) \leq|u|_{p(x)}^{p^{-}} ;$
(iii) $|u|_{p(x)} \rightarrow 0$ if and only if $\rho(u) \rightarrow 0 ;|u|_{p(x)} \rightarrow \infty$ if and only if $\rho(u) \rightarrow \infty$.

We define the variable Sobolev space by

$$
W^{1, p(x)}(\Omega)=\left\{u \in L^{p(x)}(\Omega):|\nabla u| \in L^{p(x)}(\Omega)\right\}
$$

with the norm

$$
\begin{equation*}
\|u\|=|u|_{p(x)}+|\nabla u|_{p(x)} \quad \forall u \in W^{1, p(x)}(\Omega) \tag{2.1}
\end{equation*}
$$

We denote by $W_{0}^{1, p(x)}(\Omega)$ the closure of $C_{0}^{\infty}(\Omega)$ in $W^{1, p(x)}(\Omega)$ and $p^{*}(x)=\frac{N p(x)}{N-p(x)}$, for $p(x)<N$.

Proposition 2.5 (12]). (i) Assuming $p^{-}>1$, the spaces $W^{1, p(x)}(\Omega)$ and $W_{0}^{1, p(x)}(\Omega)$ are separable and reflexive Banach spaces.
(ii) if $q \in \mathcal{C}_{+}(\bar{\Omega})$ and $q(x)<p^{*}(x)$ for any $x \in \bar{\Omega}$, then $W^{1, p(x)}(\Omega) \hookrightarrow \hookrightarrow$ $L^{q(x)}(\Omega)$ is compact and continuous.
(iii) There is a positive constant C, such that

$$
|u|_{p(x)} \leq C|\nabla u|_{p(x)} \quad \forall u \in W_{0}^{1, p(x)}(\Omega)
$$

Remark 2.6. By (iii) of Proposition 2.5. we know that $|\nabla u|_{p(x)}$ and $\|u\|$ are equivalent norms on $W_{0}^{1, p(x)}$.

3. Basic assumptions and some Lemmas

Let $p \in \mathcal{C}_{+}(\bar{\Omega})$ such that $1<p^{-} \leq p(x) \leq p^{+}<N$, and denote

$$
A u=-\operatorname{div} a(x, u, \nabla u)
$$

where $a: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a carathéodory function satisfying the following assumptions:
(H1) $|a(x, r, \xi)| \leq \beta\left[k(x)+|r|^{p(x)-1}+|\xi|^{p(x)-1}\right]$;
(H2) $[a(x, r, \xi)-a(x, r, \eta)](\xi-\eta)>0$ for all $\xi \neq \eta \in \mathbb{R}^{N}$;
(H3) $a(x, r, \xi) \xi \geq \alpha|\xi|^{p(x)}$;
for a.e. $x \in \Omega$, all $(r, \xi) \in \mathbb{R} \times \mathbb{R}^{N}$, where $k(x)$ is a positive function lying in $L^{p^{\prime}(x)}(\Omega)$ and $\beta, \alpha>0$.

Let f be a Carathéodory function defined on $\Omega \times \mathbb{R} \times \mathbb{R}^{N}$ such that
(H4) $|f(x, r, \xi)| \leq g(x)+|r|^{\eta(x)}+|\xi|^{\delta(x)}$ for a.e. $x \in \Omega$, all $(r, \xi) \in \mathbb{R} \times \mathbb{R}^{N}$, where $g: \Omega \rightarrow \mathbb{R}^{+}, g \in L^{p^{\prime}(x)}(\Omega)$ and $0 \leq \eta(x)<p(x)-1,0 \leq \delta(x)<\frac{p(x)-1}{p^{\prime}(x)}$.

Definition 3.1. Let Y be a separable reflexive Banach space. An operator B defined from Y to its dual Y^{*} is called an operator of the calculus of variations type, if B is bounded and is of the form

$$
\begin{equation*}
B(u)=B(u, u) \tag{3.1}
\end{equation*}
$$

where $(u, v) \rightarrow B(u, v)$ is an operator defined from $Y \times Y$ into Y^{*} which satisfying the following properties:

For $u \in Y$, the mapping $v \rightarrow B(u, v)$ is bounded hemicontinuous from Y into Y^{*} and $(B(u, u)-B(u, v), u-v) \geq 0$;
for $v \in Y$, the mapping $u \rightarrow B(u, v)$ is bounded hemicontinous from Y into Y^{*};

$$
\begin{align*}
& \text { if } u_{n} \rightharpoonup u \text { in } Y \text { and if }\left(B\left(u_{n}, u_{n}\right)-B\left(u_{n}, u\right), u_{n}-u\right) \rightarrow 0 \text {, then } \\
& B\left(u_{n}, v\right) \rightharpoonup B(u, v) \text { in } Y^{*} \text { for all } v \in Y . \tag{3.3}
\end{align*}
$$

and

$$
\begin{align*}
& \text { if } u_{n} \rightharpoonup u \text { in } Y \text { and if } B\left(u_{n}, v\right) \rightharpoonup \psi \text { in } Y^{*}, \text { then }\left(B\left(u_{n}, v\right), u_{n}\right) \rightarrow \\
& (\psi, u) . \tag{3.4}
\end{align*}
$$

The symbol \rightharpoonup denote the weak convergence.
Lemma 3.2. Assume that (H1)-(H4) are satisfied and let $\left(u_{n}\right)_{n}$ be a sequence in $W_{0}^{1, p(x)}(\Omega)$ and let $u \in W_{0}^{1, p(x)}(\Omega)$. If $u_{n} \rightharpoonup u$ in $W_{0}^{1, p(x)}(\Omega)$, then for some subsequence denoted again $\left(u_{n}\right)$, we have

$$
a\left(x, u_{n}, \nabla v\right) \rightarrow a(x, u, \nabla v) \quad \text { in }\left(L^{p^{\prime}(x)}(\Omega)\right)^{N}, \forall v \in W_{0}^{1, p(x)}(\Omega)
$$

Proof. From (H1), it follows that

$$
\begin{align*}
& \left|a\left(x, u_{n}, \nabla v\right)\right|^{p^{\prime}(x)} \\
& \leq \beta^{p^{\prime}(x)}\left[k(x)+\left|u_{n}\right|^{p(x)-1}+|\nabla v|^{p(x)-1}\right]^{p^{\prime}(x)} \\
& \leq(\beta+1)^{p^{\prime+}} 2^{p^{\prime+}-1}\left[k(x)^{p^{\prime}(x)}+2^{p^{\prime+}-1}\left(\left|u_{n}\right|^{(p(x)-1) p^{\prime}(x)}+|\nabla v|^{(p(x)-1) p^{\prime}(x)}\right)\right] \tag{3.5}\\
& \leq(\beta+1)^{p^{\prime+}} 2^{2\left(p^{\prime+}-1\right)}\left[k(x)^{p^{\prime}(x)}+\left|u_{n}\right|^{p(x)}+|\nabla v|^{p(x)}\right] .
\end{align*}
$$

