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OSCILLATION OF SOLUTIONS FOR FORCED NONLINEAR
NEUTRAL HYPERBOLIC EQUATIONS WITH FUNCTIONAL

ARGUMENTS

YUTAKA SHOUKAKU

Abstract. This article studies the forced oscillatory behavior of solutions to
nonlinear hyperbolic equations with functional arguments. Our main tools are
the integral averaging method and a generalized Riccati technique.

1. Introduction

In this work we consider the oscillatory behavior of solution to the hyperbolic
equation

∂

∂t

(
r(t)

∂

∂t

(
u(x, t) +

l∑
i=1

hi(t)u(x, ρi(t))
))

− a(t)∆u(x, t)

−
k∑

i=1

bi(t)∆u(x, τi(t)) +
m∑

i=1

qi(x, t)ϕi(u(x, σi(t)))

= f(x, t), (x, t) ∈ Ω ≡ G× (0,∞),

(1.1)

where ∆ is the Laplacian in Rn and G is a bounded domain of Rn with piecewise
smooth boundary ∂G. We consider the boundary conditions

u = ψ on ∂G× [0,∞), (1.2)
∂u

∂ν
+ µu = ψ̃ on ∂G× [0,∞), (1.3)

where ν denotes the unit exterior normal vector to ∂G and ψ, ψ̃ ∈ C(∂G×(0,∞); R),
µ ∈ C(∂G× (0,∞); [0,∞)).

We use the following assumptions in this article:
(H1) r(t) ∈ C1([0,∞); (0,∞)),

hi(t) ∈ C([0,∞); [0,∞)) (i = 1, 2, . . . , l),
a(t), bi(t) ∈ C([0,∞); [0,∞)) (i = 1, 2, . . . , k),
qi(x, t) ∈ C(Ω; [0,∞)) (i = 1, 2, . . . ,m), f(x, t) ∈ C(Ω; R);
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(H2) ρi(t) ∈ C([0,∞); R), limt→∞ ρi(t) = ∞ (i = 1, 2, . . . , l),
τi(t) ∈ C([0,∞); R), limt→∞ τi(t) = ∞ (i = 1, 2, . . . , k),
σi(t) ∈ C([0,∞); R), limt→∞ σi(t) = ∞ (i = 1, 2, . . . ,m);

(H3) ϕi(s) ∈ C1(R; R) (i = 1, 2, . . . ,m) are convex on [0,∞) and ϕi(−s) =
−ϕi(s) for s ≥ 0.

By a solution of (1.1) we mean a function u ∈ C2(G× [t−1,∞))∩C(G×[t̃−1,∞))
which satisfies (1.1), where

t−1 = min{0, min
1≤i≤l

{inf
t≥0

ρi(t)}, min
1≤i≤k

{inf
t≥0

τi(t)}},

t̃−1 = min{0, min
1≤i≤m

{inf
t≥0

σi(t)}}.

A solution u of (1.1) is said to be oscillatory in Ω if u has a zero in G× (t,∞) for
any t > 0.

Definition 1.1. We say that the pair of functions (H1,H2) belongs to the class H,
if H1,H2 ∈ C(D; [0,∞)) and satisfy

Hi(t, t) = 0, Hi(t, s) > 0 for t > sand i = 1, 2,

where D = {(t, s) : 0 < s ≤ t <∞}. Moreover, the partial derivatives ∂H1/∂t and
∂H2/∂s exist on D and satisfy

∂H1

∂t
(s, t) = h1(s, t)H1(s, t),

∂H2

∂s
(t, s) = −h2(t, s)H2(t, s),

where h1, h2 ∈ Cloc(D; R).

There are many articles devoted to the study of interval oscillation criteria for
nonlinear hyperbolic equations with functional arguments by dealing with Riccati
techniques; see for example [1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 14, 15]. There are also
some papers which deal with neutral hyperbolic or second order neutral differential
equations, [4, 5, 12, 15]. However, it seems that very little is known about interval
forced oscillations of the neutral hyperbolic equation (1.1).

On the other hand, oscillation criteria of second order neutral differential equa-
tions have been studied by many authors. We make reference to result by Tanaka
[8], and extend them.

The aim of this paper is to establish sufficient conditions for every solution of
(1.1) to be oscillatory by using Riccati techniques. Equation (1.1) is naturally
classified into two classes according to whether

(C1)
∫∞

t0
1

r(t)dt = ∞; or
(C2)

∫∞
t0

1
r(t)dt <∞.

2. Reduction to one-dimensional problems

In this section we reduce the multi-dimensional oscillation problems for (1.1) to
one-dimensional oscillation problems. It is known that the first eigenvalue λ1 of the
eigenvalue problem

−∆w = λw in G,
w = 0 on ∂G
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is positive, and the corresponding eigenfunction Φ(x) can be chosen so that Φ(x) >
0 in G. The following notation will be used in this article.

U(t) = KΦ

∫
G

u(x, t)Φ(x)dx, Ũ(t) =
1
|G|

∫
G

u(x, t)dx,

F (t) = KΦ

∫
G

f(x, t)Φ(x)dx, F̃ (t) =
1
|G|

∫
G

f(x, t)dx,

Ψ(t) = KΦ

∫
∂G

ψ
∂Φ
∂ν

(x)dS, Ψ̃(t) =
1
|G|

∫
∂G

ψ̃dS,

qi(t) = min
x∈G

qi(x, t),

where KΦ = (
∫

G
Φ(x)dx)−1 and |G| =

∫
G
dx.

