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UME’S U-DISTANCE AND ITS RELATION WITH BOTH
(PS)-CONDITION AND COERCIVITY

GEORGIANA GOGA

Abstract. In this article, we study the connection between the u-distance and
a new Palais-Smale condition of compactness. We compare this Palais-Smale
condition with the coercivity.

1. Introduction and preliminaries

In 1997, Zhong [17, 18] generalized the Ekeland variational principle and proved
the existence of minimal points for Gâteaux-differentiable functions under weak
(PS) conditions. The following theorem is well-known and we name it Zhong’s
variational principle (ZVP).

Theorem 1.1 ([17, 18]). Let (X, d) be a complete metric space, x0 ∈ X fixed and
f : X → (−∞,∞] a proper lower semicontinuous function which is bounded from
below. Let h : [0,∞) → [0,∞) be a nondecreasing continuous function such that∫ ∞

0

1
1 + h(r)

dr = +∞.

Then, for every ε > 0, every y ∈ X such that

f(y) <

∫
x∈X

f(x) + ε,

and λ > 0, there exists some point z ∈ X such that
(i) f(z) ≤ f(y),
(ii) d(x0, z) ≤ r0 + r∗,
(iii) f(x) ≥ f(z) − ε

λ(1+h(d(x0,z))) · d(z, x), for all x ∈ X, where r0 = d(x0, y),
and r∗ is such that ∫ r0+r∗

r0

1
1 + h(t)

dt ≥ λ.

In 2010, Ume [15] introduced a new concept of distance called u-distance, which
generalizes some distances anterior studied (see e.g., ω-distance [9, 16], Tataru’s
distance [13], τ -distance [11]) and expanded the celebrated Ekeland’s variational
principle.
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In Section 2, we present a generalization of Zhong’s variational principle using
Ume’s u-distance. In Section 3, we define a new Palais-Smale condition related
to above variational principle and we study the existence of the minimal point
for Gâteaux-differentiable functions. In the last section, we deal with the relation
between new Palais-Smale condition and the coercivity, following a techniques which
is based on u-distance. Our results extend and improve other known results due to
Zhong [17, 18], Ekeland [6, 7] and Costa & Silva [5].

For the beginning, we present some results needed in our approach. First, we
recall Ume’s [15] concept of generalized distance in metric spaces.

Definition 1.2. Let (X, d) be a metric space. A function p : X×X → R+ is called
u-distance on X if there exists a map Θ : X ×X × R+ × R+ → R+ such that the
following conditions hold:

(U1) p(x, z) ≤ p(x, y) + p(y, z), for all x, y, z ∈ X;
(U2) Θ(x, y, 0, 0) = 0 and Θ(x, y, s, t) ≥ min{s, t} for all x, y ∈ X, s, t ∈ R+, and

for every x ∈ X and ε > 0, there is δ > 0 such that

|Θ(x, y, s, t)−Θ(x, y, s0, t0)| < ε

if |s− s0| < δ, |t− t0| < δ, s, s0, t, t0 ∈ R+ whenever y ∈ X;
(U3) limn xn = x and lim supn{Θ(wn, zn, p(wn, xm), p(zn, xm)) : m ≥ n} = 0

imply
p(y, x) ≤ lim inf

n→∞
p(y, xn) for y ∈ X;

(U4) The four equalities

lim sup
n

{p(xn, wm) : m ≥ n} = 0, lim sup
n

{p(yn, zm) : m ≥ n} = 0,

lim
n

Θ(xn, wn, sn, tn) = 0, lim
n

Θ(yn, zn, sn, tn) = 0

imply limn Θ(wn, zn, sn, tn) = 0; or the four equalitires

lim sup
n

{p(wm, xn) : m ≥ n} = 0, lim sup
n

{p(zm, yn) : m ≥ n} = 0,

lim
n

Θ(xn, wn, sn, tn) = 0, lim
n

Θ(yn, zn, sn, tn) = 0

imply limn Θ(wn, zn, sn, tn) = 0;
(U5) The two equalities

lim
n

Θ(wn, zn, p(wn, xn), p(zn, xn)) = 0,

lim
n

Θ(wn, zn, p(wn, yn), p(zn, yn)) = 0

imply limn d(xn, yn) = 0; or the two equalities

lim
n

Θ(an, bn, p(xn, an), p(xn, bn)) = 0,

lim
n

Θ(an, bn, p(zn, an), p(yn, bn)) = 0

imply limn d(xn, yn) = 0.

