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CONSEQUENCES OF TALENTI’S INEQUALITY BECOMING
EQUALITY

BEHROUZ EMAMIZADEH, MOHSEN ZIVARI-REZAPOUR

Abstract. In this article, we consider the case of equality in a well known in-
equality for the p-Laplacian due to Giorgio Talenti. Our approach seems to be
simpler than the one by Kesavan [6]. We use a result from rearrangement opti-
mization to prove the main result in this article. Some physical interpretations
are also presented.

1. Introduction

The initial-boundary value problem
utt −∆u+ c(x)u = f(x), in D × [0, T ]

u = 0, on ∂D × [0, T ]

u = g, ut = h, on D × {t = 0}
(1.1)

models the vibration of a non-isotropic elastic membrane subject to an external
force. The steady-state version of (1.1) is

−∆u+ c(x)u = f(x) in D
u = 0 on ∂D.

(1.2)

In (1.2) we can suppose f(x) represents a vertical force on the membrane such as a
load distribution, and a non-zero function c(x) guarantees the membrane is made
of several different materials, hence it is non-isotropic. Our purpose in this note is
related to a common generalization of (1.2), namely

−∆pu+ c(x)|u|p−2u = f(x), in D,
u = 0, on ∂D,

(1.3)

where c(x) ≥ 0 is a bounded function, and f ∈ Lq(D) is a non-negative function;
here q is the conjugate exponent of 1 < p < ∞; i.e., 1

p + 1
q = 1, and ∆p denotes

the usual p-Laplace operator, i.e. ∆pu = ∇ · (|∇u|p−2∇u). The “symmetrized”
problem corresponding to (1.3) is the boundary value problem

−∆pv = f ](x), in B,
v = 0, on ∂B,

(1.4)
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where B stands for the ball centered at the origin such that Vol(B) = |D|. Hence-
forth, for a measurable E ⊂ Rn, |E| indicates the n-dimensional Lebesgue measure
of E. The notation f ] denotes the standard Schwarz symmetrization of f on the
ball B, so f ] is radial, f ](x) = ξ(‖x‖), where ξ is a decreasing function; moreover,
f ] and f are equi-measurable:

|{x ∈ B : f ](x) ≥ α}| = |{x ∈ D : f(x) ≥ α}|,

for every α ≥ 0. The reader may see [5] for details. By uf ∈ W 1,p
0 (D) we denote

the unique solution of (1.3). It is well known (and easy to prove) that uf is the
unique minimizer of

Ψ(u) =
1
p

∫
D

|∇u|p dx+
1
p

∫
D

c(x)|u|p dx−
∫

D

f(x)u dx, (1.5)

relative to u ∈ W 1,p
0 (D). Note that (1.3) satisfies the maximum principle in the

sense that f ≥ 0 implies uf ≥ 0. Indeed, setting u ≡ uf , and using −u− ∈W 1,p
0 (D)

as a test function, from (1.3), we infer that∫
D

∆puu
− dx+

∫
D

c(x)|u|p−2u(−u−) dx =
∫

D

f(x)(−u−) dx.

Observe that uu− = −(u−)2, and ∇u ·∇u− = −|∇u−|2 on the set {x ∈ D : u(x) ≤
0}. Thus ∫

{u≤0}
|∇u−|p dx ≤

∫
{u≤0}

|∇u−|p dx+
∫
{u≤0}

c(x)|u−|p dx

=
∫

D

f(x)(−u−) dx ≤ 0.

Whence, u− is constant. This, in conjunction with the fact that u− vanishes on
∂D, implies u− = 0, hence u = u+ ≥ 0. In fact, u > 0, a result which is implied by
the strong maximum principle, see for example [3].

The following inequality which is attributed to Giorgio Talenti, see for example
[8], has proven to be an instrumental tool in partial differential equations,

u]
f (x) ≤ vf](x), ∀x ∈ B, (1.6)

where vf] denotes the solution to (1.4). The objective of this article is to discuss the
consequences of having equality in (1.6). Indeed we are able to prove the following
result.

Theorem 1.1. Suppose equality holds in (1.6). Then
(i) c(x) ≡ 0,
(ii) D and f are equal to B and f ], respectively, modulo translations.

Remark 1.2. In case c ≡ 0, Theorem 1.1 has already been proven, see for example
[6]. However, our proof is simpler than the known proof. It relies on a result from
rearrangement optimization theory which itself is intuitively easy to grasp.

