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MULTIPLE POSITIVE SOLUTIONS FOR SINGULAR
MULTI-POINT BOUNDARY-VALUE PROBLEM WITH
GENERAL GROWTH ON THE POSITIVE HALF LINE

SMAÏL DJEBALI, KARIMA MEBARKI

Abstract. This work is devoted to the existence of nontrivial positive solu-
tions for a class of second-order nonlinear multi-point boundary-value problems
on the positive half-line. The novelty of this work is that the nonlinearity may
exhibit a singularity at the origin simultaneously with respect to the solution
and its derivative; moreover it satisfies quite general growth conditions far
from the origin, including polynomial growth. New existence results of single,
twin and triple solutions are proved using the fixed point index theory on ap-
propriate cones in weighted Banach spaces together with two-functional and
three-functional fixed point theorems. The singularity is treated by means
of approximation and compactness arguments. The proofs of the existence
results rely heavily on several sharp estimates and useful properties of the
corresponding Green’s function.

1. Introduction

This article concerns the existence of positive solutions to the multi-point bound-
ary value problem posed on the positive half-line:

−y′′ + cy′ + λy = Φ(t)f(t, y(t), e−cty′(t)), t ∈ I

y(0) =
n∑

i=1

kiy(ξi), lim
t→∞

e−cty′(t) = 0,
(1.1)

where, for i ∈ {1, . . . , n}, ki ≥ 0 and the multi-points 0 < ξ1 < ξ2 < · · · < ξn <∞
satisfy

n∑
i=1

kie
r2ξi < 1, (1.2)

and where

r2 =
c−

√
c2 + 4λ
2

< 0 < r1 =
c+

√
c2 + 4λ
2

are the roots of the algebraic equation −r2 + cr + λ = 0. The parameters c and
λ are real positive constants while the function f = f(t, y, z) : I2 × R∗ → R+

is continuous and is allowed to have space singularities at y = 0 and/or z = 0,
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and Φ : I → I is a continuous function. Recall that f is said to be singular at
y = 0 if limy→ 0 f(t, y, z) = +∞ uniformly in (t, z) ∈ I × R∗. Here and hereafter
I := (0,+∞) denotes the set of positive real numbers, R+ : = [0,+∞), and R∗ : =
R \ {0}.

Throughout this paper, by positive solution we mean y ∈ C1([0,∞)) such that
y′′ exists and y satisfies (1.1) with y(t) ≥ 0 on (0,∞).

Many problems in physics, chemistry and biology are governed by boundary
value problems on the half-line, e.g., the flow of a premixed mixture inducing the
propagation of a nonadiabatic flame in a long tube. For instance, the equation

−y′′(t) + cy′(t) + λy(t) = f(t, y(t))

subject to the boundary conditions

y(0) = y(+∞) = 0

extends the classical Fisher-Kolmogorov model equation (see [20]) with no heat
exchange, i.e. λ = 0. The positive nonlinear term is governed by classical physical
laws. In combustion theory, the source term in the energy equation obeys Arrhenius’
Law where f = f(y) behaves as yne−y near positive infinity (see e.g., [3, 5, 7]).
This motivates the general growth of the nonlinearity considered in this work,
extending polynomials. In epidemiology, the propagation of epidemics through
given populations is governed by the generalized Fisher autonomous equation −y′′+
cy′ + λy = yh(y) (see [11, 14] for a mathematical investigation). Here the positive
constant c is the velocity of the travelling wave and the real parameter λ is a
removal rate [30]. The function y represents a density of infectives. Thus, only
positive solutions corresponding to a density, a temperature,. . . are useful from a
physical point of view.

Moreover, various physiological processes in non-Newtonian fluid theory, bound-
ary layer theory and nonlinear phenomena (see e.g., [31]) are modelled by singular
equations such that the Emden-Fowler equation y′′ = −ϕ(t)y−γ (γ > 0). Also, the
boundary value problem for the electrical potential in an isolated neutral atom was
derived in 1927 independently by Thomas [34] and Fermi [19]; it can be written as

y′′ =
√
y3/t

y(0) = 1, y(+∞) = 0.

Another example is provided by the boundary layer equation for steady flow over
a semi-infinite plate (see [8]):

y′′ = − t

2y2

y(0) = y(+∞) = 0.

These behaviors of the nonlinearities have motivated our investigation of problem
(1.1) with a nonlinearity allowed to have a singularity not only in y but also in y′.

There have been recently so much work devoted to the investigation of existence
of positive solutions for boundary value problems on infinite intervals of the real line
and where the nonlinearity satisfies either superlinear or sublinear growth assump-
tions (see [11, 12, 13, 21, 35, 36] and the references therein). A few methods have
been employed to deal with such problems which lack compactness; we cite upper
and lower solution techniques [32], fixed point theorems in special Banach spaces
and index fixed point theory on cones of special Banach spaces [4, 26, 35] as well
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as diagonalization processes. Existence of single or multiple solutions have been
proved for two-point boundary value problems, three-point and even multi-point
BVPs in [26, 29, 35, 36]. We point out that several existence results for general
problems posed on unbounded intervals may be found in the book by Agarwal and
O’Regan [2].

In [28], the authors have recently considered the generalized Fisher equation
−y′′ + py′ + qy = h(t)f(t, y) with h singular in time while the nonlinearity f may
change sign. When f further depends on the first derivative, existence of multiple
solutions is given in [15] and the nonlinearity includes sublinear and superlinear
growth conditions; fixed point theory in cones of special Banach spaces is employed.
In [17, 18], the authors combine the fixed point index theory with the upper and
lower solution method to prove existence of solutions when the nonlinearity satisfies
various growth assumptions.

The second-order differential equation (p(t)y′(t))′ + λφ(t)f(t, y(t)) = 0 with
limt→+∞ p(t)y′(t) = 0 as a boundary condition is studied in [26, 39] while the
same equation where f also depends on y′ is considered in [36] with Dirichlet con-
dition at positive infinity; fixed point theorems in cones are used to prove existence
of positive solutions; the condition

∫ +∞
0

dt
p(t) < ∞ is assumed. A discussion along

with the smallness of the parameter λ is also given in [37] for a nonlinearity of the
form λ(f(t, y)− k2y).

A three-point boundary value problem associated with the Sturm-Liouville dif-
ferential equation ( 1

p(t)
(p(t)y′(t)

)′ + q(t)f(t, y(t), p(t)y′(t)) = 0

is discussed in [23] and [33] with limt→+∞ p(t)y′(t) = b ≥ 0; the technique of
upper and lower solutions and the theory of fixed point theory are employed to get
existence of multiple solutions. The same technique is employed in [27] when f does
not depend on the first derivative. Notice that this equation is also investigated in
[38] and existence of multiple solutions is proved when f may be singular at y = 0
and py′ = 0. We point out that in all of these works, the conditions

∫ +∞
0

dt
p(t) <∞

is assumed which is not the case in the present work since p(t) = e−ct.
Our aim in this work is further to extend some of these works to the case in

which a positive nonlinearity does also depend on the first derivative and is allowed
to be singular at the origin in both its second and third arguments; in addition it
satisfies general growth far from the singular origin, extending the classical poly-
nomial growth. We prove existence and multiplicity of nontrivial positive solutions
in a weighted Banach space. The singularity of the nonlinearity is treated by ap-
proximating a fixed point operator with the help of some compactness arguments.

The proofs of our existence theorems rely on recent fixed point theorems of two
or three functionals [4, 25] together with the fixed point index theory in cones of
Banach spaces [22]. Some preliminaries needed to transform problem (1.1) into a
fixed point theorem are presented in Section 2 together with appropriate compact-
ness criteria. In particular, essential properties of the Green’s function are given
and the main assumptions are enunciated. Then, we construct a special cone in
a weighted Banach space. The properties of a fixed point operator denoted T are
studies in detail in Section 3. Section 4 is devoted to proving three existence results
successively of a single, twin and triple solutions. The existence theorems obtained
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in this paper extend similar results available in the literature in case the nonlin-
earity f is either nonsingular or does not depend on the first derivative (see e.g.,
[11, 12, 13, 16, 26, 29, 35, 36]). We end the paper with an example of application
in Section 5 and some concluding remarks in Section 6.

2. Functional framework

In this section, we present some definitions and lemmas which will be needed in
the proofs of the main results. Let

Cl([0,∞),R) = {y ∈ C([0,∞),R) : lim
t→∞

y(t) exists}.

It is easy to see that Cl is a Banach space with the norm ‖y‖l = supt∈[0,∞) |y(t)|.
For a real parameter θ > r1, consider the Banach space of Bielecki type [6] defined
by

X = C1
∞([0,∞),R) =

{
y ∈ C1([0,∞),R) : lim

t→+∞

y(t)
eθt

and lim
t→+∞

y′(t)
eθt

exist
}

with norm
‖y‖θ = max{‖y‖1, ‖y‖2},

where

‖y‖1 = sup
t∈[0,∞)

|y(t)|
eθt

, ‖y‖2 = sup
t∈[0,∞)

|y′(t)|
eθt

.

Lemma 2.1 ([15, Lemma 2.1]). X = C1
∞ is a Banach space.

For some 0 < γ < δ, let

0 < Λ0 := min{er2δ, er1γ − er2γ}, Λ = Λ0 max
t∈[γ,δ]

σ(t). (2.1)

Since r2 < 0, we have 0 < Λ0 < 1. Here

σ(t) =



min
(

1−e(r2−r1)t

2r1(1−
Pn

i=1 kier2ξi )e(r1−θ)t ,
1
|r2|

)
, t < ξ1;

min
(

1−
Pj

i=1 kie
r2ξi−e(r2−r1)t(1−

Pj
i=1 kie

r1ξi )

2r1(1−
Pn

i=1 kier2ξi )e(r1−θ)t , 1
|r2|

)
,

0 < ξj ≤ t ≤ ξj+1, j = 1, 2, . . . , n− 1;

min
(

1−
Pj

i=1 kie
r2ξi−e(r2−r1)t(1−

Pn
i=1 kie

r1ξi )

2r1(1−
Pn

i=1 kier2ξi )e(r1−θ)t , 1
|r2|

)
, t ≥ ξn.

Then define the positive cone

P =
{
y ∈ X : y(t) ≥ 0 on R+, y(t) ≥ Λ‖y‖2, ∀ t ∈ [γ, δ] and y(0) =

n∑
i=1

kiy(ξi)
}
.

(2.2)

Lemma 2.2. Let ρ = 1
θ(1−

Pn
i=1 kieθξi )

. Then ‖y‖1 ≤ ρ‖y‖2 for all y ∈ P.