In the second inequality above we have used [2]. Since $u_{n} \rightharpoonup u$ in $W_{0}^{1, p(x)}(\Omega)$ and according to proposition 2.5 , we have $W_{0}^{1, p(x)}(\Omega) \hookrightarrow \hookrightarrow L^{p(x)}$ is compact and continuous, there exists a subsequence denoted again $\left(u_{n}\right)$ such that, $u_{n} \rightarrow u$ in $L^{p(x)}(\Omega)$, and therefore a.e. in Ω; hence

$$
\begin{equation*}
\left|a\left(x, u_{n}, \nabla v\right)\right|^{p^{\prime}(x)} \rightarrow|a(x, u, \nabla v)|^{p^{\prime}(x)} \quad \text { a.e. in } \Omega \tag{3.6}
\end{equation*}
$$

and

$$
\begin{align*}
& (\beta+1)^{p^{\prime+}} 2^{2\left(p^{\prime+}-1\right)}\left[k(x)^{p^{\prime}(x)}+\left|u_{n}\right|^{p(x)}+|\nabla v|^{p(x)}\right] \\
& \rightarrow(\beta+1)^{p^{\prime+}} 2^{2\left(p^{\prime+}-1\right)}\left[k(x)^{p^{\prime}(x)}+|u|^{p(x)}+|\nabla v|^{p(x)}\right] \text { a.e. in } \Omega . \tag{3.7}
\end{align*}
$$

For each measurable subset E, we have

$$
\begin{align*}
& \int_{E}\left|a\left(x, u_{n}, \nabla v\right)\right|^{p^{\prime}(x)} d x \\
& \leq(\beta+1)^{p^{\prime+}} 2^{2\left(p^{\prime+}-1\right)}\left[\int_{E} k(x)^{p^{\prime}(x)} d x+\int_{E}\left|u_{n}\right|^{p(x)} d x+\int_{E}|\nabla v|^{p(x)} d x\right] \tag{3.8}
\end{align*}
$$

in view of 3.7) and 3.8, there exists $\eta(\varepsilon)$ such that

$$
\int_{E}\left|a\left(x, u_{n}, \nabla v\right)\right|^{p^{\prime}(x)} d x<\varepsilon
$$

for all E with meas $(E)<\eta(\varepsilon)$, which implies the equi-integrability of $a\left(x, u_{n}, \nabla v\right)$. Finaly by Vitali's theorem,

$$
\begin{equation*}
a\left(x, u_{n}, \nabla v\right) \rightarrow a(x, u, \nabla v) \quad \text { in }\left(L^{p^{\prime}(x)}(\Omega)\right)^{N} \tag{3.9}
\end{equation*}
$$

Lemma 3.3. Let $g \in L^{r(x)}(\Omega)$ and $g_{n} \in L^{r(x)}(\Omega)$ with $\left|g_{n}\right|_{L^{r(x)}(\Omega)} \leq C$ for $1<$ $r(x)<\infty$. If $g_{n}(x) \rightarrow g(x)$ a.e. in Ω, then $g_{n} \rightharpoonup g$ in $L^{r(x)}(\Omega)$.
Proof. Let

$$
E(N)=\left\{x \in \Omega:\left|g_{n}(x)-g(x)\right| \leq 1, \forall n \geq N\right\}
$$

Since $\operatorname{meas}(E(N)) \rightarrow \operatorname{meas}(\Omega)$ as $N \rightarrow \infty$, and setting

$$
\mathcal{F}=\left\{\varphi_{N} \in L^{r^{\prime}(x)}(\Omega): \varphi_{N} \equiv 0 \text { a.e. in } \Omega \backslash E(N)\right\}
$$

we shall show that \mathcal{F} is dense in $L^{r^{\prime}(x)}(\Omega)$. Let $f \in L^{r^{\prime}(x)}(\Omega)$, we set

$$
f_{N}(x)= \begin{cases}f(x) & \text { if } x \in E(N) \\ 0 & \text { if } x \in \Omega \backslash E(N)\end{cases}
$$

Then

$$
\begin{aligned}
\rho_{r^{\prime}(x)}\left(f_{N}-f\right) & =\int_{\Omega}\left|f_{N}(x)-f(x)\right|^{r^{\prime}(x)} d x \\
& =\int_{E(N)}\left|f_{N}(x)-f(x)\right|^{r^{\prime}(x)} d x+\int_{\Omega \backslash E(N)}\left|f_{N}(x)-f(x)\right|^{r^{\prime}(x)} d x \\
& =\int_{\Omega \backslash E(N)}|f(x)|^{r^{\prime}(x)} d x \\
& =\int_{\Omega}|f(x)|^{r^{\prime}(x)} \chi_{\Omega \backslash E(N)} d x
\end{aligned}
$$

Taking $\psi_{N}(x)=|f(x)|^{r^{\prime}(x)} \chi_{\Omega \backslash E(N)}$ for almost every x in Ω, we obtain

$$
\psi_{N} \rightarrow 0 \text { a.e. in } \Omega \quad \text { and } \quad\left|\psi_{N}\right| \leq|f|^{r^{\prime}(x)}
$$

Using the dominated convergence theorem, we have $\rho_{r^{\prime}(x)}\left(f_{N}-f\right) \rightarrow 0$ as $N \rightarrow \infty$; therefore $f_{N} \rightarrow f$ in $L^{r^{\prime}(x)}(\Omega)$. Consequently \mathcal{F} is dense in $L^{r^{\prime}(x)}(\Omega)$. Now we shall show that

$$
\lim _{n \rightarrow \infty} \int_{\Omega} \varphi(x)\left(g_{n}(x)-g(x)\right) d x=0, \quad \forall \varphi \in \mathcal{F}
$$

Since $\varphi \equiv 0$ in $\Omega \backslash E(N)$, it suffices to prove that

$$
\int_{E(N)} \varphi(x)\left(g_{n}(x)-g(x)\right) d x \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

We set $\phi_{n}=\varphi\left(g_{n}-g\right)$. Since $\left|\varphi(x) \| g_{n}(x)-g(x)\right| \leq|\varphi(x)|$ a.e. in $E(N)$ and $\phi_{n} \rightarrow 0$ a.e. in Ω, thanks to the dominated convergence theorem, we deduce $\phi_{n} \rightarrow 0$ in $L^{1}(\Omega)$. Which implies that

$$
\lim _{n \rightarrow \infty} \int_{\Omega} \varphi(x)\left(g_{n}(x)-g(x)\right) d x=0, \quad \forall \varphi \in \mathcal{F}
$$

Now, by the density of \mathcal{F} in $L^{r^{\prime}(x)}(\Omega)$, we conclude that

$$
\lim _{n \rightarrow \infty} \int_{\Omega} \varphi g_{n} d x=\int_{\Omega} \varphi g d x, \quad \forall \varphi \in L^{r^{\prime}(x)}(\Omega)
$$

Finally $g_{n} \rightharpoonup g$ in $L^{r(x)}(\Omega)$.
Lemma 3.4. Assume (H1)-(H4), and let $\left(u_{n}\right)_{n}$ be a sequence in $W_{0}^{1, p(x)}(\Omega)$ such that $u_{n} \rightharpoonup u$ in $W_{0}^{1, p(x)}(\Omega)$ and

$$
\begin{equation*}
\int_{\Omega}\left[a\left(x, u_{n}, \nabla u_{n}\right)-a\left(x, u_{n}, \nabla u\right)\right] \nabla\left(u_{n}-u\right) d x \rightarrow 0 \tag{3.10}
\end{equation*}
$$

Then, $u_{n} \rightarrow u$ in $W_{0}^{1, p(x)}(\Omega)$.
Proof. Let $D_{n}=\left[a\left(x, u_{n}, \nabla u_{n}\right)-a\left(x, u_{n}, \nabla u\right)\right] \nabla\left(u_{n}-u\right)$. Then by (H2), D_{n} is a positive function, and by $3.10 D_{n} \rightarrow 0$ in $L^{1}(\Omega)$. Extracting a subsequence, still denoted by u_{n}, we can write $u_{n} \rightharpoonup u$ in $W_{0}^{1, p(x)}(\Omega)$ which implies $u_{n} \rightarrow u$ a.e. in Ω, Similarly $D_{n} \rightarrow 0$ a.e. in Ω. Then there exists a subset B of Ω, of zero measure, such that for $x \in \Omega \backslash B,|u(x)|<\infty,|\nabla u(x)|<\infty, k(x)<\infty, u_{n}(x) \rightarrow u(x)$, $D_{n}(x) \rightarrow 0$.