Example 1.3 ([15]). Let X be a space with norm ‖ · ‖. Then the function p :
X × X → R+ defined by p(x, y) = ‖x‖ is a u-distance on X, but it is not a
τ -distance on X, in Suzuki’s sense [11].
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Example 1.4 ([15]). Let p be a u-distance on a metric space (X, d) and let c be a
real positive number. Then a function q : X×X → R+ defined by q(x, y) = cp(x, y)
for every x, y ∈ X is also a u-distance on X.

By means of the generalized u-distance, Ume obtained in [15] the following ver-
sion of Ekeland’s variational principle. This result will play a crucial role in the
proof of our variational principle.

Theorem 1.5 ([15]). Let (X, d) be a complete metric space, let f : X → (−∞,∞]
be a proper lower semicontinuous function which is bounded from below, and let
p : X ×X → R+ be a u-distance on X. Then the following two statements hold:

(1) For each x ∈ X with f(x) < ∞, there exists v ∈ X such that f(v) ≤ f(x)
and f(w) > f(v)− p(v, w), for all w ∈ X\ v}.

(2) For each ε > 0, λ > 0 and x ∈ X with p(x, x) = 0 and f(x) < infa∈X f(a)+
ε, there exists v ∈ X such that

f(v) ≤ f(x), p(x, v) ≤ λ,

f(w) > f(v)− ε

λ
· p(v, w), for all w ∈ X\{v}.

2. A generalization of Zhong’s variational principle

We start this section by extending a result by Suzuki [12], using the u-distance.

Proposition 2.1. Let (X, d) be a complete metric space and let p : X ×X → R+

be a u-distance on X. Let q : X ×X → R+ be a function such that
(a) q(x, z) ≤ q(x, y) + q(y, z) for all x, y, z ∈ X;
(b) q is lower semicontinuous in its second argument;
(c) q(x, y) ≥ p(x, y) for all x, y ∈ X.

Then q is also a u-distance.

Proof. Assumption (a) is equivalently with (U1)q. Let Θ : X×X×R+×R+ → R+

be a function satisfying (U2)–(U5). Clearly, (U3)q follows from (b). Now, we
assume that

lim sup
n

{q(xn, wm) : m ≥ n} = 0,

lim sup
n

{q(yn, zm) : m ≥ n} = 0,

lim
n

Θ(xn, wn, sn, tn) = 0,

lim
n

Θ(yn, zn, sn, tn) = 0.

(2.1)

By (2.1) and (c), we have

lim sup
n

{p(xn, wm) : m ≥ n} = 0,

lim sup
n

{p(yn, zm) : m ≥ n} = 0.

Therefore, by (U4), we find limn Θ(wn, zn, sn, tn) = 0, and derive (U4)q.
Next, we assume that

lim
n

Θ(wn, zn, q(wn, xn), q(zn, xn)) = 0, (2.2)

lim
n

Θ(wn, zn, q(wn, yn), q(zn, yn)) = 0. (2.3)
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Applying again (c) in (2.2) and (2.3), we obtain

lim
n

Θ(wn, zn, p(wn, xn), p(zn, xn)) = 0,

lim
n

Θ(wn, zn, p(wn, yn), p(zn, yn)) = 0.

By (U5), we have limn d(xn, yn) = 0, and (U5)q, is also verified. �

Next, we establish a more general variational principle [1, 14], which is an ex-
tension of both Ekeland’s and Zhong’s variational principles.