Proof. Since y(0) =
∑n

i=1 kiy(ξi), then for every t ∈ R+, we have

y(t)
eθt

= e−θt
{∫ t

0

y′(s)ds+ y(0)
}

= e−θt
{∫ t

0

y′(s)ds+
n∑

i=1

kiy(ξi)
}
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= e−θt
{∫ t

0

eθs y
′(s)
eθs

ds+
n∑

i=1

kie
θξi
y(ξi)
eθξi

}
≤ e−θt

{1
θ
(eθt − 1)‖y‖2 +

n∑
i=1

kie
θξi‖y‖1

}
≤ 1
θ
(1− e−θt)‖y‖2 +

n∑
i=1

kie
θξi‖y‖1.

Passing to the supremum over t ≥ 0, we complete the proof. �

Arguing as in [15, Lemma 2.2], we deduce the following result.

Lemma 2.3. Let y ∈ P. Then, for any t ∈ [γ, δ], we have y(t) ≥ Γ‖y‖θ, where
Γ = Λ/max(1, ρ).

2.1. Construction of the Green’s function. In the following lemma which gen-
eralizes [15, Lemma 2.4], we determine the Green’s function for problem (1.1).

Lemma 2.4. Let v be a continuous function such that
∫∞
0
e−r1sv(s)ds < ∞ and

lims→+∞ e−csv(s) = 0. Then y ∈ C1(I) is a solution of

−y′′ + cy′ + λy = v(t), t ∈ I

y(0) =
n∑

i=1

kiy(ξi), lim
t→∞

y′(t)
ect

= 0,
(2.3)

if and only if it may be expressed in the form

y(t) =
∫ ∞

0

G(t, s)v(s)ds, t ∈ I. (2.4)

Hereafter the positive Green’s function G is defined on I × I by G(t, s) = 1
∆G

1(t, s)
with ∆ = (r1 − r2)(1−

∑n
i=1 kie

r2ξi) and

G1(t, s) =



er2t(e−r2s − e−r1s), if 0 < s ≤ min(t, ξ1) <∞;

er1(t−s)(1−
∑n

i=1 kie
r2ξi)− er2t

(
e−r1s −

∑n
i=1 kie

r2(ξi−s)
)
,

if 0 < t ≤ s ≤ ξ1 <∞;

er2t
(
e−r2s(1−

∑j
i=1 kie

r2ξi)− e−r1s(1−
∑j

i=1 kie
r1ξi)

)
,

if 0 < ξj ≤ s ≤ ξj+1, s ≤ t, j = 1, 2, . . . , n− 1;

e−r1s
(
er1t(1−

∑n
i=1 kie

r2ξi)− er2t(1−
∑j

i=1 kie
r1ξi

−
∑n

i=j+1 kie
r2(ξi−s)+r1s)

)
,

if 0 < ξj ≤ s ≤ ξj+1, t ≤ s, j = 1, 2, . . . , n− 1;

er2t
(
e−r2s(1−

∑n
i=1 kie

r2ξi)− e−r1s(1−
∑n

i=1 kie
r1ξi)

)
,

if 0 < ξn ≤ s ≤ t <∞;

e−r1s
(
er1t(1−

∑n
i=1 kie

r2ξi)

−er2t(1−
∑n

i=1 kie
r1ξi)

)
,

if 0 < max(ξn, t) ≤ s <∞.
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Proof. (a) It is easy to show that the general solution of the equation in the bound-
ary value problem (2.3) reads

y(t) =
1

r1 − r2

(
Aer1t +Ber2t +

∫ t

0

(
er2(t−s) − er1(t−s)

)
v(s)ds

)
(2.5)

where A = y′(0)− r2y(0) and B = r1y(0)− y′(0). Differentiating (2.5) yields

y′(t) =
1

r1 − r2

(
Ar1e

r1t +Br2e
r2t +

∫ t

0

(r2er2(t−s) − r1e
r1(t−s))v(s)ds

)
. (2.6)

From (2.3) and (2.5), we obtain

0 = y(0)−
n∑

i=1

kiy(ξi)

=
1

r1 − r2

(
A+B −

n∑
i=1

ki(Aer1ξi +Ber2ξi)

+
∫ ξi

0

(
er2(ξi−s) − er1(ξi−s)

)
v(s)ds

)
;

that is,

(1−
n∑

i=1

kie
r1ξi)A+ (1−

n∑
i=1

kie
r2ξi)B =

∫ ξi

0

(
er2(ξi−s) − er1(ξi−s)

)
v(s)ds. (2.7)

Moreover, (2.6) yields
y′(t)
ect

=
Σ(t)
r1 − r2

where

Σ(t) = Ar1e
(r1−c)t +Br2e

(r2−c)t

+ r2e
(r2−c)t

∫ t

0

e−r2sv(s)ds− r1e
(r1−c)t

∫ t

0

e−r1sv(s)ds.

We claim that

lim
t→∞

e(r2−c)t

∫ t

0

e−r2sv(s)ds = 0. (2.8)

Indeed, if
∫∞
0
e−r2sv(s)ds < ∞, then (2.8) holds. Now assume

∫∞
0
e−r2sv(s)ds =

∞. Since lims→∞ e−csv(s) = 0, L’Hospital’s rule yields

lim
t→∞

e(r2−c)t

∫ t

0

e−r2sv(s)ds = lim
t→∞

∫ t

0
e−r2sv(s)ds
e(c−r2)t

= lim
t→∞

e−r2tv(t)
(c− r2)e(c−r2)t

= lim
t→∞

e−ctv(t)
c− r2

= 0.

From (2.7), (2.8) and the boundary conditions, we find the values

A =
∫ ∞

0

e−r1sv(s)ds,
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B = (1−
n∑

i=1

kie
r1ξ2)−1

{ n∑
i=1

∫ ξi

0

(er2(ξi−s) − er1(ξi−s))v(s)ds

− (1−
n∑

i=1

kie
r1ξi)

∫ ∞

0

e−r1sv(s)ds
}
.

By substitution in (2.5), we obtain

y(t) =
1

r1 − r2

( ∫ ∞

0

er1(t−s)v(s)ds

+
(
1−

n∑
i=1

kie
r2ξi

)−1
n∑

i=1

∫ ξi

0

(er2(t+ξi−s) − er1(ξi−s)+r2t)v(s)ds
)

−
((

1−
n∑

i=1

kie
r2ξi

)−1(1− n∑
i=1

kie
r1ξi

) ∫ ∞

0

er2t−r1sv(s)ds

−
∫ t

0

(er2(t−s) − er1(t−s))v(s)ds
)

:=
1
∆
y1(t),

with

y1(t) =



∫ t

0
er2t(e−r2s − e−r1s)v(s)ds+

∫ ξ1

t

(
(1−

∑n
i=1 kie

r2ξi)er1(t−s)

−er2t(e−r1s −
∑n

i=1 kie
r2(ξi−s))

)
v(s)ds

+
∑n

i=1 ki

∫ ξi

ξ1
(er2(ξi−s) − er1(ξi−s))v(s)ds

+
∫ +∞

ξ1
e−r1s

(
(1−

∑n
i=1 kie

r2ξi)er1t − (1−
∑n

i=1 kie
r1ξi)er2t

)
v(s)ds,

if t ≤ ξ1;

(1−
∑n

i=1 kie
r2ξi)

∫ ξj+1

ξj
er1(t−s)v(s)

−(1−
∑n

i=1 kie
r1ξi)

∫ ξj+1

ξj
e−r1sv(s)ds

+er2t
( ∑n

i=j+1 ki

∫ ξi

0
(er2(ξi−s) − er1(ξi−s))v(s)

)
,

if ξj ≤ t ≤ ξj+1, j = 1, 2, . . . , n− 1;∫ ξn

0
er2t(e−r2s − e−r1s)v(s)ds

+
∫ t

ξn
er2t

(
(1−

∑n
i=1 kie

r2ξi)e−r2s − (1−
∑n

i=1 kie
r1ξi)e−r1s

)
v(s)ds

+
∫ +∞

t
e−r1s

(
(1−

∑n
i=1 kie

r2ξi)er1t − (1−
∑n

i=1 kie
r1ξi)er2t

)
v(s)ds,

if t ≥ ξn

whence the form of the Green’s function G.
(b) Conversely, let y ∈ C1(I) be as defined by (2.4). A direct differentiation of

(2.4) yields

y′(t) =
∫ ∞

0

Gt(t, s)v(s)ds, t ∈ I, (2.9)
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where Gt(t, s) = 1
∆G

1
t (t, s) is the partial derivative of G(t, s) with respect to t and

G1
t (t, s) =



r2e
r2t(e−r2s − e−r1s), if 0 < s ≤ min(t, ξ1) <∞;

r1e
r1(t−s)(1−

∑n
i=1 kie

r2ξi)− r2e
r2t

(
e−r1s −

∑n
i=1 kie

r2(ξi−s)
)
,

if 0 < t ≤ s ≤ ξ1 <∞;

r2e
r2t

(
e−r2s(1−

∑j
i=1 kie

r2ξi)− e−r1s(1−
∑j

i=1 kie
r1ξi)

)
,

if 0 < ξj ≤ s ≤ ξj+1, s ≤ t, j = 1, 2, . . . , n− 1;

e−r1s
(
r1e

r1t(1−
∑n

i=1 kie
r2ξi)− r2e

r2t(1−
∑j

i=1 kie
r1ξi

−
∑n

i=j+1 kie
r2(ξi−s)+r1s)

)
,

if 0 < ξj ≤ s ≤ ξj+1, t ≤ s, j = 1, 2, . . . , n− 1;

r2e
r2t

(
e−r2s(1−

∑n
i=1 kie

r2ξi)− e−r1s(1−
∑n

i=1 kie
r1ξi)

)
,

if 0 < ξn ≤ s ≤ t <∞;

e−r1s
(
r1e

r1t(1−
∑n

i=1 kie
r2ξi)− r2e

r2t(1−
∑n

i=1 kie
r1ξi)

)
,

if 0 < max(ξn, t) ≤ s <∞.

Differentiating again (2.9) yields

y′′(t) = −v(t) + c

∫ ∞

0

Gt(t, s)v(s)ds+ λ

∫ ∞

0

G(t, s)v(s)ds

= −v(t) + cy′(t) + λy(t), t ∈ I.

Hence y ∈ C1(I) and y satisfies (2.3). �

The following two lemmas are crucial; the proofs are lengthy; so we only prove
the second one.

Lemma 2.5. The function G(t, s) given by Lemma 2.4 satisfies

(a) G(t, s) ≥ 0 for all t, s ∈ I
(b) e−µtG(t, s) ≤ e−r1sG(s, s), for all t, s ∈ I and all µ ≥ r1.
(c) G(t, s) ≥ Λ0G(s, s)e−r1s for all t ∈ [γ, δ] and all s ∈ I,

where Λ0 is as defined by (2.1).