Defining $\xi_{n}=\nabla u_{n}(x), \xi=\nabla u(x)$, we have

$$
\begin{align*}
D_{n}(x)= & {\left[a\left(x, u_{n}, \xi_{n}\right)-a\left(x, u_{n}, \xi\right)\right]\left(\xi_{n}-\xi\right) } \\
= & a\left(x, u_{n}, \xi_{n}\right) \xi_{n}+a\left(x, u_{n}, \xi\right) \xi-a\left(x, u_{n}, \xi_{n}\right) \xi-a\left(x, u_{n}, \xi\right) \xi_{n} \\
\geq & \alpha\left|\xi_{n}\right|^{p(x)}+\alpha|\xi|^{p(x)}-\beta\left(k(x)+\left|u_{n}\right|^{p(x)-1}+\left|\xi_{n}\right|^{p(x)-1}\right)|\xi| \tag{3.11}\\
& -\beta\left(k(x)+\left|u_{n}\right|^{p(x)-1}+|\xi|^{p(x)-1}\right)\left|\xi_{n}\right| \\
\geq & \alpha\left|\xi_{n}\right|^{p(x)}-C_{x}\left[1+\left|\xi_{n}\right|^{p(x)-1}+\left|\xi_{n}\right|\right]
\end{align*}
$$

where C_{x} is a constant which depends on x, but does not depend on n. Since $u_{n}(x) \rightarrow u(x)$ we have $\left|u_{n}(x)\right| \leq M_{x}$, where M_{x} is some positive constant. Then by a standard argument $\left|\xi_{n}\right|$ is bounded uniformly with respect to n, indeed (3.11) becomes

$$
\begin{equation*}
D_{n}(x) \geq\left|\xi_{n}\right|^{p(x)}\left(\alpha-\frac{C_{x}}{\left|\xi_{n}\right|^{p(x)}}-\frac{C_{x}}{\left|\xi_{n}\right|}-\frac{C_{x}}{\left|\xi_{n}\right|^{p(x)-1}}\right) \tag{3.12}
\end{equation*}
$$

If $\left|\xi_{n}\right| \rightarrow \infty$ (for a subsequence), then $D_{n}(x) \rightarrow \infty$ which gives a contradiction. Let now ξ^{*} be a cluster point of ξ_{n}. We have $\left|\xi^{*}\right|<\infty$ and by the continuity of a we obtain

$$
\begin{equation*}
\left[a\left(x, u(x), \xi^{*}\right)-a(x, u(x), \xi)\right]\left(\xi^{*}-\xi\right)=0 \tag{3.13}
\end{equation*}
$$

In view of (H2), we have $\xi^{*}=\xi$. The uniqueness of the cluster point implies

$$
\begin{equation*}
\nabla u_{n}(x) \rightarrow \nabla u(x) \quad \text { a.e.in } \Omega . \tag{3.14}
\end{equation*}
$$

Since the sequence $a\left(x, u_{n}, \nabla u_{n}\right)$ is bounded in $\left(L^{p^{\prime}(x)}(\Omega)\right)^{N}$, and $a\left(x, u_{n}, \nabla u_{n}\right) \rightarrow$ $a(x, u, \nabla u)$ a.e. in Ω, Lemma 3.3 implies

$$
\begin{equation*}
a\left(x, u_{n}, \nabla u_{n}\right) \rightharpoonup a(x, u, \nabla u) \quad \text { in }\left(L^{p^{\prime}(x)}(\Omega)\right)^{N} \text { a.e. in } \Omega . \tag{3.15}
\end{equation*}
$$

We set $\bar{y}_{n}=a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n}$ and $\bar{y}=a(x, u, \nabla u) \nabla u$. As in [3] we can write

$$
\bar{y}_{n} \rightarrow \bar{y} \operatorname{in} L^{1}(\Omega)
$$

By (H3) we have

$$
\alpha\left|\nabla u_{n}\right|^{p(x)} \leq a\left(x, u_{n}, \nabla u_{n}\right) \nabla u_{n} .
$$

Let $z_{n}=\left|\nabla u_{n}\right|^{p(x)}, z=|\nabla u|^{p(x)}, y_{n}=\frac{\bar{y}_{n}}{\alpha}$, and $y=\frac{\bar{y}}{\alpha}$. Then by Fatou's lemma,

$$
\begin{equation*}
\int_{\Omega} 2 y d x \leq \liminf _{n \rightarrow \infty} \int_{\Omega} y+y_{n}-\left|z_{n}-z\right| d x \tag{3.16}
\end{equation*}
$$

i.e., $0 \leq-\limsup _{n \rightarrow \infty} \int_{\Omega}\left|z_{n}-z\right| d x$. Then

$$
\begin{equation*}
0 \leq \liminf _{n \rightarrow \infty} \int_{\Omega}\left|z_{n}-z\right| d x \leq \limsup _{n \rightarrow \infty} \int_{\Omega}\left|z_{n}-z\right| d x \leq 0 \tag{3.17}
\end{equation*}
$$

this implies

$$
\begin{equation*}
\nabla u_{n} \rightarrow \nabla u \quad \text { in }\left(L^{p(x)}(\Omega)\right)^{N} \tag{3.18}
\end{equation*}
$$

Hence $u_{n} \rightarrow u$ in $W_{0}^{1, p(x)}(\Omega)$, which completes the present proof.
For $v \in W_{0}^{1, p(x)}(\Omega)$, we associate the Nemytskii operator F with respect to f, defined by

$$
\begin{equation*}
F(v, \nabla v)(x)=f(x, v, \nabla v)) \quad \text { a.e. } x \text { in } \Omega . \tag{3.19}
\end{equation*}
$$

Lemma 3.5. The mapping $v \mapsto F(v, \nabla v)$ is continuous from the space $W_{0}^{1, p(x)}(\Omega)$ to the space $L^{p^{\prime}(x)}(\Omega)$.

Proof. By (H4), we have

$$
\begin{equation*}
|f(x, r, \xi)| \leq g(x)+|r|^{\eta(x)}+|\xi|^{\delta(x)} \tag{3.20}
\end{equation*}
$$

thus, as in [2],

$$
\begin{equation*}
|f(x, r, \xi)|^{\left.\right|^{\prime}(x)} \leq 2^{2\left(p^{\prime+}-1\right)}\left(g(x)^{p^{\prime}(x)}+|r|^{p^{\prime}(x) \eta(x)}+|\xi|^{p^{\prime}(x) \delta(x)}\right) \tag{3.21}
\end{equation*}
$$

Let E be a measurable subset of Ω. Then
$\int_{E}|f(x, v, \nabla v)|^{p^{\prime}(x)} d x \leq C\left(\int_{E} g(x)^{p^{\prime}(x)} d x+\int_{E}|v|^{p^{\prime}(x) \eta(x)} d x+\int_{E}|\nabla v|^{p^{\prime}(x) \delta(x)} d x\right)$, with $0 \leq \eta(x)<p(x)-1$ implying $0 \leq p^{\prime}(x) \eta(x)<p(x)$ and

$$
\begin{equation*}
0 \leq \delta(x)<\frac{p(x)-1}{p^{\prime}(x)} \Rightarrow 0 \leq p^{\prime}(x) \delta(x)<p(x)-1 \tag{3.22}
\end{equation*}
$$