Theorem 2.1. If the functional differential inequality

d

dt

(
r(t)

d

dt

(
y(t) +

l∑
i=1

hi(t)y(ρi(t))
))

+
m∑

i=1

qi(t)ϕi(y(σi(t))) ≤ ±G(t) (2.1)

has no eventually positive solution, then every solution of (1.1), (1.2) is oscillatory
in Ω, where

G(t) = F (t)− a(t)Ψ(t)−
k∑

i=1

bi(τi(t))Ψ(τi(t)).

Proof. Suppose to the contrary that there is a non-oscillatory solution u of (1.1),
(1.2). Without loss of generality we may assume that u(x, t) > 0 in G × [t0,∞)
for some t0 > 0 because the case u(x, t) < 0 can be treated similarly. Since (H2)
holds, we see that u(x, ρi(t)) > 0 (i = 1, 2, . . . , l), u(x, τi(t)) > 0 (i = 1, 2, . . . , k)
and u(x, σi(t)) > 0 (i = 1, 2, . . . ,m) in G × [t1,∞) for some t1 ≥ t0. Multiplying
(1.1) by KΦΦ(x) and integrating over G, we obtain

d

dt

(
r(t)

d

dt

(
U(t) +

l∑
i=1

hi(t)U(ρi(t))
))

− a(t)KΦ

∫
G

∆u(x, t)Φ(x)dx

−
k∑

i=1

bi(t)KΦ

∫
G

∆u(x, τi(t))Φ(x)dx+
m∑

i=1

KΦ

∫
G

qi(x, t)ϕi(u(x, σi(t)))Φ(x)dx

= F (t), t ≥ t1.

(2.2)

Using Green’s formula, it is obvious that

KΦ

∫
G

∆u(x, t)Φ(x)dx ≤ −Ψ(t), t ≥ t1, (2.3)

KΦ

∫
G

∆u(x, τi(t))Φ(x)dx ≤ −Ψ(τi(t)), t ≥ t1. (2.4)

An application of Jensen’s inequality shows that
m∑

i=1

KΦ

∫
G

qi(x, t)ϕi(u(x, σi(t)))Φ(x)dx ≥
m∑

i=1

qi(t)ϕi(U(σi(t))) (2.5)
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for t ≥ t1. Combining (2.2)–(2.5) yields

d

dt

(
r(t)

d

dt

(
U(t) +

l∑
i=1

hi(t)U(ρi(t))
))

+
m∑

i=1

qi(t)ϕi(U(σi(t))) ≤ G(t)

for t ≥ t1. Therefore, U(t) is an eventually positive solution of (2.1). This contra-
dicts the hypothesis and completes the proof. �

Theorem 2.2. If the functional differential inequality

d

dt

(
r(t)

d

dt

(
y(t) +

l∑
i=1

hi(t)y(ρi(t))
))

+
m∑

i=1

qi(t)ϕi(y(σi(t))) ≤ ±G̃(t) (2.6)

has no eventually positive solution, then every solution of (1.1), (1.3) is oscillatory
in Ω, where

G̃(t) = F̃ (t) + a(t)Ψ̃(t) +
k∑

i=1

bi(τi(t))Ψ̃(τi(t)).

Proof. Suppose to the contrary that there is a non-oscillatory solution u of (1.1),
(1.3). Without loss of generality we may assume that u(x, t) > 0 in G × [t0,∞)
for some t0 > 0. Since (H2) holds, we see that u(x, ρi(t)) > 0 (i = 1, 2, . . . , l),
u(x, τi(t)) > 0 (i = 1, 2, . . . , k) and u(x, σi(t)) > 0 (i = 1, 2, . . . ,m) in G × [t1,∞)
for some t1 ≥ t0. Dividing (1.1) by |G| and integrating over G, we obtain

d

dt

(
r(t)

d

dt

(
Ũ(t) +

l∑
i=1

hi(t)Ũ(ρi(t))
))

− a(t)
|G|

∫
G

∆u(x, t)dx

−
k∑

i=1

bi(t)
|G|

∫
G

∆u(x, τi(t))dx+
1
|G|

m∑
i=1

∫
G

qi(x, t)ϕi(u(x, σi(t)))dx

= F̃ (t), t ≥ t1.

(2.7)

It follows from Green’s formula that
1
|G|

∫
G

∆u(x, t)dx ≤ Ψ̃(t), t ≥ t1, (2.8)

1
|G|

∫
G

∆u(x, τi(t))dx ≤ Ψ̃(τi(t)), t ≥ t1. (2.9)

Applying Jensen’s inequality, we observe that

1
|G|

m∑
i=1

∫
G

qi(x, t)ϕi(u(x, σi(t)))dx ≥
m∑

i=1

qi(t)ϕi(Ũ(σi(t))), t ≥ t1. (2.10)

This together with (2.7)–(2.10) yield

d

dt

(
r(t)

d

dt

(
Ũ(t) +

l∑
i=1

hi(t)Ũ(ρi(t))
))

+
m∑

i=1

qi(t)ϕi(Ũ(σi(t))) ≤ G̃(t)

for t ≥ t1. Hence Ũ(t) is an eventually positive solution of (2.6). This contradicts
the hypothesis and completes the proof. �
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3. Second-order functional differential inequalities

We look for sufficient conditions so that the functional differential inequality

d

dt

(
r(t)

d

dt

(
y(t) +

l∑
i=1

hi(t)y(ρi(t))
))

+
m∑

i=1

qi(t)ϕi(y(σi(t))) ≤ f(t) (3.1)

has no eventually positive solution, where f(t) ∈ C([0,∞); R).