Lemma 2.6. Assume that

1−
n∑

i=1

kie
r1ξi > 0,

1−
n∑

i=1

kie
r2(ξi−s)+r1s > 0, 0 < s ≤ ξ1

1−
j∑

i=1

kie
r1ξi −

n∑
i=j+1

kie
r2(ξi−s)+r1s > 0, 0 < ξj ≤ s ≤ ξj+1, 1 ≤ j ≤ n− 1.

(2.10)
Then, we have the estimates

e−µt|Gt(t, s)| ≤ e−r1sG(s), ∀ t, s ∈ I, µ ≥ r1, (2.11)
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where

G(s) =



max
(
|r2|G(s, s), r1

∆

(
2−

∑n
i=1 kie

r2ξi −
∑n

i=1 kie
r2(ξi−s)+r1s

))
,

if s ≤ ξ1;

max
(
|r2|G(s, s), r1

∆

(
2−

∑j
i=1 kie

r1ξi −
∑n

i=j+1 kie
r2(ξi−s)+r1s

−
∑n

i=1 kie
r2ξi

))
,

if ξj ≤ s ≤ ξj+1, 1 ≤ j ≤ n− 1;

max
(
|r2|G(s, s), r1

∆

(
2−

∑n
i=1 kie

r1ξi −
∑n

i=1 kie
r2ξi

))
, if s ≥ ξn.

and
(b) e−θtσ(t)|Gt(t, s)| ≤ e−r1sG(s, s), ∀ t, s ∈ I. (2.12)

Proof. (a) For any s ∈ I, we have

G1(s, s) =


1− e(r2−r1)s, 0 ≤ s ≤ ξ1

1−
∑j

i=1 kie
r2ξi − e(r2−r1)s(1−

∑j
i=1 kie

r1ξi),
if ξj ≤ s ≤ ξj+1, j = 1, 2, . . . , n− 1

1−
∑n

i=1 kie
r2ξi − e(r2−r1)s(1−

∑n
i=1 kie

r1ξi), s ≥ ξn.

We distinguish four cases.
(1) If either 0 < s ≤ min(t, ξ1) < ∞ or 0 < ξj ≤ s ≤ ξj+1, s ≤ t, j =

1, 2, . . . , n− 1 or ξn ≤ s ≤ t, then for any µ ≥ r1,

e−µt|Gt(t, s)| = e−µt|r2G(t, s)| ≤ |r2|e−r1sG(s, s), ∀µ ≥ r1.

(2) If 0 < t < s ≤ ξ1 <∞, then for any µ ≥ r1,

e−µt|G1
t (t, s)|

=
∣∣∣r1e−µter1(t−s)

(
1−

n∑
i=1

kie
r2ξi

)
− r2e

(r2−µ)t
(
e−r1s −

n∑
i=1

kie
r2(ξi−s)

)∣∣∣
≤ r1e

−r1s
(
e(r1−µ)t

(
1−

n∑
i=1

kie
r2ξi

)
+
|r2|
r1
e(r2−µ)t

(
1−

n∑
i=1

kie
r2(ξi−s)+r1s

))
≤ r1e

−r1s
((

1−
n∑

i=1

kie
r2ξi

)
+

(
1−

n∑
i=1

kie
r2(ξi−s)+r1s

))
= r1e

−r1s
(
2−

n∑
i=1

kie
r2ξi −

n∑
i=1

kie
r2(ξi−s)+r1s

)
.

(3) If 0 < ξj ≤ s ≤ ξj+1, t ≤ s, j = 1, 2, . . . , n− 1, then for any µ ≥ r1,

e−µt|G1
t (t, s)|

= e−r1s
∣∣∣r1e(r1−µ)t

(
1−

n∑
i=1

kie
r2ξi

)
− r2e

(r2−µ)t
(
1−

j∑
i=1

kie
r1ξi −

n∑
i=j+1

kie
r2(ξi−s)+r1s

)∣∣∣



10 S. DJEBALI, K. MEBARKI EJDE-2011/32

≤ r1e
−r1s

(
e(r1−µ)t

(
1−

n∑
i=1

kie
r2ξi

)
+
|r2|
r1
e(r2−µ)t

(
1−

j∑
i=1

kie
r1ξi

−
n∑

i=j+1

kie
r2(ξi−s)+r1s

))

≤ r1e
−r1s

((
1−

n∑
i=1

kie
r2ξi

)
+

(
1−

j∑
i=1

kie
r1ξi −

n∑
i=j+1

kie
r2(ξi−s)+r1s

))

= r1e
−r1s

(
2−

j∑
i=1

kie
r1ξi −

n∑
i=j+1

kie
r2(ξi−s)+r1s −

n∑
i=1

kie
r2ξi

)
.

(4) If 0 < max(ξn, t) ≤ s <∞, then for any µ ≥ r1,

e−µt|G1
t (t, s)|

= e−r1s
∣∣∣r1e(r1−µ)t

(
1−

n∑
i=1

kie
r2ξi

)
− r2e

(r2−µ)t
(
1−

n∑
i=1

kie
r1ξi

)∣∣∣
≤ r1e

−r1s
(
e(r1−µ)t

(
1−

n∑
i=1

kie
r2ξi

)
+
|r2|
r1
e(r2−µ)t

(
1−

n∑
i=1

kie
r1ξi

))
≤ r1e

−r1s
(
1−

n∑
i=1

kie
r2ξi + (1−

n∑
i=1

kie
r1ξi)

)
= r1e

−r1s
(
2−

n∑
i=1

kie
r1ξi −

n∑
i=1

kie
r2ξi

)
.

Hence
e−µt|Gt(t, s)| ≤ e−r1sG(s), ∀t, s ∈ I; ∀µ ≥ r1.

(b) For any s ∈ I, we have the discussion
(1) If either 0 < s ≤ min(t, ξ1) < ∞ or 0 < ξj ≤ s ≤ ξj+1, s ≤ t, j =

1, 2, . . . , n− 1 or ξn ≤ s ≤ t, for any µ ≥ r1, then we have

e−µt|Gt(t, s)| = e−µt|r2G(t, s)| ≤ |r2|e−r1sG(s, s).

Hence
e−r1sG(s, s)
e−µt|r2G(t, s)|

≥ 1
|r2|

, ∀µ ≥ r1.

(2) If 0 < t < s ≤ ξ1 <∞, then for any µ ≥ r1,

e−r1sG(s, s)
e−µt|Gt(t, s)|

=
e−r1s

(
1− e(r2−r1)s

)∣∣r1e−µter1(t−s)
(
1−

∑n
i=1 kier2ξi

)
− r2e(r2−µ)t

(
e−r1s −

∑n
i=1 kier2(ξi−s)

)∣∣
≥ e−r1s(1− e(r2−r1)s)

r1e−r1s
(
e(r1−µ)t

(
1−

∑n
i=1 kier2ξi

)
+ |r2|

r1
e(r2−µ)t

(
1−

∑n
i=1 kier2(ξi−s)+r1s

))
≥ 1− e(r2−r1)t

2r1(1−
∑n

i=1 kier2ξi)e(r1−µ)t
.
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(3) If 0 < ξj ≤ s ≤ ξj+1, t ≤ s, j = 1, 2, . . . , n− 1, then for any µ ≥ r1,

e−r1sG(s, s)
e−µt|Gt(t, s)|

=
e−r1s

(
1−

∑j
i=1 kie

r2ξi − e(r2−r1)s
(
1−

∑j
i=1 kie

r1ξi
))

e−r1s

×
∣∣∣r1e(r1−µ)t

(
1−

n∑
i=1

kie
r2ξi

)
− r2e

(r2−µ)t
(
1−

j∑
i=1

kie
r1ξi

−
n∑

i=j+1

kie
r2(ξi−s)+r1s

)∣∣∣−1

≥

(
1−

∑j
i=1 kie

r2ξi − e(r2−r1)s
(
1−

∑j
i=1 kie

r1ξi
))

r1

×
(
e(r1−µ)t

(
1−

n∑
i=1

kie
r2ξi

)
+
|r2|
r1
e(r2−µ)t

(
1−

j∑
i=1

kie
r1ξi

−
n∑

i=j+1

kie
r2(ξi−s)+r1s

))−1

≥
1−

∑j
i=1 kie

r2ξi − e(r2−r1)t
(
1−

∑j
i=1 kie

r1ξi
)

2r1
(
1−

∑n
i=1 kier2ξi

)
e(r1−µ)t

.

(4) If 0 < max(ξn, t) ≤ s <∞, then for any µ ≥ r1,

e−r1sG(s, s)
e−µt|Gt(t, s)|

=
e−r1s

(
1−

∑n
i=1 kie

r2ξi − e(r2−r1)s
(
1−

∑n
i=1 kie

r1ξi

))
e−r1s

∣∣∣r1e(r1−µ)t
(
1−

∑n
i=1 kier2ξi

)
− r2e(r2−µ)t

(
1−

∑n
i=1 kier1ξi

)∣∣∣
≥

1−
∑n

i=1 kie
r2ξi − e(r2−r1)s

(
1−

∑n
i=1 kie

r1ξi

)
r1

(
e(r1−µ)t

(
1−

∑n
i=1 kier2ξi

)
+ |r2|

r1
e(r2−µ)t

(
1−

∑n
i=1 kier1ξi

))
≥

1−
∑n

i=1 kie
r2ξi − e(r2−r1)t

(
1−

∑n
i=1 kie

r1ξi

)
2r1

(
1−

∑n
i=1 kier2ξi

)
e(r1−µ)t

.

Hence
e−µtσ(t)|Gt(t, s)| ≤ e−r1sG(s, s), ∀ t, s ∈ I, ∀µ ≥ r1.

�

2.2. A compact fixed point operator. On the space X, define the mapping T
by

Ty(t) =
∫ ∞

0

G(t, s)Φ(s)f(s, y(s), e−csy′(s))ds, t ∈ I. (2.13)

Remark 2.7. Let y ∈ X be a fixed point of T in X. Then it is a solution of
problem (1.1) provided the integral in (2.13) converges.

Recall that an operator is called completely continuous if it is continuous and
maps bounded sets into relatively compact sets.
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Lemma 2.8 ([9, p. 62]). Let M ⊆ Cl(R+,R). Then M is relatively compact in
Cl(R+,R) if the following conditions hold:

(a) M is uniformly bounded in Cl(R+,R);
(b) Functions belonging to M are almost equicontinuous on R+; i.e., equicon-

tinuous on every compact interval of R+.
(c) The functions from M are equiconvergent; that is, given ε > 0, there cor-

responds T (ε) > 0 such that |x(t)− l| < ε for any t ≥ T (ε) and x ∈M ,

From the above lemma we easily deduce the following result (see e.g., [15]).