For any sequence $\left(v_{n}\right)_{n}$ such that $v_{n} \rightarrow v$ in $W_{0}^{1, p(x)}(\Omega)$, we shall show that $F\left(v_{n}, \nabla v_{n}\right) \rightarrow F(v, \nabla v)$ in $W_{0}^{1, p(x)}(\Omega)$. We have $v_{n} \rightarrow v$ in $W_{0}^{1, p(x)}(\Omega)$ implies that

$$
\begin{gathered}
v_{n} \rightarrow v \quad \text { a.e. in } \Omega \\
\nabla v_{n} \rightarrow \nabla v \quad \text { a.e. in } \Omega .
\end{gathered}
$$

Since f is a carathéodory function,

$$
\begin{gathered}
\left|f\left(x, v_{n}, \nabla v_{n}\right)\right|^{p^{\prime}(x)} \rightarrow|f(x, v, \nabla v)|^{p^{\prime}(x)} \quad \text { a.e. in } \Omega \\
\left|f\left(x, v_{n}, \nabla v_{n}\right)\right|^{p^{\prime}(x)} \leq C\left(g(x)^{p^{\prime}(x)}+\left|v_{n}\right|^{p^{\prime}(x) \eta(x)}+\left|\nabla v_{n}\right|^{p^{\prime}(x) \delta(x)}\right)
\end{gathered}
$$

and

$$
\begin{aligned}
& C\left(g(x)^{p^{\prime}(x)}+\left|v_{n}\right|^{p^{\prime}(x) \eta(x)}+\left|\nabla v_{n}\right|^{p^{\prime}(x) \delta(x)}\right) \\
& \rightarrow C\left(g(x)^{p^{\prime}(x)}+|v|^{p^{\prime}(x) \eta(x)}+|\nabla v|^{p^{\prime}(x) \delta(x)}\right)
\end{aligned}
$$

Hence, by Vitali's theorem we deduce that

$$
\begin{equation*}
f\left(x, v_{n}, \nabla v_{n}\right) \rightarrow f(x, v, \nabla v) \quad \text { in } L^{p^{\prime}(x)}(\Omega) \tag{3.23}
\end{equation*}
$$

i.e., $v \mapsto F(v, \nabla v)$ is continuous.

4. Existence result

Consider the problem

$$
\begin{gather*}
-\operatorname{div} a(x, u, \nabla u)=f(x, u, \nabla u) \quad \text { in } D^{\prime}(\Omega), \\
u=0 \quad \text { on } \partial \Omega \tag{4.1}
\end{gather*}
$$

Theorem 4.1. Under the assumptions (H1)-(H4), there exists at least one solution $u \in W_{0}^{1, p(x)}(\Omega)$ of the problem (4.1).

Remark 4.2. (1) Theorem 4.1, generalizes to Sobolev spaces with variables exponent the analogous statement in [1]. (2) Theorem 4.1, generalizes the analogous one in [11], in the sense that in [11] the authors have considered the particular case $A u=-\triangle_{p(x)} u$ and $f=f(x, u)$. (3) In the case where $p(x)=p=c t e$ in the theorem 4.1 we obtain the results of [10] and [3].
Proof of the Theorem 4.1. This proof is done in two steps.
Step 1 We show that the operator $B: W_{0}^{1, p(x)}(\Omega) \rightarrow W^{-1, p^{\prime}(x)}(\Omega)$ defined by

$$
B(v):=A(v)-f(x, v, \nabla v)
$$

is calculus variational.
Assertion 1. Let

$$
B(u, v)=-\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}} a_{i}(x, u, \nabla v)-f(x, u, \nabla u)
$$

then $B(v)=B(v, v)$ for all $v \in W_{0}^{1, p(x)}(\Omega)$.
Assertion 2. The operator $v \mapsto B(u, v)$ is bounded for all $u \in W_{0}^{1, p(x)}(\Omega)$.
Let $\psi \in W_{0}^{1, p(x)}(\Omega)$, we have

$$
\begin{equation*}
\langle B(u, v), \psi\rangle=\sum_{i=1}^{N} \int_{\Omega} a_{i}(x, u, \nabla v) \frac{\partial \psi}{\partial x_{i}} d x-\int_{\Omega} f(x, u, \nabla u) \psi(x) d x \tag{4.2}
\end{equation*}
$$

From Hölder's inequality, the growth condition (H1) and as in (3.5), we obtain

$$
\begin{aligned}
& \sum_{i=1}^{N} \int_{\Omega} a_{i}(x, u, \nabla v) \frac{\partial \psi}{\partial x_{i}} d x \\
& =\int_{\Omega} a(x, u, \nabla v) \nabla \psi d x \\
& \leq\left(\frac{1}{p^{-}}+\frac{1}{p^{\prime-}}\right)|a(x, u, \nabla v)|_{\left(L^{p^{\prime}(x)}(\Omega)\right)^{N}}|\nabla \psi|_{\left(L^{p(x)}(\Omega)\right)^{N}} \\
& \leq\left(\frac{1}{p^{-}}+\frac{1}{p^{\prime-}}\right)\left(\int_{\Omega}|a(x, u, \nabla v)|^{p^{\prime}(x)} d x\right)^{1 / \gamma}\|\psi\| \\
& \leq\left(\frac{1}{p^{-}}+\frac{1}{p^{\prime-}}\right)\left(\int_{\Omega}\left[\beta\left(k(x)+|u|^{p(x)-1}+|\nabla v|^{p(x)-1}\right)\right]^{p^{\prime}(x)} d x\right)^{1 / \gamma}\|\psi\|
\end{aligned}
$$

$$
\leq C^{\prime}\left(\int_{\Omega} k(x)^{p^{\prime}(x)} d x+\int_{\Omega}|u|^{p(x)} d x+\int_{\Omega}|\nabla v|^{p(x)} d x\right)^{1 / \gamma}\|\psi\|
$$

where

$$
\gamma= \begin{cases}p^{\prime-} & \text { if }|a(x, u, \nabla v)|_{\left(L^{p^{\prime}(x)}(\Omega)\right)^{N}}>1 \\ p^{\prime+} & \text { if }|a(x, u, \nabla v)|_{\left(L^{p^{\prime}(x)}(\Omega)\right)^{N}} \leq 1\end{cases}
$$

we recall that $\|\psi\|$ its equivalent to the norm $|\nabla \psi|_{p(x)}$ on $W_{0}^{1, p(x)}(\Omega)$ (see Re$\operatorname{mark}(2.6)$. We have, $k \in L^{p^{\prime}(x)}(\Omega), u \in W_{0}^{1, p(x)}(\Omega)$ and $v \in W_{0}^{1, p(x)}(\Omega)$. Therefore,

$$
\begin{equation*}
\sum_{i=1}^{N} \int_{\Omega} a_{i}(x, u, \nabla v) \frac{\partial \psi}{\partial x_{i}} \leq C\|\psi\| \tag{4.3}
\end{equation*}
$$