3.1. Case: (C1) is satisfied. We assume the following hypotheses:

(H4) For some j ∈ {1, 2, . . . ,m}, there exists a positive constant σ such that
σ′j(t) ≥ σ, t ≥ σj(t), ϕ′j(s) > 0 and ϕ′j(s) is nondecreasing for s > 0;

(H5) ρi(t) ≤ t (i = 1, 2, . . . , l);
(H6)

∑l
i=1 hi(t) ≤ h < 1 for some h > 0;

(H7) there exists T ≥ 0 such that T ≤ a < b and f(t) ≤ 0 for all t ∈ [a, b].

Theorem 3.1. Assume that (C1), (H4)–(H7) hold. If the Riccati inequality

z′(t) +
1
2

1
PK(t)

z2(t) ≤ −qj(t) (3.2)

has no solution on [T,∞) for all large T , then (3.1) has no eventually positive
solution, where

PK(t) =
r(σj(t))

2K(1− h)σ
.

Proof. Suppose that y(t) is a positive solution of (3.1) on [t0,∞) for some t0 > 0.
From (3.1) there exist j ∈ {1, 2, . . . ,m} and a, b ≥ t0 such that f(t) ≤ 0 on the
interval I ∈ [a, b], and so,

d

dt

(
r(t)

d

dt

(
y(t) +

l∑
i=1

hi(t)y(ρi(t))
))

+ qj(t)ϕj(y(σj(t))) ≤ 0, t ∈ I

for t ≥ t0. If we set the function

z(t) = y(t) +
l∑

i=1

hi(t)y(ρi(t)),

then we see that

(r(t)z′(t))′ ≤ −qj(t)ϕj(y(σj(t))) ≤ 0, t ≥ t0. (3.3)

Then we conclude that z′(t) ≥ 0 or z′(t) < 0, t ≥ t1 for some t1 ≥ t0. From the
well known argument (cf. Yoshida [13]), we see that z′(t) ≥ 0, z(t) ≥ 0 and

y(σj(t)) ≥ (1− h)z(σj(t)), t ≥ t2

for some t2 ≥ t1. Setting

w(t) =
r(t)z′(t)

ϕj((1− h)z(σj(t)))
,
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we show that

w′(t) =
(r(t)z′(t))′

ϕj((1− h)z(σj(t)))
− (1− h)r(t)z′(t)

ϕ′j((1− h)z(σj(t)))z′(σj(t))σ′j(t)
ϕ2

j ((1− h)z(σj(t)))

≤ −qj(t)
ϕj(y(σj(t)))

ϕj((1− h)z(σj(t)))
−

(1− h)σϕ′j((1− h)z(σj(t)))
r(σj(t))

w2(t), t ≥ t2.

(3.4)

It follows from (H4) that

ϕ′j((1− h)z(σj(t))) ≥ ϕ′j((1− h)k) ≡ K, t ≥ t2. (3.5)

Combining (3.5) and (3.4), we have

w′(t) +
1
2

1
PK(t)

w2(t) ≤ −qj(t), t ≥ t2. (3.6)

That is, w(t) is a solution of (3.1) on [t2,∞). This is a contradiction and the proof
is complete. �

(H8) There exists an oscillatory function θ(t) such that

(r(t)θ′(t))′ = f(t) and lim
t→∞

θ̃(t) = 0,

where

θ̃(t) = θ(t)−
l∑

i=1

hi(t)θ(ρi(t)).

Theorem 3.2. Assume that (C1), (H4)–(H6), (H8) hold. If the Riccati inequality
(3.2) has no solution on [T,∞) for all large T , then (3.1) has no eventually positive
solutions.

Proof. Suppose that y(t) is a positive solution of (3.1) on [t0,∞) for some t0 > 0.
From (3.1) there exists j ∈ {1, 2, . . . ,m} such that

d

dt

(
r(t)

d

dt

(
y(t) +

l∑
i=1

hi(t)y(ρi(t))
))

+ qj(t)ϕj(y(σj(t))) ≤ f(t), t ≥ t0.

Define the function z̃(t) by

z̃(t) = y(t) +
l∑

i=1

hi(t)y(ρi(t))− θ(t),

then it obvious that

(r(t)z̃′(t))′ ≤ −qj(t)ϕj(y(σj(t))) ≤ 0, t ≥ t0, (3.7)

so that z̃′(t) ≥ 0 or z̃′(t) < 0, t ≥ t1 for some t1 ≥ t0. By standard arguments (cf.
Yoshida [13]), we see that z̃′(t) ≥ 0, z̃(t) ≥ 0 and

y(t) ≥ (1− h)z̃(t) + θ̃(t), t ≥ t2

for some t2 ≥ t1. Since (H8) holds, there exists a number t3 ≥ t2 such that

|θ̃(t)| ≤ (1− h)k
2

, t ≥ t3.

In view of z̃(t) ≥ k, we observe that

y(t) ≥ (1− h)z̃(t)− (1− h)k
2

≥ (1− h)k
2

≡ k̃ > 0, t ≥ t3. (3.8)
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Setting

w̃(t) =
r(t)z̃′(t)

ϕj

(
(1− h)z̃(σj(t))− k̃

) ,
for t ≥ t3, we have

w̃′(t) =
(r(t)z̃′(t))′

ϕj

(
(1− h)z̃(σj(t))− k̃

)
− r(t)z̃′(t)

ϕ′j
(
(1− h)z̃(σj(t))− k̃

)
(1− h)z̃′(σj(t))σ′j(t)

ϕ2
j

(
(1− h)z̃(σj(t))− k̃

)
≤ −qj(t)

ϕj(y(σj(t)))
ϕj

(
(1− h)z̃(σj(t))− k̃

) − (1− h)σϕ′j
(
(1− h)z̃(σj(t))− k̃

)
r(σj(t))

w̃2(t).