Lemma 2.9. Let M ⊆ C1
∞(R+,R). Then M is relatively compact in C1

∞(R+,R)
if the following conditions hold:

(a) M is uniformly bounded in C1
∞(R+,R).

(b) The functions belonging to the sets {y : y(t) = x(t)/eθt, x ∈ M} and {z :
z(t) = x′(t)/eθt, x ∈M} are locally equicontinuous on R+.

(c) The functions from the sets {y : y(t) = x(t)/eθt, x ∈ M} and {z|z(t) =
x′(t)/eθt, x ∈M} are equiconvergent at +∞.

2.3. General assumptions. Regarding the growth of the function F (t, u, v) =
f(t, ueθt, veθt), we first enunciate the main assumptions to be considered in this
paper:

(H1) F : I2 × R∗ → R+ is a continuous function and there exist functions
g, w ∈ C(I, I) and h, k ∈ C(R∗, I) such that

0 ≤ F (t, u, v) ≤ (g(u) + w(u))(h(v) + k(v)), ∀ (t, u, v) ∈ I2 × R∗

where g, h are non-increasing functions, w/g, k/h are nondecreasing func-
tions and for all positive number R

Π(R) =
∫ +∞

0

e−r1s max{G(s, s), G(s)}Φ(s)g(e−θsΓR)h(−e−csR)ds <∞.

(H2) There exits R0 > 0 such that(
1 +

w(R0)
g(R0)

)(
1 +

k(R0)
h(R0)

)
Π(R0) < R0. (2.14)

3. Properties of the operator T

In the subsequent two lemmas, we study the properties of the operator T includ-
ing its compactness when the nonlinearity f is assumed to have no singularities.

Lemma 3.1. Under Assumptions (H1), (H2), the operator T maps P into itself,
where the cone P is as defined by (2.2).

Proof. Claim 1. T (P) ⊂ X. Indeed, from Assumptions (H1) and (H2) and with
Lemma 2.5(a), (b) and Lemma 2.6(a) with µ = θ, we obtain, for any y ∈ P, and
t ∈ R+ the following estimates:

|Ty(t)|e−θt =
∫ +∞

0

e−θtG(t, s)Φ(s)f(s, y(s), e−csy′(s))ds

=
∫ +∞

0

e−θtG(t, s)Φ(s)f
(
s,
eθs

eθs
y(s),

eθs

eθs
e−csy′(s)

)
ds

≤
∫ +∞

0

e−r1sG(s, s)Φ(s)F (s, e−θsy(s), e−(c+θ)sy′(s))ds
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≤
∫ +∞

0

e−r1sG(s, s)Φ(s)
(
g(e−θsy(s)) + w(e−θsy(s))

)
×

(
h(e−(c+θ)sy′(s)) + k(e−(c+θ)sy′(s))

)
ds

=
∫ +∞

0

e−r1sG(s, s)Φ(s)
(
1 +

w(e−θsy(s))
g(e−θsy(s))

)
×

(
1 +

k(e−(c+θ)sy′(s))
h(e−(c+θ)sy′(s))

)
g(e−θsy(s))h(e−(c+θ)sy′(s))ds

≤
(
1 +

w(‖y‖θ)
g(‖y‖θ)

)(
1 +

k(‖y‖θ)
h(‖y‖θ)

)
Π(‖y‖θ) <∞,

and

|(Ty)′(t)|e−θt =
∫ +∞

0

e−θtGt(t, s)Φ(s)f(s, y(s), e−csy′(s))ds

≤
∫ +∞

0

e−r1sG(s)Φ(s)
(
g(e−θsy(s)) + w(e−θsy(s))

)
×

(
h(e−(c+θ)sy′(s)) + k(e−(c+θ)sy′(s))

)
ds

≤
(
1 +

w(‖y‖θ)
g(‖y‖θ)

)(
1 +

k(‖y‖θ)
h(‖y‖θ)

)
Π(‖y‖θ) <∞.

Claim 2. T (P) ⊂ P. Let y ∈ P. Clearly, Ty(t) ≥ 0 for all t ∈ I. Moreover, by
Lemma 2.5(c) and Lemma 2.6(b), for t ∈ [γ, δ], we have

Ty(t) =
∫ +∞

0

G(t, s)Φ(s)f(s, y(s), e−csy′(s))ds,

≥
∫ ∞

0

min
t∈[γ,δ]

G(t, s)Φ(s)f(s, y(s), e−csy′(s))ds

≥
∫ ∞

0

e−r1sΛ0G(s, s)Φ(s)f(s, y(s), e−csy′(s))ds

≥
∫ ∞

0

Λ0σ(τ)e−θτGt(τ, s)Φ(s)f(s, y(s), e−csy′(s))ds.

Passing to the supremum over τ ∈ R+, we obtain

Ty(t) ≥ Λ0 sup
τ∈R+

(
σ(τ)

(Ty)′(τ)
eθτ

)
= Λ0 sup

τ∈R+
σ(τ) sup

τ∈R+

(Ty)′(τ)
eθτ

≥ Λ0 sup
τ∈[γ,δ]

σ(τ) sup
τ∈R+

(Ty)′(τ)
eθτ

.

Hence
Ty(t) ≥ Λ‖Ty‖2, ∀ t ∈ [γ, δ].

Finally, by the property of the Green’s function

Ty(0) =
n∑

i=1

kiTy(ξi).

�
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Lemma 3.2. Under Assumptions (H1), (H2), the mapping T : P → P is completely
continuous.

Proof. Claim 1. T : P → P is continuous. Let a sequence {yn}n≥1 ⊆ P and
y0 ∈ P with limn→+∞ yn → y0 in P. Then, there exists an M > 0 such that
max{‖yn‖θ, ‖y0‖θ} ≤ M for all n ∈ {1, 2, . . . }. Thus, arguing as in Lemma 3.1,
Claim 1 and using Assumptions (H1) and (H2), we arrive at the estimates∫ +∞

0

e−θtG(t, s)Φ(s)f(s, yn(s), e−csy′n(s))ds

≤
(
1 +

w(M)
g(M)

)(
1 +

k(M)
h(M)

)
Π(‖yn‖θ) <∞

and ∫ +∞

0

e−θt|Gt(t, s)Φ(s)|f(s, yn(s), e−csy′n(s))ds

≤
(
1 +

w(M)
g(M)

)(
1 +

k(M)
h(M)

)
Π(‖yn‖θ) <∞.

By continuity of f , we obtain

lim
n→+∞

f(t, yn(t), e−cty′n(t)) = f(t, y0(t), e−cty′0(t)), t ∈ I.

Then the Lebesgue Dominated Convergence Theorem implies

sup
t∈R+

{|Tyn(t)− Ty0(t)|e−θt}

= sup
t∈R+

∣∣∣ ∫ ∞

0

e−θtG(t, s)Φ(s)
(
f(s, yn(s), e−csy′n(s))− f(s, y0(s), e−csy′0(s)

)
ds

∣∣∣
≤ sup

t∈R+

∫ ∞

0

G(s, s)Φ(s)e−r1s
∣∣f(s, yn(s), e−csy′n(s))− f(s, y0(s), e−csy′0(s))

∣∣ ds
→ 0, as n→ +∞

and

sup
t∈R+

{|(Tyn)′(t)− (Ty0)′(t)|e−θt}

= sup
t∈R+

∣∣∣ ∫ ∞

0

e−θtGt(t, s)Φ(s)
(
f(s, yn(s), e−csy′n(s))− f(s, y0(s), e−csy′0(s)

)
ds

∣∣∣
≤ sup

t∈R+

∫ ∞

0

G(s)Φ(s)e−r1s
∣∣f(s, yn(s), e−csy′n(s))− f(s, y0(s), e−csy′0(s))

∣∣ ds
→ 0, as n→ +∞.

As a result
‖Tyn − Ty0‖θ → 0, n→ +∞.

Claim 2. Let Ω ⊂ X be a bounded subset, say Ω = {y ∈ X : ‖y‖θ ≤ r}. We
prove that T (Ω ∩ P) is relatively compact.

(a) For some y ∈ Ω ∩ P, we have

‖Ty‖θ ≤
(
1 +

w(r)
g(r)

)(
1 +

k(r)
h(r)

)
Π(‖y‖θ),

yielding that T (Ω ∩ P) is uniformly bounded.
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(b) T (Ω ∩ P) is locally equicontinuous on I. The functions in {Ty(t)/eθt, y ∈
Ω∩P} and the functions belonging to {(Ty)′(t)/eθt, y ∈ Ω∩P} are locally equicon-
tinuous on I. Indeed, G(t, s) is continuously differentiable in t on [0,∞) except for
t = s; so the Lebesgue dominated convergence theorem yields

|Ty(t1)− Ty(t2)|e−θt ≤
∫ ∞

0

e−θt|G(t1, s)−G(t2, s)|Φ(s)f(s, y(s), e−csy′(s))ds

→ 0, as t1 → t2,

as well as

|(Ty)′(t1)− (Ty)′(t2)|e−θt

≤
∫ ∞

0

e−θt|Gt(t1, s)−Gt(t2, s)|Φ(s)f(s, y(s), e−csy′(s))ds

→ 0, as t1 → t2,

(c) T (Ω∩P) is locally equiconvergent at +∞. Let y ∈ Ω∩P. From the expression
of the Green’s function G in Lemmas 2.5, 2.6, we infer that

lim
t→+∞

G(t, s)
eθt

= 0, lim
t→+∞

Gt(t, s)
eθt

= 0, s ∈ [0,+∞). (3.1)

With the estimates in Lemma 3.1, Claim 1 and the Lebesgue dominated convergence
theorem, we finally obtain

lim
t→+∞

∣∣e−θtTy(t)− lim
s→+∞

e−θsTy(s)
∣∣

= lim
t→+∞

∣∣∣ ∫ ∞

0

e−θtG(t, s)Φ(s)f(s, y(s), e−csy′(s))ds
∣∣∣

≤
∫ ∞

0

lim
t→+∞

|e−θtG(t, s)Φ(s)f(s, y(s), e−csy′(s))ds| = 0

and

lim
t→+∞

∣∣e−θt(Ty)′(t)− lim
t→+∞

e−θs(Ty)′(s)
∣∣

= lim
t→+∞

∣∣∣ ∫ ∞

0

e−θtGt(t, s)Φ(s)f(s, y(s), e−csy′(s))ds
∣∣∣ = 0.