Similarly,

$$
\begin{aligned}
\int_{\Omega} f(x, u, \nabla u) \psi d x & \leq\left(\frac{1}{p^{-}}+\frac{1}{p^{\prime-}}\right)|f(x, u, \nabla u)|_{L^{p^{\prime}(x)}(\Omega)}|\psi|_{L^{p(x)}(\Omega)} \\
& \leq\left(\frac{1}{p^{-}}+\frac{1}{p^{\prime-}}\right)\left(\int_{\Omega}|f(x, u, \nabla u)|^{p^{\prime}(x)} d x\right)^{1 / \alpha}\|\psi\|
\end{aligned}
$$

where

$$
\alpha= \begin{cases}p^{\prime-} & \text { if }|f(x, u, \nabla u)|_{L^{p^{\prime}(x)}(\Omega)}>1 \\ p^{\prime+} & \text { if }|f(x, u, \nabla u)|_{L^{p^{\prime}(x)}(\Omega)} \leq 1\end{cases}
$$

Then, by (H4),

$$
\begin{aligned}
& \int_{\Omega} f(x, u, \nabla u) \psi d x \\
& \leq\left(\frac{1}{p^{-}}+\frac{1}{p^{\prime-}}\right)\|\psi\|\left[\int_{\Omega}\left(g(x)+|u|^{\eta(x)}+|\nabla u|^{\delta(x)}\right)^{p^{\prime}(x)} d x\right]^{1 / \alpha} \\
& \leq\left(\frac{1}{p^{-}}+\frac{1}{p^{\prime-}}\right)\|\psi\| 2^{2\left(p^{\prime+}-1\right) \frac{1}{\alpha}}\left[\int_{\Omega}\left(g(x)^{p^{\prime}(x)}+|u|^{\eta(x) p^{\prime}(x)}+|\nabla u|^{\delta(x) p^{\prime}(x)}\right) d x\right]^{1 / \alpha} \\
& \leq\left(\frac{1}{p^{-}}+\frac{1}{p^{\prime-}}\right)\|\psi\| 2^{\frac{2\left(p^{\prime+}-1\right)}{\alpha}}\left[\int_{\Omega} g(x)^{p^{\prime}(x)} d x+\int_{\Omega}|u|^{\eta(x) p^{\prime}(x)} d x\right. \\
& \left.\left.\quad+\int_{\Omega}|\nabla u|^{\delta(x) p^{\prime}(x)}\right) d x\right]^{1 / \alpha} \\
& \leq\left(\frac{1}{p^{-}}+\frac{1}{p^{\prime-}}\right)\|\psi\| 2^{\frac{2\left(p^{\prime+}-1\right)}{\alpha}}\left[\int_{\Omega} g(x)^{p^{\prime}(x)} d x+|u|_{L^{p^{\prime} \eta}}^{\beta}+|\nabla u|_{L^{p^{\prime} \delta}}^{\theta}\right]^{1 / \alpha},
\end{aligned}
$$

where

$$
\beta=\left\{\begin{array}{ll}
\left(\eta p^{\prime}\right)^{+} & \text {if }|u|_{L^{p^{\prime} \eta}}>1 \\
\left(\eta p^{\prime}\right)^{-} & \text {if }|u|_{L^{p^{\prime} \eta}} \leq 1,
\end{array} \quad \theta= \begin{cases}\left(\delta p^{\prime}\right)^{+} & \text {if }|\nabla u|_{L^{p^{\prime} \delta}}>1 \\
\left(\delta p^{\prime}\right)^{-} & \text {if }|\nabla u|_{L^{p^{\prime} \delta}} \leq 1\end{cases}\right.
$$

Since $0 \leq \eta(x)<p(x)-1$, this implies $0 \leq \eta(x) p^{\prime}(x)<p(x)$. Then there exists a constant $C_{1}>0$ such that

$$
\begin{equation*}
|u|_{L^{p^{\prime} \eta}} \leq C_{1}|u|_{L^{p(x)}(\Omega)} \tag{4.4}
\end{equation*}
$$

and $0 \leq \delta(x)<(p(x)-1) / p^{\prime}(x)$, this implies $0 \leq \delta(x) p^{\prime}(x)<p(x)-1<p(x)$. Then there exists a constant $C_{2}>0$ such that

$$
\begin{equation*}
|\nabla u|_{L^{p^{\prime} \delta}} \leq C_{2}|\nabla u|_{L^{p(x)}(\Omega)} \tag{4.5}
\end{equation*}
$$

Since $u \in W_{0}^{1, p(x)}(\Omega)$, there exists a constant $C_{3}>0$ such that

$$
\begin{equation*}
\int_{\Omega} f(x, u, \nabla u) \psi d x \leq C_{3}\|\psi\| \tag{4.6}
\end{equation*}
$$

Therefore, there exists a constant $C_{0}>0$ such that

$$
\begin{equation*}
|\langle B(u, v), \psi\rangle| \leq C_{0}\|\psi\| \quad \text { for all } u, v \in W_{0}^{1, p(x)}(\Omega) \tag{4.7}
\end{equation*}
$$

i.e., $\langle B(u, v), \psi\rangle$ is bounded in $W_{0}^{1, p(x)}(\Omega) \times W_{0}^{1, p(x)}(\Omega)$.

We claim that $v \mapsto B(u, v)$ is hemicontinuous for all $u \in W_{0}^{1, p(x)}(\Omega)$; i.e., the operator $\lambda \mapsto\left\langle B\left(u, v_{1}+\lambda v_{2}\right), \psi\right\rangle$ is continuous for all $v_{1}, v_{2}, \psi \in W_{0}^{1, p(x)}(\Omega)$. For this, we need Lemma 3.3. Since a_{i} is a carathéodory function,

$$
\begin{equation*}
a_{i}\left(x, u, \nabla\left(v_{1}+\lambda v_{2}\right)\right) \rightarrow a_{i}\left(x, u, \nabla v_{1}\right) \quad \text { a.e. in } \Omega \text { as } \lambda \mapsto 0 . \tag{4.8}
\end{equation*}
$$

and, by (H1),

$$
\begin{equation*}
\left|a\left(x, u, \nabla\left(v_{1}+\lambda v_{2}\right)\right)\right| \leq \beta\left(k(x)+|u|^{p(x)-1}+\left|\nabla\left(v_{1}+\lambda v_{2}\right)\right|^{p(x)-1}\right) \tag{4.9}
\end{equation*}
$$

Further, $\left(a\left(x, u, \nabla\left(v_{1}+\lambda v_{2}\right)\right)\right)_{\lambda}$ is bounded in $\left(L^{p^{\prime}(x)}(\Omega)\right)^{N}$; thus, by Lemma 3.3.

$$
\begin{equation*}
a\left(x, u, \nabla\left(v_{1}+\lambda v_{2}\right)\right) \rightharpoonup a\left(x, u, \nabla v_{1}\right) \quad \text { in }\left(L^{p^{\prime}(x)}(\Omega)\right)^{N} \text { as } \lambda \rightarrow 0 \tag{4.10}
\end{equation*}
$$

Hence,

$$
\begin{aligned}
& \lim _{\lambda \rightarrow 0}\left\langle B\left(u, v_{1}+\lambda v_{2}\right), \psi\right\rangle \\
& =\lim _{\lambda \rightarrow 0} \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, u, \nabla\left(v_{1}+\lambda v_{2}\right)\right) \frac{\partial \psi}{\partial x_{i}} d x-\int_{\Omega} f(x, u, \nabla u) \psi d x \\
& =\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, u, \nabla v_{1}\right) \frac{\partial \psi}{\partial x_{i}} d x-\int_{\Omega} f(x, u, \nabla u) \psi d x \\
& =\left\langle B\left(u, v_{1}\right), \psi\right\rangle \text { for all } v_{1}, v_{2}, \psi \in W_{0}^{1, p(x)}(\Omega)
\end{aligned}
$$