(3.9)

It follow from (3.8) and (H4) that

ϕ′j

(
(1− h)z̃(σj(t))− k̃

)
≥ ϕ′j(k̃) ≡ K, t ≥ t3. (3.10)

Combining (3.9) with (3.10) yields

w̃′(t) +
1
2

1
PK(t)

w̃2(t) ≤ −qj(t), t ≥ t3. (3.11)

Therefore, w̃(t) is a solution of (3.2). This contradicts the hypothesis and completes
the proof. �

Theorem 3.3. Assume that (C1) (H4)–(H7) (or that (H4)–(H6), (H8)) hold. If for
each T > 0 and some K > 0, there exist (H1,H2) ∈ H, φ(t) ∈ C1((0,∞); (0,∞))
and a, b, c ∈ R such that T ≤ a < c < b and

1
H1(c, a)

∫ c

a

H1(s, a){qj(s)−
1
2
PK(s)λ2

1(s, a)}φ(s)ds

+
1

H2(b, c)

∫ b

c

H2(b, s){qj(s)−
1
2
PK(s)λ2

2(b, s)}φ(s)ds > 0,
(3.12)

where

λ1(s, t) =
φ′(s)
φ(s)

+ h1(s, t), λ2(t, s) =
φ′(s)
φ(s)

− h2(t, s).

Then (3.1) has no eventually positive solutions.

Proof. Suppose that y(t) is a positive solution of (3.1) on [t0,∞) for some t0 > 0.
Proceeding as in the proof of Theorem 3.1, multiplying (3.6) or (3.11) by H2(t, s)
and integrating over [c, t] for t ∈ [c, b), we have∫ t

c

H2(t, s)qj(s)φ(s)ds

≤ −
∫ t

c

H2(t, s)w′(s)φ(s)ds− 1
2

∫ t

c

H2(t, s)
1

PK(s)
w2(s)φ(s)ds

≤ H2(t, c)w(c)φ(c) +
1
2

∫ t

c

H2(t, s)PK(s)λ2
2(t, s)φ(s)ds

− 1
2

∫ t

c

H2(t, s){w(s)/
√
PK(s)− λ2(t, s)

√
PK(s)}2φ(s)ds,
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and so

1
H2(t, c)

∫ t

c

H2(t, s){qj(s)−
1
2
PK(s)λ2

2(t, s)}φ(s)ds ≤ w(c)φ(c).

Letting t→ b− in the last inequality, we obtain

1
H2(b, c)

∫ b

c

H2(b, s){qj(s)−
1
2
PK(s)λ2

2(b, s)}φ(s)ds ≤ w(c)φ(c). (3.13)

On the other hand, multiplying (3.6) by H1(s, t), integrating over [t, c] for t ∈ (a, c]
and letting t→ a+, we obtain

1
H1(c, a)

∫ c

a

H1(s, a){qj(s)−
1
2
PK(s)λ2

1(s, a)}φ(s)ds ≤ −w(c)φ(c). (3.14)

Adding (2.1) and (2.6), we obtain

1
H1(c, a)

∫ c

a

H1(s, a){qj(s)−
1
2
PK(s)λ2

1(s, a)}φ(s)ds

+
1

H2(b, c)

∫ b

c

H2(b, s){qj(s)−
1
2
PK(s)λ2

2(b, s)}φ(s)ds ≤ 0,

which is contrary to (3.12). Pick up a sequence {Ti} ⊂ [t0,∞) such that Ti → ∞
as i → ∞. By the assumptions, for each i ∈ N, there exists ai, bi, ci ∈ [0,∞)
such that Ti ≤ ai < ci < bi, and (3.12) holds with a, b, c replaced by ai, bi, ci,
respectively. Therefore, every solution y(t) of (3.1) has at least one zero ti ∈ (ai, bi).
The case when (3.11) follows by a similar arguments. This is a contradiction and
the proof is complete. �

Theorem 3.4. Assume (C1), (H4)–(H7) (or (H4)–(H6), (H8)). If for each T > 0
and some K > 0, there exist functions (H1,H2) ∈ H, φ(t) ∈ C1((0,∞); (0,∞)),
such that

lim sup
t→∞

∫ t

T

H1(s, T ){qj(s)−
1
2
PK(s)λ2

1(s, T )}φ(s)ds > 0 (3.15)

and

lim sup
t→∞

∫ t

T

H2(t, s){qj(s)−
1
2
PK(s)λ2

2(t, s)}φ(s)ds > 0, (3.16)

then (3.1) has no eventually positive solutions.

Proof. For any T ≥ t0, let a = T and choose T = a in (3.12). Then there exists
c > a such that ∫ c

a

H1(s, a){qj(s)−
1
2
PK(s)λ2

1(s, a)}φ(s)ds > 0. (3.17)

Next, choose T = c in (3.16). Then there exists b > c such that∫ b

c

H2(b, s){qj(s)−
1
2
PK(s)λ2

2(b, s)}φ(s)ds > 0. (3.18)

Combining (3.17) and (3.18), we obtain (3.12). By Theorem 3.3, the proof is
complete. �
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3.2. Case: (C2) is satisfied. We use the following notation:

ρ∗(t) = min
1≤i≤l

ρi(t), π(t) =
∫ ∞

t

1
r(s)

ds,

A(t) = 1−
l∑

i=1

hi(t)− log
π(ρ∗(t))
π(t)

, [δ(t)]± = max{0,±δ(t)}.