By Lemma 2.9, T (Ω ∩ P ) is relatively compact. �

4. Main existence results

4.1. Single solution. The following Lemmas are needed in this section. The
proofs and more details on the index fixed point theory in cones can be found
in [1, 10, 22, 24, 40].

Lemma 4.1. Let Ω be a bounded open set in a real Banach space E,P be a cone
of E, θ ∈ Ω and A : Ω ∩ P → P be a completely continuous operator. Assume that

Ax 6= λx, ∀x ∈ ∂Ω ∩ P, λ ≥ 1.

Then i(A,Ω ∩ P,P) = 1.

Lemma 4.2. Let Ω be a bounded open set in a real Banach space E,P be a cone
of E, θ ∈ Ω and A : Ω ∩ P → P be a completely continuous operator. Assume that

Ax 6≤ x, ∀x ∈ ∂Ω ∩ P.
Then i(A,Ω ∩ P,P) = 0.
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We are now in position to prove our first existence result. Let

` :=
∫ δ

γ

e−r1sG(s, s)Φ(s)ds.

Theorem 4.3. Assume (H1), (H2) hold together with
(H3) f(t, y, z) ≥ ϕ(t, y) for all t ∈ [γ, δ] and all (y, z) ∈ (0,+∞) × R∗, where

ϕ ∈ C([γ, δ]× (0,+∞)) satisfies

lim inf
y→0

min
t∈[γ,δ]

ϕ(t, y)
y

>
1

Λ0`
.

Then problem (1.1) has at least one positive solution y such that

‖y‖θ ≤ R0, y(t) ≥ Γ‖y‖θ, ∀ t ∈ [γ, δ].

Proof. For each n ∈ {1, 2, . . . }, define a sequence of functions by

fn(t, y, z) = f
(
t,max{eθt/n, y(t)},max{eθt/n, z(t)}

)
. (4.1)

Then, for y ∈ P, define a sequence of operators by

Tny(t) =
∫ +∞

0

G(t, s)Φ(s)fn(s, y(s), e−csy′(s))ds, t ∈ I. (4.2)

Lemma 3.2 guarantees that Tn : P → P is a completely continuous operator. By
the inequality of (H3), there exist an r > 0 and ε > 0 such that

ϕ(t, y) ≥
( 1

Λ0`
+ ε

)
y, for each y ∈ [0, r] and t ∈ [γ, δ]. (4.3)

Let R0 be as defined by Assumption (H2) and R̃ = min(R0/2, r/eθδ) and consider
the open sets

Ω1 := {y ∈ X : ‖y‖θ < R0}, Ω2 := {y ∈ X : ‖y‖θ < R̃}.

Claim 1. Tny 6= λy for any y ∈ ∂Ω1 ∩ P, λ ≥ 1 and n ≥ n0 > 1
R0

. Let
y ∈ ∂Ω1 ∩P. By Assumptions (H1) and (H2), we obtain successively the following
estimates

e−θt|Tny(t)|

=
∫ +∞

0

e−θtG(t, s)Φ(s)fn(s, y(s), e−csy′(s))ds

=
∫ +∞

0

e−θtG(t, s)Φ(s)f
(
s,max{eθs/n, y(s)},max{eθs/n, e−csy′(s)}

)
ds

=
∫ +∞

0

e−θtG(t, s)Φ(s)F (s,max{1/n, e−θsy(s)},max{1/n, e−(c+θ)sy′(s)})ds

≤
∫ +∞

0

e−r1sG(s, s)Φ(s)
(
g(max{1/n, e−θsy(s)}) + w(max{1/n, e−θsy(s)})

)
×

(
h(max{1/n, e−(c+θ)sy′(s)}) + k(max{1/n, e−(c+θ)sy′(s)})

)
ds

=
∫ +∞

0

(
1 +

w(max{1/n, e−θsy(s)})
g(max{1/n, e−θsy(s)})

) (
1 +

k(max{1/n, e−(c+θ)sy′(s)})
h(max{1/n, e−(c+θ)sy′(s)})

)
× e−r1s max{G(s, s), G(s)}Φ(s)g(e−θsy(s))h(e−(c+θ)sy′(s))ds
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≤
(
1 +

w(max{1/n, ‖y‖θ})
g(max{1/n, ‖y‖θ})

)(
1 +

k(max{1/n, ‖y‖θ})
h(max{1/n, ‖y‖θ})

)
×

∫ +∞

0

e−r1s max{G(s, s), G(s)}Φ(s)g(e−θsΓ‖y‖θ)h(−e−cs‖y‖θ)ds

≤
(
1 +

w(R0)
g(R0)

)(
1 +

k(R0)
h(R0)

)
Π(R0) < R0

and

e−θt|(Tny)′(t)|

=
∫ +∞

0

e−θtGt(t, s)Φ(s)F (s,max{1/n, e−θsy(s)},max{1/n, e−(c+θ)sy′(s)})ds

≤
∫ +∞

0

e−r1sG(s)Φ(s)
(
g(max{1/n, e−θsy(s)}) + w(max{1/n, e−θsy(s)})

)
×

(
h(max{1/n, e−(c+θ)sy′(s)}) + k(max{1/n, e−(c+θ)sy′(s)})

)
ds

=
∫ +∞

0

(
1 +

w(max{1/n, e−θsy(s)})
g(max{1/n, e−θsy(s)})

)(
1 +

k(max{1/n, e−(c+θ)sy′(s)})
h(max{1/n, e−(c+θ)sy′(s)})

)
× e−r1s max{G(s, s), G(s)}Φ(s)g(e−θsy(s))h(e−(c+θ)sy′(s))ds

≤
(
1 +

w(max{1/n, ‖y‖θ})
g(max{1/n, ‖y‖θ})

)(
1 +

k(max{1/n, ‖y‖θ})
h(max{1/n, ‖y‖θ})

)
Π(‖y‖θ)

≤
(
1 +

w(R0)
g(R0)

)(
1 +

k(R0)
h(R0)

)
Π(R0) < R0.

Passing to the supremum over t, we infer that

‖Tny‖θ < R0 = ‖y‖θ, ∀ y ∈ ∂Ω1 ∩ P. (4.4)

As a consequence, we may conclude that

Tny 6= λy, ∀ y ∈ ∂Ω1 ∩ P, ∀λ ≥ 1, n ≥ n0. (4.5)

Otherwise, for some n1 ≥ n0, there would exist y1 ∈ ∂Ω1 ∩P and λ1 ≥ 1 such that
Tn1y1 = λ1y1. Thus

‖Tn1y1‖θ = λ1‖y1‖θ ≥ ‖y1‖θ = R0,

contradicting (4.4). This implies that (4.5) holds. Therefore, Lemma 4.1 and (4.5)
imply

i(Tn,Ω1 ∩ P,P) = 1, ∀n ∈ {n0, n0 + 1, . . . }. (4.6)
Claim 2. Tny 6≤ y for any y ∈ ∂Ω2 ∩ P. Otherwise, let y2 ∈ ∂Ω2 ∩ P and

n2 ≥ n0 with
Tn2y2 ≤ y2. (4.7)

From (4.3) and the fact that |y2(t)|
eθt ≤ ‖y2‖θ = R̃ ≤ r

eθδ , we infer that y2(t) ≤ r, for
each t ∈ [γ, δ]. Then

ϕ(t, y2(t)) ≥
( 1

Λ0`
+ ε

)
y2(t), ∀ t ∈ [γ, δ]. (4.8)

By (4.7), (4.8) and Lemma 2.5, the following estimates are straightforward:

y2(t) ≥
∫ +∞

0

e−θtG(t, s)Φ(s)f
(
s,max{eθs/n2, y2(s)},max{eθs/n2, e

−csy′2(s)}
)
ds
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≥ Λ0

∫ δ

γ

e−r1sG(s, s)Φ(s)ϕ
(
s,max{eθs/n2, y2(s)}

)
ds

≥ Λ0

∫ δ

γ

e−r1sG(s, s)Φ(s)
( 1

Λ0`
+ ε

)
max{eθs/n2, y2(s)}ds

≥ Λ0

(
1

Λ0`
+ ε

)
min

t∈[γ,δ]
y2(t)

∫ δ

γ

e−r1sG(s, s)Φ(s)ds

= Λ0`

(
1

Λ0`
+ ε

)
min

t∈[γ,δ]
y2(t)

> min
t∈[γ,δ]

y2(t), ∀ t ∈ [γ, δ],

contradicting the continuity of the function y2 on the compact interval [γ, δ]; this
implies that Claim 2 holds. Then, Lemma 4.2 yields

i(Tn,Ω1 ∩ P,P) = 0, ∀n ∈ {1, 2, . . . }. (4.9)

Consequently, from (4.6), (4.9) and the fact that Ω1 ⊂ Ω2, we find

i(Tn, (Ω1 \ Ω2) ∩ P,P) = −1, ∀n ∈ {n0, n0 + 1, . . . }. (4.10)

This equality and the solution property of the fixed point index imply that, for each
n ≥ n0, there exists some yn ∈ (Ω1 \ Ω2) ∩ P such that Tnyn = yn with 0 < R̃ <
‖yn‖θ < R0. Consider the sequence of functions {yn}n≥n0 . Clearly, the functions
belonging to {yn(t)

eθt , n ≥ n0} and the functions belonging to {y′n(t)
eθt , n ≥ n0} are

uniformly bounded on R+. Since R̃ < ‖yn‖θ < R0, (H1) and (H2) imply that, for
each n ≥ n0,∫ +∞

0

e−θtG(t, s)Φ(s)f
(
s,max{eθs/n, yn(s)},max{eθs/n, e−csy′n(s)}

)
ds

≤
∫ +∞

0

e−r1sG(s, s)Φ(s)
(
g(max{1/n, e−θsyn(s)}) + w(max{1/n, e−θsyn(s)})

)
×

(
h(max{1/n, e−(c+θ)sy′n(s)}) + k(max{1/n, e−(c+θ)sy′n(s)})

)
ds

=
∫ +∞

0

(
1 +

w(max{1/n, e−θsyn(s)})
g(max{1/n, e−θsyn(s)})

)(
1 +

k(max{1/n, e−(c+θ)sy′n(s)})
h(max{1/n, e−(c+θ)sy′n(s)})

)
× e−r1s max{G(s, s), G(s)}Φ(s)g(e−θsyn(s))h(e−(c+θ)sy′n(s))ds

≤
(
1 +

w(max{1/n, ‖yn‖θ})
g(max{1/n, ‖yn‖θ})

)(
1 +

k(max{1/n, ‖yn‖θ})
h(max{1/n, ‖yn‖θ})

)
Π(‖yn‖θ)

≤
(
1 +

k(R0)
h(R0)

)(
1 +

k(R0)
h(R0)

)
×

∫ +∞

0

e−r1s max{G(s, s), G(s)}Φ(s)g(e−θsΓR̃)h(−e−csR0)ds

and ∫ +∞

0

e−θtGt(t, s)Φ(s)f
(
s,max{eθs/n, yn(s)},max{eθs/n, e−csy′n(s)}

)
ds

≤
(
1 +

w(max{1/n, ‖yn‖θ})
g(max{1/n, ‖yn‖θ})

)(
1 +

k(max{1/n, ‖yn‖θ})
h(max{1/n, ‖yn‖θ})

)
Π(‖yn‖θ)
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≤
(
1 +

w(R0)
g(R0)

)(
1 +

k(R0)
h(R0)

)
×

∫ +∞

0

e−r1s max{G(s, s), G(s)}Φ(s)g(e−θsΓR̃)h(−e−csR0)ds.