Similarly, we show that $u \mapsto B(u, v)$ is bounded and hemicontinuous for all $v \in$ $W_{0}^{1, p(x)}(\Omega)$. Indeed. By (H4), we have $\left(f\left(x, u_{1}+\lambda u_{2}, \nabla\left(u_{1}+\lambda u_{2}\right)\right)\right)_{\lambda}$ is bounded in $L^{p^{\prime}(x)}(\Omega)$, and since f is a carathéodory function,

$$
\begin{equation*}
f\left(x, u_{1}+\lambda u_{2}, \nabla\left(u_{1}+\lambda u_{2}\right)\right) \rightarrow f\left(x, u_{1}, \nabla u_{1}\right) \quad \text { as } \lambda \rightarrow 0, \tag{4.11}
\end{equation*}
$$

Hence, Lemma 3.3 gives

$$
\begin{equation*}
f\left(x, u_{1}+\lambda u_{2}, \nabla\left(u_{1}+\lambda u_{2}\right)\right) \rightharpoonup f\left(x, u_{1}, \nabla u_{1}\right) \quad \text { in } L^{p^{\prime}(x)}(\Omega) \text { as } \lambda \rightarrow 0 \tag{4.12}
\end{equation*}
$$

On the other hand, as in 4.10, we have

$$
\begin{equation*}
a\left(x, u_{1}+\lambda u_{2}, \nabla v\right) \rightharpoonup a\left(x, u_{1}, \nabla v\right) \quad \text { in } L^{p^{\prime}(x)}(\Omega) \text { as } \lambda \rightarrow 0 \tag{4.13}
\end{equation*}
$$

Combining 4.12 and 4.13), we conclude that $u \mapsto B(u, v)$ is bounded and hemicontinuous.
Assertion 3. From (H2), we have

$$
\begin{equation*}
\langle B(u, u)-B(u, v), u-v\rangle=\sum_{i=1}^{N} \int_{\Omega}\left(a_{i}(x, u, \nabla u)-a_{i}(x, u, \nabla v)\right)\left(\frac{\partial u}{\partial x_{i}}-\frac{\partial v}{\partial x_{i}}\right) d x>0 \tag{4.14}
\end{equation*}
$$

Assertion 4. Assume that $u_{n} \rightharpoonup u$ in $W_{0}^{1, p(x)}(\Omega)$, and $\left\langle B\left(u_{n}, u_{n}\right)-B\left(u_{n}, u\right), u_{n}-\right.$ $u\rangle \rightarrow 0$ as $n \rightarrow \infty$, we claim that $B\left(u_{n}, v\right) \rightharpoonup B(u, v)$ in $W^{-1, p^{\prime}(x)}(\Omega)$. We have $\left\langle B\left(u_{n}, u_{n}\right)-B\left(u_{n}, u\right), u_{n}-u\right\rangle \rightarrow 0$ as $n \rightarrow \infty$,

$$
\begin{aligned}
& \left\langle\sum_{i=1}^{N}-\left[\frac{\partial}{\partial x_{i}} a_{i}\left(x, u_{n}, \nabla u_{n}\right)+a_{i}\left(x, u_{n}, \nabla u\right)\right], u_{n}-u\right\rangle \\
& =\sum_{i=1}^{N} \int_{\Omega}\left[a_{i}\left(x, u_{n}, \nabla u_{n}\right)-a_{i}\left(x, u_{n}, \nabla u\right)\right]\left(\frac{\partial u_{n}}{\partial x_{i}}-\frac{\partial u}{\partial x_{i}}\right) d x \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

Then by Lemma 3.4, we have $u_{n} \rightarrow u$ in $W_{0}^{1, p(x)}(\Omega)$ and it follows from Lemma 3.5 that

$$
\begin{equation*}
f\left(x, u_{n}, \nabla u_{n}\right) \rightarrow f(x, u, \nabla u) \quad \text { in } L^{p^{\prime}(x)}(\Omega) \tag{4.15}
\end{equation*}
$$

since $u_{n} \rightharpoonup u$ in $W_{0}^{1, p(x)}(\Omega)$ and $v \in W_{0}^{1, p(x)}(\Omega)$, by Lemma 3.2. $a_{i}\left(x, u_{n}, \nabla v\right) \rightarrow$ $a_{i}(x, u, \nabla v)$ in $L^{p^{\prime}(x)}(\Omega)$. Consequently,

$$
\begin{equation*}
\int_{\Omega} a_{i}\left(x, u_{n}, \nabla v\right) \frac{\partial \psi}{\partial x_{i}} d x \rightarrow \int_{\Omega} a_{i}(x, u, \nabla v) \frac{\partial \psi}{\partial x_{i}} d x \tag{4.16}
\end{equation*}
$$

On the other hand, we have $f\left(x, u_{n}, \nabla u_{n}\right) \rightarrow f(x, u, \nabla u)$ in $L^{p^{\prime}(x)}(\Omega)$, thus weakly. Since $\psi \in W_{0}^{1, p(x)}(\Omega)$, we have $\psi \in L^{p(x)}(\Omega)$. Then

$$
\int_{\Omega} f\left(x, u_{n}, \nabla u_{n}\right) \psi d x \rightarrow \int_{\Omega} f(x, u, \nabla u) \psi d x \quad \text { as } n \rightarrow \infty
$$

Therefore,

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left\langle B\left(u_{n}, v\right), \psi\right\rangle & =\lim _{n \rightarrow \infty}\left(\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, u_{n}, \nabla v\right) \frac{\partial \psi}{\partial x_{i}} d x-\int_{\Omega} f\left(x, u_{n}, \nabla v_{n}\right) \psi d x\right) \\
& =\sum_{i=1}^{N} \int_{\Omega} a_{i}(x, u, \nabla v) \frac{\partial \psi}{\partial x_{i}} d x-\int_{\Omega} f(x, u, \nabla u) \psi d x \\
& =\langle B(u, v), \psi\rangle \text { for all } \psi \in W_{0}^{1, p(x)}(\Omega) .
\end{aligned}
$$

Assertion 5. Assume $u_{n} \rightharpoonup u$ in $W_{0}^{1, p(x)}(\Omega)$ and $B\left(u_{n}, v\right) \rightharpoonup \psi$ in $W^{-1, p^{\prime}(x)}(\Omega)$. We claim that $\left\langle B\left(u_{n}, v\right), u_{n}\right\rangle \rightarrow\langle\psi, u\rangle$. Thanks to $u_{n} \rightharpoonup u$ in $W_{0}^{1, p(x)}(\Omega)$, we obtain by Lemma 3.2 .

$$
\begin{equation*}
a_{i}\left(x, u_{n}, \nabla v\right) \rightarrow a_{i}(x, u, \nabla v) \quad \text { in } L^{p^{\prime}(x)}(\Omega) \text { as } n \rightarrow \infty \tag{4.17}
\end{equation*}
$$

Such that

$$
\begin{equation*}
\int_{\Omega} a_{i}\left(x, u_{n}, \nabla v\right) \frac{\partial u_{n}}{\partial x_{i}} d x \rightarrow \int_{\Omega} a_{i}(x, u, \nabla v) \frac{\partial u}{\partial x_{i}} d x \tag{4.18}
\end{equation*}
$$