Theorem 3.5. Assume that(C2), (H4)–(H7) hold. If the Riccati inequality

z′i(t) +
1
2

1
Pi(t)

z2
i (t) ≤ −Qi(t) (i = 1, 2) (3.19)

has no solution on [T,∞) for all large T , then (3.1) has no eventually positive
solutions, where

P1(t) = PK(t), P2(t) =
r(t)

2ϕ′j(c1π(t))
,

Q1(t) = qj(t), Q2(t) = qj(t)
ϕj

(
[c1A(σj(t))π(ρ∗(σj(t)))]+

)
K̃

.

Proof. Suppose that y(t) is a positive solution of (3.1) on [t0,∞) for some t0 > 0.
Proceeding as in the proof of Theorem 3.1, we obtain the inequality (3.3). Thus we
see that z′(t) ≥ 0, z(t) ≥ 0 or z′(t) < 0, z(t) ≥ 0, t ≥ t1 for some t1 ≥ t0.
Case 1. z′(t) ≥ 0, z(t) ≥ 0 for t ≥ t1. The proof of this case is similar as Theorem
3.1, and so we omit it.
Case 2. z′(t) < 0, z(t) ≥ 0 for t ≥ t1. Then there exists a constant k1 > 0 such
that z(t) ≤ k1, t ≥ t2 for some t2 ≥ t1. Consequently we have

ϕj(z(t)) ≤ ϕj(k1) ≡ K̃, t ≥ t2. (3.20)

If we define

w2(t) =
r(t)z′(t)
ϕj(z(t))

,

then

w′2(t) =
(r(t)z′(t))′

ϕj(z(t))
− r(t)z′(t)

ϕ′j(z(t))z
′(t)

ϕ2
j (z(t))

≤ −qj(t)
ϕj(y(σj(t)))
ϕj(z(t))

−
ϕ′j(z(t))
r(t)

w2
2(t), t ≥ t2.

(3.21)

Using [8, Lemma 5.2], we see that z(t) ≥ c1π(t), t ≥ t3 for some t3 ≥ t2, and that

ϕ′j(z(t)) ≥ ϕ′j(c1π(t)), t ≥ t3. (3.22)

By [8, Theorem 3.2], we show that

y(t) ≥ c1A(t)π(ρ∗(t)), t ≥ t3,

and that
ϕj(y(σj(t))) ≥ ϕj([c1A(σj(t))π(ρ∗(σj(t)))]+), t ≥ t3. (3.23)

Combining (3.20)–(3.23), we can derive the inequality

w′2(t) +
1
2

1
P2(t)

w2
2(t) ≤ −Q2(t), t ≥ t3.

Therefore, w2(t) is a solution of (3.19). This contradicts the hypothesis and com-
pletes the proof. �
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Theorem 3.6. Assume that (C2), (H4)–(H6), (H8) hold. If the Riccati inequality

z′i(t) +
1
2

1
Pi(t)

z2
i (t) ≤ −Q̃i(t) (i = 1, 2) (3.24)

has no solution on [T,∞) for all large T , then (3.1) has no eventually positive
solutions, where

Q̃1(t) = qj(t), Q̃2(t) = qj(t)
ϕj

(
[c1A(σj(t))π(ρ∗(σj(t))) + θ̃(σj(t))]+

)
K̃

.

Proof. Suppose that y(t) is a positive solution of (3.1) on [t0,∞) for some t0 > 0.
Proceeding as in the proof of Theorem 3.2, we see that z̃′(t) ≥ 0, z̃(t) ≥ 0 or
z̃′(t) < 0, z̃(t) ≥ 0, t ≥ t1 for some t1 ≥ t0.
Case 1. z̃′(t) ≥ 0, z̃ ≥ 0. Then it can be treated similarly as in the proof of
Theorem 3.2.
Case 2. z̃′(t) < 0, z̃(t) ≥ 0. By Tanaka [8, Theorem 3.2], we obtain

y(σj(t)) ≥ [c1A(σj(t))π(ρ∗(σj(t))) + θ̃(σj(t))]+, t ≥ t2.

Setting w̃2(t) = w2(t), it obvious that

w̃′2(t) ≤ −qj(t)
ϕj(y(σj(t)))
ϕj(z(t))

−
ϕ′j(z(t))
r(t)

w̃2
2(t), t ≥ t2.

Substituting (3.20) and (3.22) into this inequality yields

w̃′2(t) +
1
2

1
P2(t)

w̃2
2(t) ≤ −qj(t)

ϕj(y(σj(t)))
K̃

.

It is clear that w̃2(t) is a solution of (3.24). This contradicts the hypothesis and
completes the proof. �

Theorem 3.7. Assume that (C2), (H4)–(H7) hold. If for each T > 0 and some
K > 0, K̃ > 0 there exist (H1,H2) ∈ H, φ(t) ∈ C1((0,∞); (0,∞)) and a, b, c ∈ R
such that T ≤ a < c < b and (3.12) and

1
H1(c, a)

∫ c

a

H1(s, a){Q2(s)−
1
2
P2(s)λ2

1(s, a)}φ(s)ds

+
1

H2(b, c)

∫ b

c

H2(b, s){Q2(s)−
1
2
P2(s)λ2

2(b, s)}φ(s)ds > 0
(3.25)

hold, then (3.1) has no eventually positive solutions.