This article is organized as follows. In section 2, we collect known results from
the theory of rearrangements specialized to our purpose, and in addition recall the
well known Polya-Szego inequality. Section 3 is entirely devoted to the proof of
Theorem 1.1. In section 4, a generalization of Theorem 2.2 is presented.
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2. Preliminaries

Let us begin by recalling the definition of two functions being rearrangement of
each other.

Definition 2.1. Given two measurable functions f, g : D → R, we say f and g are
rearrangements of each other provided

|{x ∈ D : f(x) ≥ α}| = |{x ∈ D : g(x) ≥ α}|, ∀α ∈ R.
For f0 ∈ Lp(D), the set comprising all rearrangements of f0 is denoted by R(f0);
i.e.,

R(f0) = {f : f and f0 are rearrangements of each other}.

Using Fubini’s Theorem, it is easy to show that R(f0) ⊂ Lp(D). Let us denote
by wf ∈W 1,p

0 (D) the unique solution of

−∆pw = f, in D,
w = 0, on ∂D,

(2.1)

and define the energy functional Φ : Lp(D) → R by

Φ(f) =
∫

D

f wf dx. (2.2)

In [2], amongst other results, the authors proved the following result which plays a
crucial role in what follows.

Theorem 2.2. The maximization problem

sup
f∈R(f0)

Φ(f) (2.3)

is solvable; i.e., there exists f̂ ∈ R(f0) such that

Φ(f̂) = sup
f∈R(f0)

Φ(f).

Moreover, there exists an increasing function η, unknown a priori, such that

f̂ = η ◦ ŵ, (2.4)

almost everywhere in D, where ŵ := wf̂ .

We are going to need the following result, which can be found in [1].

Theorem 2.3. Let u ∈W 1,p
0 (D) be non-negative. Then u] ∈W 1,p

0 (B), and∫
B

|∇u]|p dx ≤
∫

D

|∇u|p dx. (2.5)

Moreover, if equality holds in (2.5), then u−1(β,∞) is a translate of u∗−1(β,∞),
for every β ∈ [0,M ], where M is the essential supremum of u over D, modulo sets
of measure zero.

Lemma 2.4. Suppose 0 ≤ f0 ∈ Lp(B). Then the maximization problem

sup
f∈R(f0)

Φ(f), (2.6)

has a unique solution; namely, f ]
0, the Schwarz symmetrization of f0 on B. That

is,
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(a) Φ(f ]
0) = supf∈R(f0) Φ(f), and

(b) Φ(f) < Φ(f ]
0), for all f ∈ R(f0) \ {f ]

0}.

Proof. Part (a) is straightforward. Indeed, for any f ∈ R(f0), an application of the
Hardy-Littlewood inequality, see [4], (1.6) yield

Φ(f) ≤
∫

B

f ]w]
f dx ≤

∫
B

f ]wf] dx = Φ(f ]) = Φ(f ]
0).

This proves that f ]
0 solves (2.6), hence completes the proof of part (a).

Part (b) is more complicated. By contradiction assume the assertion is false.
Hence, there exists f ∈ R(f0) \ {f ]

0} such that

Φ(f) = Φ(f ]
0). (2.7)

The following inequality follows from the variational formulation of wf] :

1
p

∫
B

|∇u|p dx−
∫

B

f ]u dx ≥ 1
p

∫
B

|∇wf] |p dx−
∫

B

f ]wf] dx, (2.8)

for every u ∈W 1,p
0 (B). Thus, by substituting u = w]

f in (2.8), we obtain

1
p

∫
B

|∇w]
f |

p dx+
1
q

∫
B

f ]wf] dx ≥
∫

B

f ]w]
f dx.

Applying the Hardy-Littlewood inequality to the right hand side yields
1
p

∫
B

|∇w]
f |

p dx+
1
q

∫
B

f ]wf] dx ≥
∫

B

fwf dx = Φ(f). (2.9)

From (2.7) and (2.9), we infer∫
B

|∇w]
f |

p dx ≥ Φ(f) =
∫

B

|∇wf |p dx. (2.10)