Hence together with

$$
\begin{equation*}
\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, u_{n}, \nabla v\right) \frac{\partial u}{\partial x_{i}} d x-\int_{\Omega} f\left(x, u_{n}, \nabla u_{n}\right) u d x \rightarrow\langle\psi, u\rangle \tag{4.19}
\end{equation*}
$$

we have

$$
\left\langle B\left(u_{n}, v\right), u_{n}\right\rangle=\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, u_{n}, \nabla v\right) \frac{\partial u_{n}}{\partial x_{i}} d x-\int_{\Omega} f\left(x, u_{n}, \nabla u_{n}\right) u_{n} d x
$$

$$
\begin{aligned}
= & \sum_{i=1}^{N}\left[\int_{\Omega} a_{i}\left(x, u_{n}, \nabla v\right)\left(\frac{\partial u_{n}}{\partial x_{i}}-\frac{\partial u}{\partial x_{i}}\right) d x+\int_{\Omega} a_{i}\left(x, u_{n}, \nabla v\right) \frac{\partial u}{\partial x_{i}} d x\right] \\
& -\int_{\Omega} f\left(x, u_{n}, \nabla u_{n}\right) u d x-\int_{\Omega} f\left(x, u_{n}, \nabla u_{n}\right)\left(u_{n}-u\right) d x
\end{aligned}
$$

But in view of 4.17 and 4.18, we obtain

$$
\begin{equation*}
\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, u_{n}, \nabla v\right)\left(\frac{\partial u_{n}}{\partial x_{i}}-\frac{\partial u}{\partial x_{i}}\right) d x \rightarrow 0 \tag{4.20}
\end{equation*}
$$

On the other hand, by Hölder's inequality,

$$
\begin{aligned}
& \int_{\Omega}\left|f\left(x, u_{n}, \nabla u_{n}\right)\left(u_{n}-u\right)\right| d x \\
& \leq\left(\frac{1}{p^{-}}+\frac{1}{p^{\prime-}}\right)\left|f\left(x, u_{n}, \nabla u_{n}\right)\right|_{L^{p^{\prime}(x)}(\Omega)}\left|u_{n}-u\right|_{L^{p(x)}(\Omega)} \\
& \leq C\left|u_{n}-u\right|_{L^{p(x)}(\Omega)} \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\int_{\Omega} f\left(x, u_{n}, \nabla u_{n}\right)\left(u_{n}-u\right) d x \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{4.21}
\end{equation*}
$$

Thanks to $4.19,4.20$ and 4.21 , we conclude that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\langle B\left(u_{n}, v\right), u_{n}\right\rangle=\langle\psi, u\rangle \tag{4.22}
\end{equation*}
$$

Step 2 We claim that the operator B satisfies the coercivity condition

$$
\begin{equation*}
\lim _{\|v\| \rightarrow \infty} \frac{\langle B(v), v\rangle}{\|v\|}=+\infty \tag{4.23}
\end{equation*}
$$

Since

$$
\begin{equation*}
\langle B(v), v\rangle=\sum_{i=1}^{N} \int_{\Omega} a_{i}(x, v, \nabla v) \frac{\partial v}{\partial x_{i}} d x-\int_{\Omega} f(x, v, \nabla v) v d x \tag{4.24}
\end{equation*}
$$

Then, by (H3),

$$
\begin{equation*}
\langle B v, v\rangle \geq \alpha\|v\|^{p(x)}-\int_{\Omega} f(x, v, \nabla v) v d x \tag{4.25}
\end{equation*}
$$

In view of (H4),

$$
\begin{equation*}
\int_{\Omega} f(x, v, \nabla v) v d x \leq \int_{\Omega} g(x)|v| d x+\int_{\Omega}|v|^{\eta(x)+1} d x+\int_{\Omega}|\nabla v|^{\delta(x)}|v| d x \tag{4.26}
\end{equation*}
$$

Thanks to Hölder's inequality, we have

$$
\begin{equation*}
\int_{\Omega} g(x)|v| d x \leq\left(\frac{1}{p^{-}}+\frac{1}{p^{\prime-}}\right)|g|_{L^{p^{\prime}(x)}(\Omega)}|v|_{L^{p(x)}(\Omega)} \leq C_{0}\|v\| \tag{4.27}
\end{equation*}
$$

on the other hand,

$$
\int_{\Omega}|v|^{\eta(x)+1} d x \leq \begin{cases}|v|_{L^{\eta(x)+1}(\Omega)}^{\eta^{+}+1} & \text { if }|v|_{L^{\eta(x)+1}(\Omega)}>1 \\ |v|_{L^{\eta(x)+1}(\Omega)}^{\eta^{\eta}+1} & \text { if }|v|_{L^{\eta(x)+1}(\Omega)} \leq 1\end{cases}
$$

Thus,

$$
\begin{equation*}
\int_{\Omega}|v|^{\eta(x)+1} \leq|v|_{L^{\eta(x)+1}(\Omega)}^{\beta} \tag{4.28}
\end{equation*}
$$

where

$$
\beta= \begin{cases}\eta^{+}+1 & \text { if }|v|_{L^{\eta(x)+1}(\Omega)}>1 \\ \eta^{-}+1 & \text { if }|v|_{L^{\eta(x)+1}(\Omega)} \leq 1\end{cases}
$$

since $0 \leq \eta(x)<p(x)-1$ implies $1 \leq \eta(x)+1<p(x)$, consequently, 4.28) becomes

$$
\begin{equation*}
\int_{\Omega}|v|^{\eta(x)+1} d x \leq C_{1}|v|_{L^{p(x)}(\Omega)}^{\beta} \leq C_{1}\|v\|^{\beta} \quad \text { with } \beta<p^{-} \tag{4.29}
\end{equation*}
$$

Further, by Hölder's inequality,

$$
\begin{aligned}
\int_{\Omega}|\nabla v|^{\delta(x)}|v| d x & \leq\left.\left.\left(\frac{1}{p^{-}}+\frac{1}{p^{\prime-}}\right)| | \nabla v\right|^{\delta(x)}\right|_{L^{p^{\prime}(x)}(\Omega)}|v|_{L^{p(x)}(\Omega)} \\
& \leq\left(\frac{1}{p^{-}}+\frac{1}{p^{\prime-}}\right)\left(\int_{\Omega}|\nabla v|^{\delta(x) p^{\prime}(x)} d x\right)^{1 / \gamma}|v|_{L^{p(x)}(\Omega)} \\
& \leq\left(\frac{1}{p^{-}}+\frac{1}{p^{\prime-}}\right)\left(\int_{\Omega}|\nabla v|^{\theta} d x\right)^{1 / \gamma}|v|_{L^{p(x)}(\Omega)}
\end{aligned}
$$

where

$$
\gamma=\left\{\begin{array}{ll}
p^{\prime-} & \text { if } \|\left.\left.\nabla v\right|^{\delta(x)}\right|_{L^{p^{\prime}(x)}(\Omega)}>1, \\
p^{\prime+} & \text { if } \|\left.\left.\nabla v\right|^{\delta(x)}\right|_{L^{p^{\prime}(x)}(\Omega)} \leq 1,
\end{array} \quad \theta= \begin{cases}\delta^{+} p^{+} & \text {if }|\nabla v|>1 \\
\delta^{-} p^{--} & \text {if }|\nabla v| \leq 1\end{cases}\right.
$$

Then

$$
\begin{equation*}
\int_{\Omega}|\nabla v|^{\delta(x)}|v| d x \leq C\left(|v|_{W_{0}^{1, \theta}(\Omega)}\right)^{\theta / \gamma}|v|_{L^{p(x)}(\Omega)} \tag{4.30}
\end{equation*}
$$

since $0 \leq \delta(x)<(p(x)-1) / p^{\prime}(x)$ implies $0 \leq \delta(x) p^{\prime}(x)<p(x)-1$, and

$$
0 \leq \delta^{+}<\left(\frac{p-1}{p^{\prime}}\right)^{-}=\frac{p^{-}-1}{p^{\prime+}} \Longrightarrow 0 \leq \delta^{+} p^{+}<p^{-}-1
$$

and

$$
0 \leq \delta^{-} p^{\prime-}<\frac{\left(p^{-}-1\right)}{p^{\prime+}} p^{\prime-} \leq p^{-}-1
$$