Theorem 3.8. Assume that (C2), (H4)–(H7) hold. If for each T > 0 and some
K > 0, K̃ > 0, there exist functions (H1,H2) ∈ H, φ(t) ∈ C1((0,∞); (0,∞)), such
that (3.15), (3.16) and

lim sup
t→∞

∫ t

T

H1(s, T ){Q2(s)−
1
2
P2(s)λ2

1(s, T )}φ(s)ds > 0 (3.26)

and

lim sup
t→∞

∫ t

T

H2(t, s){Q2(s)−
1
2
P2(s)λ2

2(t, s)}φ(s)ds > 0, (3.27)

then (3.1) has no eventually positive solutions.
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Theorem 3.9. Assume that (C2), (H4)–(H6), (H8) hold. If for each T > 0 and
some K > 0, K̃ > 0, there exist (H1,H2) ∈ H, φ(t) ∈ C1((0,∞); (0,∞)) and
a, b, c ∈ R such that T ≤ a < c < b and (3.12) and

1
H1(c, a)

∫ c

a

H1(s, a){Q̃2(s)−
1
2
P2(s)λ2

1(s, a)}φ(s)ds

+
1

H2(b, c)

∫ b

c

H2(b, s){Q̃2(s)−
1
2
P2(s)λ2

2(b, s)}φ(s)ds > 0
(3.28)

hold, then (3.1) has no eventually positive solutions.

Theorem 3.10. Assume that (C2), (H4)–(H6), (H8) hold. If for each T > 0 and
some K > 0, K̃ > 0, there exist functions (H1,H2) ∈ H, φ(t) ∈ C1((0,∞); (0,∞)),
such that (3.15), (3.16) and

lim sup
t→∞

∫ t

T

H1(s, T ){Q̃2(s)−
1
2
P2(s)λ2

1(s, T )}φ(s)ds > 0 (3.29)

and

lim sup
t→∞

∫ t

T

H2(t, s){Q̃2(s)−
1
2
P2(s)λ2

2(t, s)}φ(s)ds > 0, (3.30)

then (3.1) has no eventually positive solutions.

4. Oscillation criteria for (1.1)

In this section, by combining the results of Sections 2 and 3, we establish sufficient
conditions for oscillation of solutions to (1.1).

(H9) There exists T ≤ a < b ≤ ã < b̃ such that

G(t) [resp. G̃(t)] =

{
≤ 0, t ∈ [a, b],
≥ 0, t ∈ [ã, b̃]

for each T ≥ 0;
(H10) there exists an oscillatory function Θ(t) such that(

r(t)Θ′(t)
)′

= G(t) [resp.G̃(t)], lim
t→∞

Θ̃(t) = 0,

where

Θ̃(t) = Θ(t)−
l∑

i=1

hi(t)Θ(ρi(t)).

Using the Riccati inequality, we derive sufficient conditions for every solution
of hyperbolic equation (1.1) to be oscillatory. We are going to use the following
lemma which is due to Usami [9].

Lemma 4.1. If there exists a function φ(t) ∈ C1([T0,∞); (0,∞)) such that∫ ∞

T1

( p̄(t)|φ′(t)|β
φ(t)

)1/(β−1)

dt <∞,

∫ ∞

T1

1
p̄(t)(φ(t))β−1

dt = ∞,∫ ∞

T1

φ(t)q̄(t)dt = ∞

for some T1 ≥ T0, then the Riccati inequality

x′(t) +
1
β

1
p̄(t)

|x(t)|β ≤ −q̄(t)
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has no solution on [T,∞) for all large T , where β > 1, p̄(t) ∈ C([T0,∞); (0,∞))
and q̄(t) ∈ C([T0,∞); R),

4.1. Oscillation results by Riccati inequality for case (C1). Combining The-
orems 2.1–3.2 and Lemma 4.1, we obtain the following theorem.

Theorem 4.2. Assume that (C1), (H1)–(H6), (H9) (or (H1)–(H6), (H10)) and
that if∫ ∞

T1

(PK(t)φ′(t)2

φ(t)

)
dt <∞,

∫ ∞

T1

1
PK(t)φ(t)

dt = ∞,

∫ ∞

T1

φ(t)qj(t)dt = ∞,

then every solution u(x, t) of (1.1), (1.2) (or (1.1), (1.3)) is oscillatory in Ω.

Example 4.3. Consider the equation
∂

∂t

(
e−2t ∂

∂t

(
u(x, t) +

1
2
u(x, t− π)

)
− e−3t∆u(x, t)

− 1
2
e−2t∆u(x, t− 2π)−

(
e−t + e−2t

)
∆u

(
x, t− 3

2
π
)

+ e−tu
(
x, t− π

2
)

= e−3t sinx sin t, (0, π)× (0,∞),

(4.1)

u(0, t) = u(π, t) = 0, t > 0. (4.2)

Here l = m = 1, k = 2, r(t) = e−2t, h1(t) = 1/2, ρ1(t) = t − π, q1(x, t) = e−t,
σ1(t) = t− π/2 and f(x, t) = e−3t sinx sin t. It is easy to see that Φ(x) = sinx and

G(t) = F (t) =
π

4
e−3t sin t, Θ̃(t) =

π

16
(
1 +

1
2
eπ

)
e−t cos t.

Then
∫∞

e−tdt < ∞; hence, [8, Corollary 2.1] is not applicable to this problem.
Taking φ(t) = et, we find∫ ∞ (PK(t)φ′(t)2

φ(t)

)
dt =

∫ ∞ (e−2t+π · e2t

et

)
dt <∞,∫ ∞ ( 1

PK(t)φ(t)

)
dt =

∫ ∞ ( 1
e−2t+π · et

)
dt = ∞,∫ ∞

φ(t)q1(t)dt =
∫ ∞ (

et · e−t
)
dt = ∞.

It follows from Theorem 4.2 that every solution u of (4.1), (4.2) is oscillatory in
(0, π)× (0,∞). For example, u = sinx sin t is such a solution.