Then, for some a > 0 and t1, t2 ∈ [0, a], we have for n ∈ {n0, n0 + 1, . . . },

|yn(t1)− yn(t2)|e−θt ≤
∫ ∞

0

e−θt|G(t1, s)−G(t2, s)|Φ(s)

× f
(
s,max{eθs/n, yn(s)},max{eθs/n, e−csy′n(s)}

)
ds

and

|y′n(t1)− y′n(t2)|e−θt ≤
∫ ∞

0

e−θt|Gt(t1, s)−Gt(t2, s)|Φ(s)

× f
(
s,max{eθs/n, yn(s)},max{e(θ−c)s/n, e−csy′n(s)}

)
ds.

Consequently, the functions belonging to {yn(t)
eθt , n ≥ n0} and the functions belong-

ing to {y′n(t)
eθt , n ≥ n0} are locally equicontinuous on R+. Similarly, we have

lim
t→+∞

sup
n≥n0

∣∣e−θtyn(t)− lim
s→+∞

e−θsyn(s)
∣∣

= lim
t→+∞

sup
n≥n0

∣∣∣ ∫ ∞

0

e−θtG(t, s)Φ(s)fn(s, yn(s), e−csy′n(s))ds
∣∣∣

≤
∫ ∞

0

lim
t→+∞

∣∣e−θtG(t, s)Φ(s)fn(s, yn(s), e−csy′n(s))
∣∣ ds = 0

and

lim
t→+∞

sup
n≥n0

∣∣e−θty′n(t)− lim
s→+∞

e−θsy′n(s)
∣∣

≤ lim
t→+∞

∫ ∞

0

e−θt
∣∣Gt(t, s)Φ(s)f(s, yn(s), e−csy′n(s))

∣∣ ds = 0.

Thus, the functions functions belonging to {yn(t)
eθt , n ≥ n0} and the functions

belonging to {y′n(t)
eθt , n ≥ n0} are locally equiconvergent on +∞. Consequently,

Lemma 2.9 guarantees that there is a convergent subsequence {ynj}j≥1 of {yn}n≥n0

such that limj→+∞ ynj = y strongly X. Moreover the continuity of f yields

lim
j→+∞

fnj (t, ynj , y
′
nj

) = lim
j→+∞

f
(
t,max{eθt/nj , ynj},max{eθt/nj , e

−cty′nj
}
)

= f(t, y(t), e−cty′(t)).

Then the dominated convergence theorem guarantees that

y(t) = lim
j→+∞

ynj (t)

= lim
j→+∞

∫ +∞

0

G(t, s)Φ(s)f
(
t,max{eθt/nj , ynj},max{eθt/nj , e

−cty′nj
}
)

=
∫ +∞

0

G(t, s)Φ(s)f(s, y(s), e−csy′(s))ds, t ∈ I.
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Finally, R̃ < |ynj‖θ < R0, for all j ≥ 1 implies R̃ ≤ ‖y‖θ ≤ R0. Hence

0 < R̃ ≤ ‖y‖θ ≤ R0, y(t) ≥ Γ‖y‖θ, ∀ t ∈ [γ, δ],

as claimed. �

The following result can be proved in an analogous manner. The proof is omitted.

Theorem 4.4. Assume (H1)–(H2) hold and
(H3’) f(t, y, z) ≥ ϕ′(t, y) for all t ∈ [γ, δ] and all (y, z) ∈ (0,+∞) × R∗, where

ϕ′ ∈ C([γ, δ]× (0,+∞)) satisfies

lim inf
y→+∞

min
t∈[γ,δ]

ϕ′(t, y)
y

>
1

Λ0`
.

Then problem (1.1) has at least one nontrivial positive solution.

4.2. Twin solutions. Let P be a cone of a real Banach space E. Let 0 < c <
d be constants and β, α two continuous functionals on P convex and concave,
respectively. Define the convex sets:

Pd = {y ∈ P : ‖y‖ < d},
P (β, d) = {x ∈ P : β(x) ≤ d},

P (β, α, c, d) = {x ∈ P : α(x) ≥ c, β(x) ≤ d}.
We will apply the following fixed point theorem to prove the existence of two positive
fixed points for the operator T .

Lemma 4.5 ([25]). Let A : P → P be a completely continuous operator. Let β and
α be continuous convex and concave functionals on P, respectively. Let d and c be
real numbers. Assume that

(i) 0 ∈ {x ∈ P : β(x) < d} and the set {x ∈ P : β(x) < d} is bounded;
(ii) {x ∈ P (β, α, c, d) : β(x) < d} 6= ∅ and β(Ax) < d for all x ∈ P (β, α, c, d);
(iii) β(Ax) < d for all x ∈ P (β, d) with α(Ax) < c;
(iv) i(A,Pr,P) = 0 for sufficiently small positive number r, i(A,PR,P) = 0 for

sufficiently large positive number L.
Then A has at least two fixed points x1, x2 in P such that ‖x1‖ > r with β(x1) < d,
and ‖x2‖ < L with β(x2) > d.

Our main result in this section is as follows.

Theorem 4.6. Assume (H1)–(H2) and
(H4) f(t, y, z) ≥ %(t, y) for all t ∈ [γ, δ] and all (y, z) ∈ (0,+∞)× R∗, where the

function % ∈ C([γ, δ]× (0,+∞)) satisfies

lim inf
y→0

min
t∈[γ,δ]

%(t, y)
y

>
1

Λ0`
, lim inf

y→+∞
min

t∈[γ,δ]

%(t, y)
y

>
1

Λ0`
.

Then, problem (1.1) has at least two positive solutions y1, y2 such that

0 < ‖y1‖θ ≤ R0 ≤ ‖y2‖θ.

Proof. Define a sequence of operators Tn by (4.2) and then consider the nonnega-
tive, continuous concave and convex functionals α, β defined respectively by

α(y) = min
y∈[γ,δ]

y(t)
eθt

, β(y) = ‖y‖θ.
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Lemmas 3.1 and 3.2 guarantee that Tn : P → P is completely continuous. So, we
only have to verify the conditions of Lemma 4.5.

Claim 1. β(y) = ‖y‖θ. For R0 given by the inequality (2.14) in Assumption
(H2), it is clear that 0 ∈ { y ∈ P : β(y) < R0} and the set {y ∈ P : β(y) < R0} is
bounded.

Claim 2. The set {y ∈ P (β, α, R0
2 e

−θδ, R0) : β(y) < R0} is nonempty since it
contains the constant function y0 ≡ R0

2 . Indeed, β(y0) = R0
2 supt∈R+ e−θt < R0

and α(y0) = R0
2 e

−θδ. Let y ∈ P (β, α, R0
2 e

−θδ, R0); then β(y) = ‖y‖θ ≤ R0. As
in the proof of Theorem 4.3, Claim (a), for n ≥ n0 > 1

R0
, we can check that

β(Tny) = ‖Tny‖θ < R0. So the condition (ii) of Lemma 4.5 is satisfied.
Claim 3. Arguing as in Claim 2, we obtain

β(Tny) = ‖Tny‖θ < R0, ∀ y ∈ P (β,R0), ∀n ∈ {n0, n0 + 1, . . . }.

So the condition (iii) of Lemma 4.5 is satisfied.
Claim 4. Since lim infy→0 mint∈[γ,δ]

%(t,y)
y > 1

Λ0` , there exist ε0 and r0 > 0 such
that

%(t, y) ≥
( 1
Λ0`

+ ε0
)
y, ∀y ∈ [0, r0] and ∀ t ∈ [γ, δ].

We choose a sufficiently small r = min(R0/2, r0/eθδ). Proceeding as in the proof
of Theorem 4.3, Claim (b), we can prove that

Tny 6≤ y, for any y ∈ ∂Pr.

According to Lemma 4.2, we infer that

i(Tn, Pr,P) = 0.

Claim 5. Since lim infy→+∞mint∈[γ,δ]
%(t,y)

y > 1
Λ0` , there exist ε1 and σ > 0

such that

%(t, y) ≥
( 1
Λ0`

+ ε1
)
y, for each y ≥ σ and t ∈ [γ, δ]. (4.11)

Choose sufficiently large L = max(2R0,
σ
Γ ). So y ∈ ∂PL implies

y(t) ≥ Γ‖y‖θ ≥ LΓ ≥ σ

Γ
Γ = σ, t ∈ [γ, δ].

Then, using the inequality

%(t, y(t)) ≥
( 1
Λ0`

+ ε
)
y(t), for any t ∈ [γ, δ]

and arguing as in the proof of Theorem 4.3, Claim (b), we can prove that

Tny 6≤ y, for any y ∈ ∂PL.

By Lemma 4.2, we deduce that

i(Tn, PL,P) = 0.

Thus, the condition (vi) of Lemma 4.5 is satisfied. According to this lemma with
c = R0

2 e
−θδ and d = R0, we infer that, for each n ∈ {n0, n0 +1, . . . }, Tn has at least

two positive fixed points yn,1, yn,2 ∈ P such that r < ‖yn,1‖θ < R0 < ‖yn,2‖θ < L.
Now consider the sequence of functions {yn,i}n≥n0 , i = 1, 2. Essentially the same
argument used for {yn}n≥n0 in Theorem 4.3 guarantees that {yn,i}n≥n0 , i = 1, 2
has a convergent subsequence {ynj ,i}j≥1 such that limj→+∞ ynj ,i = yi, i = 1, 2
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for the norm topology of X. Consequently, y1 and y2 are two positive solutions of
problem (1.1) with

r ≤ ‖y1‖θ ≤ R0 ≤ ‖y2‖θ ≤ L.