Therefore, $0 \leq \theta<p^{-}-1<p(x)$. On the other hand,

$$
0 \leq \frac{\theta}{p^{\prime+}}<\frac{p^{-}-1}{p^{\prime+}} \quad \text { and } \quad 0 \leq \frac{\theta}{p^{\prime-}}<\frac{p^{-}-1}{p^{\prime-}}
$$

Thus

$$
\begin{equation*}
\int_{\Omega}|\nabla v|^{\delta(x)}|v| d x \leq C_{2}\|v\|^{\theta / \gamma}\|v\| \tag{4.31}
\end{equation*}
$$

Combining 4.25, 4.27, 4.29, and 4.31, we deduce that

$$
\begin{equation*}
\frac{\langle B(v), v\rangle}{\|v\|} \geq \alpha\|v\|^{p(x)-1}-C_{0}-C_{1}\|v\|^{\beta-1}-C_{2}\|v\|^{\theta / \gamma} \tag{4.32}
\end{equation*}
$$

Then we have

$$
0 \leq \frac{\theta}{p^{+}}<\frac{p^{-}-1}{p^{\prime+}}, \quad 0 \leq \frac{\theta}{p^{\prime-}}<\frac{p^{-}-1}{p^{\prime-}}, \quad \frac{p^{-}-1}{p^{\prime+}} \leq \frac{p^{-}-1}{p^{\prime-}}
$$

Thus,

$$
\begin{equation*}
0 \leq \frac{\theta}{\gamma}<\frac{p^{-}-1}{p^{-}}<p^{-}-1 \tag{4.33}
\end{equation*}
$$

Since $\beta-1<p^{-}-1$, we conclude that

$$
\frac{\langle B(v), v\rangle}{\|v\|} \geq \alpha\|v\|^{p(x)-1}-C_{0}-C_{1}\|v\|^{\beta-1}-C_{2}\|v\|^{\theta / \gamma} \rightarrow+\infty \quad \text { as }\|v\| \rightarrow+\infty
$$

Finally, by a classical theorem in [13], the problem 4.1] has a solution, so the proof of theorem 4.1 is achieved.

References

[1] Y. Akdim, E. Azroul and M. Rhoudaf; On the Solvability of degenerated quasilinear elliptic problems, Electronic J. Diff. Equ, Conf. 11, (2004), pp. 11-22.
[2] M. Anchon and J. M. Urbano; Entropy Solutions for the p(x)-Laplace Equation, Trans. Amer. Math. Soc, (2000) pp 1-23.
[3] L. Boccardo, F. Murat, and J. P. Puel; Réultats d'existences pour certains problémes elliptiques quasilinéaires, Ann. Scuola. Norm. Sup. Pisa 11 (1984) 213-235.
[4] Y. Chen, S. Levine and R. Rao; Functionals with $p(x)$-growth in image processing, http://www.mathcs.duq.edu/ sel/CLR05SIAPfinal.pdf.
[5] X. Fan, J. Shen, and D. Zhao; Sobolev embedding theorems for spaces $W^{k, p(x)}(\Omega)$, J. Math. Anal. Appl. 262(2001), 749-760.
[6] X. Fan and D. Zhao; The quasi-minimizer of integral functionals with $m(x)$ growth conditions, Nonlinear Anal. 39 (2000), 807-816.
[7] X. Fan and D. Zhao; On the spaces $L^{p(x)}(\Omega)$ and $W^{k, p(x)}(\Omega)$, J. Math. Anal. Appl. 263(2001), 424-446.
[8] X. Fan, Y. Zhao and D. Zhao; Compact embedding theorems with symmetry of Strauss-Lions type for the space $W^{1, p(x)}(\Omega)$, J. Math. Anal. Appl. 255(2001), 333-348.
[9] O. Ková(c)ik and J. Rákosnik; On spaces $L^{p(x)}$ and $W^{1, p(x)}$, Czechoslovak Math, J. 41(116)(1991), 592-618.
[10] T. Kao and C. Tsai; On the solvability of solution to some quasilinear elliptic problems, Taiwanesa Journal of Mathematics Vol. 1, no. 4 pp574-553(1997).
[11] X. L. Fan and Q. H. Zhang; Existence for $p(x)$-Laplacien Dirichlet problem, Non linear Analysis 52 (2003) pp 1843-1852.
[12] X. L. Fan and D. Zhao; On the generalised Orlicz-Sobolev Space $W^{k, p(x)}(\Omega)$, J. Gansu Educ. College12(1)(1998) 1-6.
[13] J. L. Lions; Quelques methodes de résolution des problèmes aux limites non linéaires, Dunod et Gauthiers-Villars, Paris 1969.
[14] P. Maracellini; Regularity and existence of solutions of elliptic equations with p, q-growth conditions, J. Differential Equations 50 (1991), no. 1, 1-30.
[15] M. Ruz̆i(c)ka; Electrorheological fluids: modeling and mathematical theory, lecture Notes in Mathematics 1748, Springer-verlaag, Berlin, 2000.
[16] S. Samko; Convolution type operators in $L^{p(x)}$, Integral Transform Spec. Funct. 7(1998), no1-2, 123-144.
[17] S. Samko; Convolution and potentiel type operator in $L^{p(x)}\left(\mathbb{R}^{N}\right)$, Integral transform, Spec. Funct. 7(1998), N., 3-4, 261-284.
[18] S. Samko; Denseness of $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ in the generalized sobolev spaces $W^{m, p(x)}\left(\mathbb{R}^{N}\right)$, Int. Soc. Anal. Appl. Comput. 5, Kluwer Acad. Publ. Dordrecht, 2000.
[19] I. Sharapudinov; On the topology of the space $L^{p(t)}([0 ; 1])$, Matem. Zametki 26(1978), no. 4, 613-632.
[20] V. Zhikov; Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR Izvestiya 29(1987), no. 1, 33-66.
[21] D. Zhao, X. L. Fan; On the Nemytskii operators from $L^{p 1(x)}$ to $L^{p 2(x)}$, J. LanzhouUniv. 34 (1) (1998) 15.
[22] D. Zhao, W. J. Qiang and X. L. Fan; On generalized Orlicz spaces $L^{p(x)}(\Omega)$, J. Gansu Sci. 9(2) 1997 1-7.

Mohamed Badr Benboubker
University of Fez, Faculty of Sciences Dhar El Mahraz, Laboratory LAMA, Department of Mathematics, B.P 1796 Atlas Fez, Morocco

E-mail address: simo.ben@hotmail.com

Elhoussine Azroul
University of Fez, Faculty of Sciences Dhar El Mahraz, Laboratory LAMA, Department of Mathematics, B.P 1796 Atlas Fez, Morocco

E-mail address: azroul_elhoussine@yahoo.fr
Abdelkrim Barbara
University of Fez, Faculty of Sciences Dhar El Mahraz, Laboratory LAMA, Department of Mathematics, B.P 1796 Atlas Fez, Morocco

E-mail address: abdelkrim.barbara@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 35J20, 35J25.
 Key words and phrases. Quasilinear elliptic equation; Sobolev spaces with variable exponent; image processing; Dirichlet problem.
 © 2011 Texas State University - San Marcos.
 Submitted November 1, 2010. Published May 11, 2011.