4.2. Interval oscillation results for case (C1). Combining Theorems 2.1, 2.2,
3.3, and 3.4, we have the following theorems.

Theorem 4.4. Assume that (C1), (H1)–(H6), (H9) hold. If for each T > 0 and
some K > 0, there exist functions (H1,H2) ∈ H, φ(t) ∈ C1((0,∞); (0,∞)) and
a, b, c, ã, b̃, c̃ ∈ R such that T ≤ a < c < b < ã < c̃ < b̃, (3.12) and

1
H1(c̃, ã)

∫ c̃

ã

H1(s, ã){qj(s)−
1
2
PK(s)λ2

1(s, ã)}φ(s)ds

+
1

H2(b̃, c̃)

∫ b̃

c̃

H2(b̃, s){qj(s)−
1
2
PK(s)λ2

2(b̃, s)}φ(s)ds > 0

hold, then every solution u(x, t) of (1.1), (1.2) (or (1.1), (1.3)) is oscillatory in Ω.
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Theorem 4.5. Assume that (C1), (H1), (H6), (H10) hold. If for each T > 0 and
some K > 0, there exist functions (H1,H2) ∈ H, φ(t) ∈ C1((0,∞); (0,∞)) and
a, b, c ∈ R such that T ≤ a < c < b and (3.12) hold, then every solution of (1.1),
(1.2) (or (1.1), (1.3)) is oscillatory in Ω.

Theorem 4.6. Assume that (C1), (H1)–(H6), (H9) (or (H1)–(H6), (H10)) hold.
If for some functions (H1,H2) ∈ H, each T ≥ 0 and some K > 0, the condi-
tions (3.15) and (3.16) hold, then every solution of (1.1), (1.2) (or (1.1), (1.3)) is
oscillatory in Ω.

Example 4.7. Consider the problem

∂2

∂t2

(
u(x, t) +

1
2
u(x, t− π)

)
−∆u(x, t)− 5t−2∆u(x, t− 2π) + 5t−2u(x, t− π)

=
1
2

sinx sin t, (0, π)× (0,∞),

(4.3)

u(0, t) = u(π, t) = 0, t > 0. (4.4)

Here l = k = m = 1, r(t) = 1, h1(t) = 1/2, ρ1(t) = t − π, q1(x, t) = 5t−2,
σ1(t) = t− π and f(x, t) = 1

2 sinx sin t.

It is easy to verify that Φ(x) = sinx and

G(t) = F (t) =
π

8
sin t and Θ̃(t) = − 3

16
π sin t.

Since ∫ ∞
5t−2[

1
2
± 3

16
π sin t]+dt <∞,

Then [8, Theorem 2.1] does not apply; however, by choosing φ(t) = t2 andH1(s, t) =
H2(t, s) = (t− s)2,

lim sup
t→∞

∫ t

T

(s− T )2{5s−2 − 1
2

1
2

4T 2

s2(s− T )2
}s2ds > 0

and

lim sup
t→∞

∫ t

T

(t− s)2{5s−2 − 1
2

1
2

4(t− 2s)2

s2(t− s)2
}s2ds > 0

hold. Therefore, Theorem 4.6 implies that every solution u of the problem (4.3),
(4.4) is oscillatory in (0, π)× (0,∞). In fact, one such solution is u = sinx sin t.

4.3. Oscillation results by Riccati inequality for case (C2). Combining The-
orems 2.1, 2.2, and 3.5, we have the following theorem.

Theorem 4.8. Assume that (C2), (H1)–(H6), (H9) hold. If for i = 1, 2,∫ ∞

T1

(Pi(t)φ′(t)2

φ(t)

)
dt <∞,

∫ ∞

T1

1
Pi(t)φ(t)

dt = ∞,

∫ ∞

T1

φ(t)Qi(t)dt = ∞,

(4.5)
then every solution of (1.1), (1.2) (or (1.1), (1.3)) is oscillatory in Ω.
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Example 4.9. Consider the equation
∂

∂t

(
e1/8 ∂

∂t

(
u(x, t) +

1
2
u(x, t− π)

))
− 1

2
e1/8∆u(x, t)− 1

16
e1/8∆u

(
x, t− π

2
)

+ e2tu(x, t− 2π)

= e2t sinx sin t, (0, π)× (0,∞),

(4.6)

u(0, t) = u(π, t) = 0, t > 0. (4.7)

Here l = k = m = 1, r(t) = et/8, h1(t) = 1/2, ρ1(t) = t − π, q1(x, t) = e2t,
σ1(t) = t− 2π and f(x, t) = e2t sinx sin t. It is easy to see that Φ(x) = sinx and∫ ∞ (P1(t)φ′(t)2

φ(t)

)
dt =

∫ ∞ (e 1
8 (t−2π) · e−2t

e−t

)
dt <∞,∫ ∞ (P2(t)φ′(t)2

φ(t)

)
dt =

∫ ∞ ( 1
2e

1
8 t · e−2t

e−t

)
dt <∞,∫ ∞ 1

P1(t)φ(t)
dt =

∫ ∞ 1(
e

1
8 (t−2π) · e−t

)dt = ∞,∫ ∞ 1
P2(t)φ(t)

dt =
∫ ∞ 1(

1
2e

1
8 t · e−t

)dt = ∞,∫ ∞
φ(t)Q1(t)dt =

∫ ∞
(e−t · e2t) = ∞,∫ ∞

φ(t)Q2(t)dt =
∫ ∞

e−t · e2t
[
c
(1
2
− π

8
)
· 8e− 1

8 (t−3π)
]
+
dt = ∞,

where φ(t) = e−t. Therefore it follows from Theorem 4.8 that every solution u of
problem (4.6), (4.7) is oscillatory in (0, π) × (0,∞). For example u = sinx sin t is
such a solution.