�

4.3. Triple nonnegative solutions. Let r > a > 0, L > 0 be constants, ψ a
nonnegative continuous concave functional and α, β nonnegative continuous convex
functionals on a cone P of a Banach space (E, ‖ · ‖). Define the convex sets:

P (α, r;β, L) = {x ∈ P : α(x) < r, β(x) < L},
P (α, r;β, L) = {x ∈ P : α(x) ≤ r, β(x) ≤ L} ,

P (α, r;β, L;ψ, a) = {x ∈ P : α(x) < r, β(x) < L, ψ(x) > a} ,
P (α, r;β, L;ψ, a) = {x ∈ P : α(x) ≤ r, β(x) ≤ L, ψ(x) ≥ a} .

The following assumptions about the nonnegative continuous convex functionals
α, β will be considered:

(A1) there exists M > 0 such that ‖x‖ ≤M max{α(x), β(x)}, for all x ∈ P;
(A2) P (α, r;β, L) 6= ∅ for all r > 0, L > 0.

Lemma 4.7 ([4]). Let E be a Banach space P ⊂ E a cone and r2 ≥ d > c >
r1 > 0, L2 ≥ L1 > 0 be constants. Assume that α, β are nonnegative continuous
convex functionals satisfying (A1) and (A2). Let ψ be a nonnegative continuous
concave functional on P such that ψ(x) ≤ α(x) for all x ∈ P (α, r2;β, L2) and let
A : P (α, r2;β, L2) → P (α, r2;β, L2) be a completely continuous operator. Assume

(B1) {x ∈ P (α, d;β, L2;ψ, c) : ψ(x) > c} 6= ∅ and ψ(Ax) > c, for all x in
P (α, d;β, L2;ψ, c);

(B2) α(Ax) < r1, β(Ax) < L1, for all x ∈ P (α, r1;β, L1);
(B3) ψ(Ax) > c for all x ∈ P (α, r2;β, L2;ψ, c) with α(Ax) > d.

Then A has at least three fixed points x1, x2 and x3 in P (α, r2;β, L2) with

x1 ∈ P (α, r1;β, L1),

x2 ∈ {x ∈ P (α, r2;β, L2;ψ, c) : ψ(x) > c},
x3 ∈ P (α, r2;β, L2) \ P (α, r2;β, L2;ψ, c) ∪ P (α, r1;β, L1).

Now we arrive at our final existence result in this paper.

Theorem 4.8. Assume the following assumptions hold:
(H1’) F : I2×R∗ → R+ is a continuous function and there exist functions g, w ∈

C((1,∞), I) and h, k ∈ C(R∗, I) such that

0 ≤ F (t, u, v) ≤ (g(u+ 1) + w(u+ 1))(h(v) + k(v)), ∀ (t, u, v) ∈ I2 × R∗

where g, h are non-increasing functions, w/g and k/h are nondecreasing
functions.

(H2’) For all < > 0,

Π̃(<) =
∫ +∞

0

e−r1s max{G(s, s), G(s)}Φ(s)g(e−θs)h(−e−cs<)ds <∞

and there exists constants R1, R2 with R2 <
Λ0

2eθδR1 such that for i = 1, 2(
1 +

w(Ri + 1 + 1
Γ )

g(Ri + 1 + 1
Γ )

)(
1 +

k(Ri)
h(Ri)

)
Π̃(Ri) < Ri. (4.12)
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(H5) f(t, y, z) ≥ ζ(t, y) for all t ∈ [γ, δ] and all (y, z) ∈ (0,+∞) × R∗, where
ζ ∈ C([γ, δ]× (0,+∞)) satisfies

lim inf
y→0

min
t∈[γ,δ]

ζ(t, y)
y

= +∞.

Then (1.1) has at least three nonnegative solutions (two of which are positive) y1, y2
and y3 in P (α,R1;β,R1) such that for t ∈ [0,∞),

e−θt|y1(t)| ≤ R2, e−θt|y′1(t)| ≤ R2,

e−θt|y2(t)| ≤ R1, e−θt|y′2(t)| ≤ R1,

R2 ≤ e−θt|y3(t)| ≤ R1, R2 ≤ e−θt|y′3(t)| ≤ R1,

and for t ∈ [γ, δ],

|y2(t)| ≥
Λ0

2eθδ
R1, |y3(t)| ≤

Λ0

2eθδ
R1.

Proof. Define an operator sequence by (4.2) and consider the functionals

α(y) =
1
Γ

+ sup
t∈R+

|y(t)|
eθt

, β(y) = sup
t∈R+

|y′(t)|
eθt

, ψ(y) =
1
Γ

+ min
t∈[γ,δ]

|y(t)|
eθt

.

Then α, β are nonnegative continuous convex functionals satisfying (A1) and (A2);
ψ is a nonnegative continuous concave functional with ψ(y) ≤ α(y) for all y ∈ P.
Here P is the cone defined in (2.2). For this, we will apply Theorem 4.4 to verify
the existence of fixed points for the operator Tn. Lemmas 3.1 and 3.2 guarantee
that Tn : P → P, is completely continuous.

Claim 1. Tn : P (α,R1 + 1
Γ ;β,R1) → P (α,R1 + 1

Γ ;β,R1), for n ≥ n0 >
1

R1+
1
Γ
.

Indeed, if y ∈ P (α,R1 + 1
Γ ;β,R1), then α(y) ≤ R1 + 1

Γ and β(y) ≤ R1. Arguing
as in the proof of Theorem 4.3, Claim 1, we obtain, using Assumptions (H1’) and
(H2’), the following estimates valid for t ∈ R+:

1
Γ

+ e−θt|Tny(t)|

=
1
Γ

+
∫ +∞

0

e−θtG(t, s)Φ(s)fn(s, y(s), e−csy′(s))ds

=
1
Γ

+
∫ +∞

0

e−θtG(t, s)Φ(s)f
(
s,max{eθs/n, y(s)},max{eθs/n, e−csy′(s)}

)
ds

≤ 1
Γ

+
∫ +∞

0

e−r1sG(s, s)Φ(s)
(
g(max{1/n, e−θsy(s)}+ 1)

+ w(max{1/n, e−θsy(s)}+ 1
)(
h(max{1/n, e−(c+θ)sy′(s)})

+ k(max{1/n, e−(c+θ)sy′(s)})
)
ds

≤ 1
Γ

+
∫ +∞

0

(
1 +

w(max{1/n, e−θsy(s)}+ 1)
g(max{1/n, e−θsy(s)}+ 1)

)
×

(
1 +

k(max{1/n, e−(c+θ)sy′(s)})
h(max{1/n, e−(c+θ)sy′(s)})

)
× e−r1s max{G(s, s), G(s)}Φ(s)g(e−θsy(s) + 1)h(e−(c+θ)sy′(s))ds.
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Hence

1
Γ

+ e−θt|Tny(t)|

≤ 1
Γ

+
(

1 +
w(max{1/n, α(y)}+ 1)
g(max{1/n, α(y)}+ 1)

) (
1 +

k(max{1/n, β(y)})
h(max{1/n, β(y)})

)
×

∫ +∞

0

e−r1s max{G(s, s), G(s)}Φ(s)g(e−θsΓα(y))h(−e−csβ(y))ds

≤ 1
Γ

+
(
1 +

w
(
R1 + 1 + 1

Γ

)
g

(
R1 + 1 + 1

Γ

) )(
1 +

k(R1)
h(R1)

)
Π̃(R1)

< R1 < R1 +
1
Γ
.

Therefore, α(Tny) ≤ R1 + 1
Γ , and

e−θt|(Tny)′(t)|

=
∫ +∞

0

e−θtGt(t, s)Φ(s)F (s,max{1/n, e−θsy(s)},max{1/n, e−(c+θ)sy′(s)})ds

≤
∫ +∞

0

e−r1sG(s)Φ(s)
(
g(max{eθs/n, y(s)}+ 1) + w(max{1/n, e−θsy(s)}+ 1

)
×

(
h(max{1/n, e−(c+θ)sy′(s)}) + k(max{1/n, e−(c+θ)sy′(s)})

)
ds

≤
∫ +∞

0

(
1 +

w(max{1/n, e−θsy(s)}+ 1)
g(max{1/n, e−θsy(s)}+ 1)

) (
1 +

k(max{1/n, e−(c+θ)sy′(s)})
h(max{1/n, e−(c+θ)sy′(s)})

)
× e−r1s max{G(s, s), G(s)}Φ(s)g(e−θsy(s) + 1)h(e−(c+θ)sy′(s))ds

≤
(
1 +

w
(
R1 + 1 + 1

Γ

)
g

(
R1 + 1 + 1

Γ

) )(
1 +

k(R1)
h(R1)

)
Π̃(R1) < R1.

Consequently, β(Tny) ≤ R1.
Claim 2. Condition (4.12) implies that Tn : P (α,R2 + 1

Γ ;β,R2) → P (α,R2 +
1
Γ ;β,R2) for n ≥ n1 >

1
R2+

1
Γ
. The proof is identical to that in Claim 1. So the

condition (B2) of Lemma 4.7 is satisfied.
Claim 3. The set {y ∈ P (α, R1

2 + 1
Γ ;β,R1;ψ, Λ0

2eθδR1) : ψ(y) > Λ0
2eθδR0)} is

nonempty. Notice that the constant function y0 ≡ R1
2 lies in the set P (α, R1

2 +
1
Γ ;β,R1;ψ, Λ0

2eθδR1) and ψ(y0) > Λ0
2eθδR1. Indeed, α(y0) = R1

2 supt∈[0,∞) e
−θt + 1

Γ ≤
R1
2 + 1

Γ , β(y0) = 0 and ψ(y0) = e−θδ R1
2 > Λ0

2eθδR1 for Λ0 < 1.
Claim 4. We prove that ψ(Tny) > Λ0

2eθδR1, ∀ y ∈ P (α, R1
2 + 1

Γ ;β,R1;ψ, Λ0
2eθδR1).

If y ∈ P (α, R1
2 + 1

Γ ;β,R1;ψ, Λ0
2eθδR1), then α(y) ≤ R1

2 + 1
Γ . Moreover, the condition

(H5) tells us that, if M4 = 2e(θ+r1)δ

Λ0Γ` then there exists some µ > R1
2 e

θδ such that

ζ(t, y) ≥M4y, ∀ y ∈ (0, µ),∀ t ∈ [γ, δ]. (4.13)

We can see that, for any y ∈ P (α, R1
2 ;β,R1;ψ, Λ

2eθδR1) and t ∈ [γ, δ], we have

α(y) ≤ R1

2
+

1
Γ
⇒ y(t) ≤ R1

2
eθδ < µ, ∀ t ∈ [γ, δ].
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With Lemma 2.5 (c) and (4.13), we obtain the estimates:

ψ(Tny) > min
t∈[γ,δ]

∫ +∞

0

e−θtG(t, s)

× Φ(s)f
(
s,max{eθs/n, y(s)},max{eθs/n, e−csy′(s)}

)
ds

≥ Λ0e
−θδ

∫ δ

γ

e−r1sG(s, s)Φ(s)ζ(s,max{eθs/n, y(s)})ds

≥ Λ0e
−θδ

∫ δ

γ

e−r1sG(s, s)Φ(s)M4 max{eθs/n, y(s)}ds

≥ Λ0e
−θδ

∫ δ

γ

e−r1sG(s, s)Φ(s)M4y(s)ds

≥ Λ0M4e
−θδ

∫ δ

γ

e−r1sG(s, s)Φ(s)Γ‖y‖θds

>
1
2
M4Λ0Γ e−(θ+r1)δ‖y‖θ

∫ δ

γ

e−r1sG(s, s)Φ(s)ds

= ‖y‖θ ≥ ψ(y) ≥ Λ0

2eθδ
R1.