Inequality (2.10) coupled with (2.5) imply that equality holds in (2.10). We now
proceed to show that wf = w]

f , which follows once we prove the set {x ∈ B : ∇wf =
0, 0 < wf (x) < M} has measure zero, according to Theorem 2.3. To this end, let
us consider z ∈ B such that 0 < w(z) < M := maxB w(x), where we are using w in
place of wf for simplicity. Using the strong maximum principle [3] it is easy to show
that z ∈ ∂S, the boundary of the set S, where S := {x ∈ B : w(x) ≥ w(z)}. By
Theorem 2.2, S is a ball. Since z ∈ ∂S we can apply the Hopf boundary point lemma
[9] to conclude that ∂w

∂ν (z) 6= 0, where ν stands for the unit outward normal vector
to S at z. Thus, ∇w(z) 6= 0, hence the set {x ∈ B : ∇wf = 0, 0 < wf (x) < M}
has measure zero, as desired. So, w = w].

At this stage we utilize Theorem 2.3. According to (2.4), there exists an increas-
ing function η such that f = η ◦ w. Since w = w], we infer f = η ◦ w]. This, in
turn, implies that f = f ] = f ]

0, which is a contradiction. �

Remark 2.5. There is a nice interpretation of Lemma 2.4, when p = 2. Indeed,
in this case, the boundary value problem (2.1) models the displacement, wf , of
an elastic radial membrane, fixed around the boundary, and subject to a vertical
force, f , which can be taught of as a load distribution. The assertions of the
theorem then are implying that the average displacement, over the region where
the load is positioned, is maximized provided the load is located at the center of
the membrane. It is intuitively clear that in order to make the membrane stretch
as much as possible we should place the load as far as we can from the boundary.
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Definition 2.6. Suppose zi : Di → R are measurable functions, i = 1, 2, and
|D1| = |D2|. We write z1 � z2 provided

z]
1(x) ≤ z]

2(x), ∀x ∈ B,

where B is the ball centered at the origin with |B| = |D1| = |D2|.

Remark 2.7. Note that based on the definition above we observe that Talenti’s
inequality (1.6) can be written as uf � vf] , since vf] = (vf])].

3. Proof of Theorem 1.1

Proof. From the assumption, u]
f = vf] , we deduce∫

B

f ]u]
f dx =

∫
B

f ] vf] dx =
∫

B

|∇vf] |p dx =
∫

B

|∇u]
f |

p dx ≤
∫

D

|∇uf |p dx, (3.1)

where in the last inequality we have applied (2.5). On the other hand, by the
Hardy-Littlewood inequality, see [4], we have∫

D

fuf dx ≤
∫

B

f ]u]
f dx. (3.2)

Multiplying the differential equation in (1.3), by uf , integrating over D, and re-
membering the boundary condition, uf = 0, we obtain∫

D

fuf dx =
∫

D

|∇uf |p dx+
∫

D

c(x)up
f dx. (3.3)

the combination of (3.1), (3.2) and (3.3) yields∫
D

|∇uf |p dx+
∫

D

c(x)up
f dx ≤

∫
D

|∇uf |p dx,

hence
∫

D
c(x)up

f dx ≤ 0. This, in turn, recalling that uf > 0, implies c ≡ 0. This
completes the proof of part (i).

We prove part (ii). Let us first observe that from (i) we infer vf] = uf] . Hence,
the hypothesis of the theorem can be written as u]

f = uf] . Again, from the Hardy-
Littlewood inequality and (2.5), we obtain∫

D

|∇uf |p dx =
∫

D

fuf dx ≤
∫

B

f ]u]
f dx =

∫
B

f ]uf] dx

=
∫

B

|∇uf] |p dx =
∫

B

|∇u]
f |

p dx

≤
∫

D

|∇uf |p dx.

(3.4)

Hence, all inequalities in (3.4) are in fact equalities. In particular, we obtain∫
D

|∇uf |p dx =
∫

B

|∇u]
f |

p dx.

Thus, we are now in a position to apply Theorem 2.3, which implies the sets {x ∈
D : uf (x) ≥ β} are translations of {x ∈ B : u]

f (x) ≥ β}. So, in particular, we
deduce D is a translation of B. Henceforth, without loss of generality we assume
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D = B. Whence, we have
∫

B
|∇uf |p dx =

∫
B
|∇u]

f |p dx. To complete the proof of
(ii), we return to (3.4), and recalling that all inequalities are equalities, we obtain∫

B

fuf dx =
∫

B

f ]uf] dx.

Now we can apply Lemma 2.4, which yields f = f ]. �

Remark 3.1. When p = 2, the boundary value problem (1.3) reduces to

−∆u+ c(x)u = f(x), in D,
u = 0, on ∂D.