Combining Theorems 2.1, 2.2, and 3.6, we have the following result.

Theorem 4.10. Assume (C1), (H1)–(H6), (H10). If (4.5) and∫ ∞

T1

φ(t)Q̃i(t)dt = ∞ (i = 1, 2)

hold, then every solution u(x, t) of (1.1), (1.2) (or (1.1), (1.3)) is oscillatory in Ω,
where

Q̃2(t) = qj(t)
1
K̃
ϕj

([
c1A(σj(t))π(ρ∗(σj(t))) + Θ̃(σj(t))

]
+

)
.

4.4. Interval oscillation results for case (C2). Combining Theorems 2.1, 2.2,
3.7, and 3.8, we have the following result.

Theorem 4.11. Assume that (C2), (H1)–(H6), (H9) hold. If for each T > 0 and
some K > 0, K̃ > 0, there exist functions (H1,H2) ∈ H, φ(t) ∈ C1((0,∞); (0,∞))
and a, b, c, ã, b̃, c̃ ∈ R such that T ≤ a < c < b < ã < c̃ < b̃, and (3.12), (3.25),

1
H1(c̃, ã)

∫ c̃

ã

H1(s, ã){qj(s)−
1
2
PK(s)λ2

1(s, ã)}φ(s)ds

+
1

H2(b̃, c̃)

∫ b̃

c̃

H2(b̃, s){qj(s)−
1
2
PK(s)λ2

2(b̃, s)}φ(s)ds > 0
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and

1
H1(c̃, ã)

∫ c̃

ã

H1(s, ã){Q2(s)−
1
2
P2(s)λ2

1(s, ã)}φ(s)ds

+
1

H2(b̃, c̃)

∫ b̃

c̃

H2(b̃, s){Q2(s)−
1
2
P2(s)λ2

2(b̃, s)}φ(s)ds > 0

hold, then every solution of (1.1), (1.2) (or (1.1), (1.3)) is oscillatory in Ω.

Theorem 4.12. Assume (C2), (H1)–(H4), (H9). Also assume that for some func-
tions (H1,H2) ∈ H, each T ≥ 0 and some K > 0, K̃ > 0. If (3.15), (3.16), (3.26),
and (3.27) hold, then every solution of (1.1), (1.2) (or (1.1), (1.3)) is oscillatory
in Ω.

Combining Theorems 2.1, 2.2, 3.9, and 3.10, we have the following result.

Theorem 4.13. Assume that (C2), (H1)–(H6), (H10) hold. If for each T > 0 and
some K > 0, K̃ > 0, there exist functions (H1,H2) ∈ H, φ(t) ∈ C1((0,∞); (0,∞))
such that (3.12) and (3.28) hold, then every solution of (1.1), (1.2) (or (1.1), (1.3))
is oscillatory in Ω.

Theorem 4.14. Assume (C2), (H1)–(H4), (H10). Also assume that some functions
(H1,H2) ∈ H for each T ≥ 0 and some K > 0, K̃ > 0. If (3.15), (3.16), (3.29),
(3.30) hold, then every solution of (1.1), (1.2) (or (1.1), (1.3)) is oscillatory in Ω.

Example 4.15. Consider the equation
∂

∂t

(
t3
∂

∂t

(
u(x, t) +

1
2
u(x, t− π)

))
− t3

2
∆u(x, t)−

(
t+

3
2
t2

)
∆u

(
x, t− π

2
)

+ u(x, t− 2π)

= (sin t− t cos t) sinx, (0, π)× (T0,∞),

(4.8)

u(0, t) = u(π, t) = 0, t > T0 = π/(1− e−1/4). (4.9)

Here l = k = m = 1, r(t) = t3, h1(t) = 1/2, ρ1(t) = t − π, q1(x, t) = 1,
σ1(t) = t− 2π and f(x, t) = (sin t− t cos t) sinx. An easy computation shows that
Φ(x) = sinx and

π(t) =
1
2
t−2, Θ̃(t) =

π

4

(
t−2 +

1
2
(t− π)−2

)
cos t, A(t) =

1
2

+ 2 log
( t− π

t

)
> 0.

Since ∫ ∞ (1
2
t−2

)
[cA(t− 2π)π(t− 3π)±Θ(t− 2π)]+dt <∞,

Note that [8, Theorem 3.2] is not applicable to this problem. However, we see from
φ(t) = t3 and H1(s, t) = H2(t, s) = (t− s)3 that

lim sup
t→∞

∫ t

T

(s− T )3{1− 1
2
(s− 2π)3

9T 2

s2(s− T )2
}s3ds > 0,

lim sup
t→∞

∫ t

T

(s− t)3{1− 1
2
(s− 2π)3

9(t− 2s)2

s2(s− t)2
}s3ds > 0,

lim sup
t→∞

∫ t

T

(s− T )3{1− 1
2
s3

2
9T 2

s2(s− T )2
}s3ds > 0,
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lim sup
t→∞

∫ t

T

(t− s)3{[cA(t− 2π)π(t− 3π)± Θ̃(t− 2π)]+ −
1
2
s3

2
9(t− 2s)2

s2(s− t)2
}s3ds > 0.

Therefore, Theorem 4.14 implies that every solution u of the problem (4.8), (4.9)
is oscillatory in (0, π)× (T0,∞). In fact, one such solution is u = sinx sin t.
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