Claim 5. ψ(Tny) > Λ0
2eθδR1 for all y ∈ P (α,R1 + 1

Γ ;β,R1;ψ, Λ0
2eθδR1) with

α(Tny) > R1
2 + 1

Γ . Let y ∈ P (α,R1 + 1
Γ ;β,R1;ψ, Λ0

2eθδR1) be such that α(Tny) >
R1
2 + 1

Γ . For any σ ∈ R+, we know by Lemma 2.5(b),(c) that

ψ(Tny) =
1
Γ

+ e−θδ min
t∈[γ,δ]

∫ +∞

0

G(t, s)Φ(s)fn(s, y(s), e−csy′(s))ds

≥ 1
Γ

+ e−θδ

∫ +∞

0

Λ0e
−r1sG(s, s)Φ(s)fn(s, y(s), e−csy′(s))ds

≥ 1
Γ

+ Λ0e
−θδ

∫ +∞

0

e−θσG(σ, s)Φ(s)fn(s, y(s), e−csy′(s))ds

=
1
Γ

+ Λ0e
−θδe−θσ

∫ +∞

0

G(σ, s)Φ(s)fn(s, y(s), e−csy′(s))ds

= Λ0e
−θδ(

1
Γ
eθδ

Λ0
+ e−θσTny(σ))

≥ Λ0e
−θδ(

1
Γ

+ e−θσTny(σ)).

Passing to the supremum over σ, we obtain that y ∈ P (α,R1 + 1
Γ ;β,R1;ψ, Λ0

2eθδR1),

ψ(Tny) ≥ Λ0e
−θδα(Tny) ≥ Λ0e

−θδ(R1 +
1
Γ

) >
Λ0

2eθδ
R1.

To sum up, all of the hypotheses of Lemma 4.7 are met if we take L2 = R1, r2 =
R1 + 1

Γ , L1 = R2, r1 = R2 + 1
Γ d = R1

2 + 1
Γ and c = Λ0

2eθδR1. Hence, for each
n ∈ {n1, n1+1, . . . }, Tn has at least three nonnegative fixed points yn,i ∈ P (α,R1+
1
Γ ;β,R1), i = 1, 2, 3, with

yn,1 ∈ P (α,R2 +
1
Γ

;β,R2),



26 S. DJEBALI, K. MEBARKI EJDE-2011/32

yn,2 ∈ { y ∈ P (α,R1 +
1
Γ

;β,R1;ψ,
Λ0

2eθδ
R1) : ψ(y) >

Λ0

2eθδ
R1},

yn,3 ∈ P (α,R1 +
1
Γ

;β,R1) \ P (α,R1 +
1
Γ

;β,R1;ψ,
Λ0

2eθδ
R1) ∪ P (α,R2;β,R2).

Consider the sequence of functions {yn,i}n≥n1 , i = 1, 2, 3. Arguing as in the proof
as in Theorem 4.3, we can show that {yn,i}n≥n1 , i = 1, 2, 3 has a convergent
subsequence {ynj ,i}j≥1, such that limj→+∞ ynj ,i = yi, i = 1, 2, 3 for the strong
topology of X. Consequently, y1, y2 and y3 are three different nonnegative solutions
of problem (1.1) and satisfy

e−θt|y1(t)| ≤ R2, e−θt|y′1(t)| ≤ R2, t ∈ [0,∞),

e−θt|y2(t)| ≤ R1, e−θt|y′2(t)| ≤ R1, t ∈ [0,∞),

R2 < e−θt|y3(t)| ≤ R1, R2 < e−θt|y′3(t)| ≤ R1, t ∈ [0,∞),

|y2(t)| ≥
Λ0

2eθδ
R1, |y3(t)| ≤

Λ0

2eθδ
R1, t ∈ [γ, δ].

�

5. Examples

Let Φ(t) = e−µt and consider the nonlinearity

f(t, y, z) =
(
g(ye−θt) + w(ye−θt)

) (
h(ze−θt) + k(ze−θt)

)
, (t, y, z) ∈ I2 × R∗

where g(u) = 1/u, w(u) = u2 and the functions h and k are defined by

h(v) =


−v, v ≤ −1;

1√
−v
, −1 ≤ v < 0;

1√
v
, v > 0.

k(v) =


−v, v ≤ −1;

1√
−v
, −1 ≤ v < 0;

1 + v, v ≥ 0.

To check the inequality (2.14) in (H2), take γ = 1/3, δ = 1/2, c = 1/2, λ = 1/3,
η = 2, α = 1/8 and µ = 100; so we can choose θ = 1 and R0 = 5. In addition, we
have

G(s, s) =

{
1
∆

(
1− e(r2−r1)s

)
, if s ≤ η;

1
∆

(
1− αer2η − e(r2−r1)s(1− αer1η)

)
, if s ≥ η

and

G(s) =

{
r1
∆

(
2− αer2η − αer2(η−s)+r1s)

)
, if s ≤ η;

r1
∆ (2− αer2η − αer1η) , if s ≥ η.

Using Matlab 7, we have found Π(5) = 6.9589.10−4, whence(
1 +

w(R0)
g(R0)

)(
1 +

k(R0)
h(R0)

)
Π(R0) = 1.2641.

Therefore Assumptions (H1) and (H2) are met. Also, Assumption (H3) in Theorem
4.3 is clearly satisfied. As a consequence, if

f(t, y, y′e−t/2) =
(
g(ye−t) + w(ye−t)

) (
h(y′e−3t/2) + k(y′e−3t/2)

)
then the singular boundary value problem

−y′′ + 1/2y′ + 1/3y = e−102tf(t, y, y′e−t/2), t > 0

y(0) = αy(η), lim
t→∞

e−t/2y′(t) = 0,
(5.1)
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has at least one nontrivial positive solution. Moreover, we can check that Assump-
tion (H4) in Theorem 4.6 is fulfilled. Therefore, this problem has also two nontrivial
positive solutions.

Let ĝ, ŵ the functions defined by

ĝ(u) =

{
1/(u− 1), u > 1;
1/4, 0 ≤ u < 1.

ŵ(u) = (u− 1)2

The inequality (4.12) in Theorem 4.8 holds true for R1 = 3 and R2 = 4/10. Indeed
Π̃(3) = 0.0020, Π̃(4/10) = 0.0055 and(

1 +
ŵ(R1 + 1 + 1

Γ )
ĝ(R1 + 1 + 1

Γ )

)(
1 +

k(R1)
h(R1)

)
Π̃(R1) = 0.6000 < 3,

(
1 +

ŵ(R2 + 1 + 1
Γ )

ĝ(R2 + 1 + 1
Γ )

)(
1 +

k(R2)
h(R2)

)
Π̃(R2) = 0.1875 < 0.4.

Therefore, the singular boundary value problem

−y′′ + 1/2y′ + 1/3y = e−102tf̂(t, y, y′e−t/2), t > 0

y(0) = αy(η), lim
t→∞

e−t/2y′(t) = 0,
(5.2)

where

f̂(t, y, y′e−t/2) =
(
ĝ(ye−t + 1) + ŵ(ye−t + 1)

) (
h(y′e−3t/2) + k(y′e−3t/2)

)
has in fact three nonnegative solutions, at least two of which are positive.

6. Concluding remarks

In this work, we have considered problem (1.1) when the nonlinearity may not
only possess space-singularities in y and y′ at the origin, but also takes quite general
asymptotic behaviors near positive infinity, including polynomial growth as a special
case. Indeed, we can consider the special cases in which F behaves in the first
argument as g(u) +w(u) with g(u) = u−σ, w(u) = um (σ > 0, m ∈ N∗) and in the
second argument as h(v) + k(v) with h(v) = v−µ, k(v) = vn (µ > 0, n ∈ N∗). In
this respect, the main assumptions are (H1) and (H2).

The existence results obtained in this paper have the advantages to allow working
in a special cone of a Banach space such that most of solutions are positive hence
nontrivial. With (H3) (or (H3’), we have proved in Theorem 4.3 and 4.4 existence
of at least one positive solution with y(t) ≥ Γ‖y‖θ for t ∈ [γ, δ]; that is y ∈ P.
At this step, notice that [γ, δ] is an arbitrary chosen interval which helps to get
nontrivial solutions; this does not always hold true when one applies the Schauder
fixed point theorem which rather provides solutions in a ball. In addition (H3)
covers nonlinearities which are bounded below by sublinear functions near the origin
while in (H3’), f may be superlinear at positive infinity.

Using a recent fixed point theorem of two functionals, we have obtained existence
of a second solution in Theorem 4.6 satisfying 0 < ‖y1‖θ ≤ R ≤ ‖y2‖θ. However,
we may notice that (H4) combines Assumptions (H3) and (H3’) and in counterpart
yields precise information about solutions.

Finally, Assumption (H5) is of the form of (H2). However with a stronger as-
sumption than (H3), we have even proved existence of three solutions by means of



28 S. DJEBALI, K. MEBARKI EJDE-2011/32

a three-functional fixed point theorem; notice however that one of them lies in a
ball and thus could be a trivial solution.

The multi-point condition at 0 has given rise to a new and elaborated Green’s
function; its properties have enabled us to choose an appropriate cone to contain
the desired solutions. The space singularities have been treated by approximation
through the nonlinearity (4.1) and the operator (4.2) for which existence of fixed
points has been proved under sharp estimates of the Green’s function. Then, the
solutions have been obtained as limits as n → +∞ via compactness sequential
arguments.

The example of application shows that all of these hypotheses can be satisfied
for quite simple and general nonlinearities. One of the novelty of this work is that
we have considered a class of space-singular nonlinearities at the origin with general
growth at positive infinity. We hope this work can provide improvements of the
rich literature developed for multi-point boundary value problems on the positive
half line.
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[6] A. Bielecki, Une remarque sur la méthode de Banach-Cacciopoli-Tikhonov dans la théorie
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