(3.5)

The boundary value problem (3.5) physically models the displacement of a non-
isotropic (assuming c is not identically zero) elastic membrane, fixed around the
boundary, and subject to a vertical force such as a distribution load. The result
of this paper implies that equality in the (1.6) is only possible if the membrane
is isotropic; i.e., c ≡ 0. In other words, when the membrane is made of several
materials with different densities it is impossible to have equality in (1.6), hence
the best result is uf � vf] .

4. A special case

In the maximization problem (2.3), sometimes the generator of the rearrange-
ment class, f0, is a “complicated” function. We use the term complicated specifi-
cally in the following sense: f0 = Q(g0), where Q : R → R+ is an increasing and
continuous function, and g0 is a non-negative function that belongs to Lp(D).

In this section we show that if f0 is a complicated function in the above sense
then it is possible to replace (2.3) with another maximization problem which is
formulated with respect to g0. The main result of this section is as follows.

Theorem 4.1. Let 0 ≤ f0 ∈ Lp(D), and suppose f0 is a complicated function in
the sense described above. Then

sup
f∈R(f0)

∫
D

fuf dx = sup
g∈R(g0)

∫
D

Q(g)uQ(g) dx. (4.1)

The proof of Theorem 4.1 relies on the fact that R and T commute, as in the
following lemma.

Lemma 4.2. Let 0 ≤ h0 ∈ Lp(D). Let T : R → R+ be an increasing and continu-
ous function. Then

R(T (h0)) = T (R(h0)). (4.2)

Proof. Let us first prove the inclusion T (R(h0)) ⊆ R(T (h0)). To this end, let
l ∈ T (R(h0)). So, there exists h ∈ R(h0) such that l = T (h). Note that for every
α ≥ 0, there exists β ≥ 0 such that T−1([α,∞)) = [β,∞), where T−1 denotes the
inverse image, since T is increasing and continuous. Hence

{x ∈ D : l(x) ≥ α} = {x ∈ D : h(x) ≥ β}.
This, in turn, implies

|{x ∈ D : l(x) ≥ α}| = |{x ∈ D : h(x) ≥ β}|
= {x ∈ D : h0(x) ≥ β}|
= |{x ∈ D : T (h0)(x) ≥ α}|.
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Thus, l ∈ R(T (h0)), as desired.
Now we prove that R(T (h0)) ⊂ T (R(h0)). Consider l ∈ R(T (h0)), so l∗ =

T (h0)∗. Here, “*” stands for the decreasing rearrangement operator. So, for exam-
ple,

l∗(s) = inf{α ∈ R : |{x ∈ D : l(x) ≥ α}| ≤ s},
see [7] for details. Since T is decreasing, we infer l∗ = T (h0)∗ = T (h∗0). At this
stage, we use another result from [7]; namely, that there exists a measure preserving
map ψ : D → D such that l = l∗ ◦ψ. Therefore, l = T (h∗0)◦ψ = T (h∗0 ◦ψ). Since ψ
is measure preserving, we infer h∗0 ◦ ψ ∈ R(h0), hence l ∈ T (R(h0)), which finishes
the proof of the lemma. �

Proof of Theorem 4.1. Let us set

L = sup
f∈R(f0)

∫
D

fuf dx, R = sup
g∈R(g0)

∫
D

Q(g)uQ(g) dx.

We prove only L ≤ R, since the proof of L ≥ R is similar. Consider f ∈ R(f0).
Then f ∈ R(Q(g0)) = Q(R(g0)), by Lemma 4.2. Thus, f = Q(g), for some
g ∈ R(g0). Therefore ∫

D

fuf dx =
∫

D

Q(g)uQ(g) dx ≤ R.

Since f ∈ R(f0) is arbitrary we deduce L ≤ R. �

To illustrate the advantages of Theorem 4.1, we consider the following example.
Let P : R → R+ be a bounded function. Consider the boundary value problem

−∆pu =
∫ g(x)

0

P (s) ds, in D,

u = 0, on ∂D.
(4.3)

Setting f(x) =
∫ g(x)

0
P (s) ds, Theorem 4.1 implies that

sup
f∈R(f0)

∫
D

fuf dx = sup
g∈R(g0)

∫
D

( ∫ g(x)

0

P (s) ds
)
u

(
R g(x)
0 P (s) ds)

dx.
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