Theorem 2.2. Let (X, d) be a complete metric space, a ∈ X be a fixed point and
let p : X × X → R+ be a u-distance on X lower semicontinuous in its second
argument. Let f : X → (−∞,∞] be a proper lower semicontinuous function which
is bounded from below and let b : [0,∞) → (0,∞) be a non-increasing continuous
function such that

B(t) =
∫ t

0

b(r)dr,

where B is a C1 function from R+ to itself and B(∞) = +∞. Let y ∈ X be such
that p(y, y) = 0 and

f(y) > inf
x∈X

f(x). (2.4)

Then, for ε0 > 0, there exists z ∈ X such that

(i) f(z) ≤ f(y),
(ii) p(a, z) ≤ β(y) + β∗,
(iii) f(x) > f(z) − ε0

λ b(β(z))p(z, x), for all x ∈ X where β(.) = p(a, .), and β∗

is such that ∫ β(y)+β∗

β(y)

b(t) dt ≥ α(y), (2.5)

with α(y) = f(y)− inf x ∈ Xf(x) ≥ λ > 0.

Proof. First, we define the function q : X ×X → R+ by

q(x, y) :=
∫ p(a,x)+p(x,y)

p(a,x)

b(t) dt.

Since b is non-increasing, for (x, z) ∈ X ×X, we deduce

q(x, z) =
∫ p(a,x)+p(x,z)

p(a,x)

b(t) dt

≤
∫ p(a,x)+p(x,y)+p(y,z)

p(a,x)

b(t) dt

=
∫ p(a,x)+p(x,y)

p(a,x)

b(t) dt +
∫ p(a,x)+p(x,y)+p(y,z)

p(a,x)+p(x,y)

b(t) dt

≤
∫ p(a,x)+p(x,y)

p(a,x)

b(t) dt +
∫ p(a,y)+p(y,z)

p(a,y)

b(t) dt

= q(x, y) + q(y, z).
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In addition, q is obviously lower semicontinuous in its second variable. On the other
hand, we have

q(x, y) =
∫ p(a,x)+p(x,y)

p(a,x)

b(t) dt

= B(p(a, x) + p(x, y))−B(p(a, x))

≥ b(p(a, x) + p(x, y))p(x, y).

(2.6)

Taking into account the definition of function b, we obtain boundedness from below,

b(p(a, x) + p(x, y)) > b(∞) ≥ M ≥ 0 (2.7)

Combining (2.6) and (2.7), we deduce

q(x, y) ≥ Mp(x, y).

Since Mp(x, y) is a u-distance and the assumptions of Proposition 2.1 are verified,
q(x, y) is also u-distance.

Now, from (2.4) and (2.5), we obtain

0 < λ ≤ f(y)− inf
x∈X

f(x) = α(y)

≤
∫ β(y)+β∗

β(y)

b(t) dt =
∫ β∗

0

b(u + β(y)) du

≤
∫ β∗

0

b(u)du = B(β∗).

(2.8)

So by the above inequality,

f(y) ≤ inf
x∈X

f(x) + B(β∗),

and the Theorem 1.5 is applicable to q(x, y) for ε = B(β∗) > 0 and λ = α(y) > 0.
Therefore, there exists z ∈ X such that

f(z) ≤ f(y), (2.9)

q(y, z) ≤ α(y) (2.10)

f(x) > f(z)− B(β∗)
α(y)

· q(z, x), ∀x 6= z, x ∈ X. (2.11)

By (U1), we know that

p(a, z) ≤ p(a, y) + p(y, z) = β(y) + p(y, z). (2.12)

On the other hand, from (2.5) and (2.10) it follows that

B(β(y) + p(y, z))−B(β(y)) ≤ α(y) ≤ B(β(y) + β∗)−B(β(y)).

Thereby, we find that
p(y, z) ≤ β∗, (2.13)

because B is a nondecreasing function. Thus, (ii) follows from (2.12) and (2.13).
Moreover, since

q(z, x) =
∫ p(a,z)+p(z,x)

p(a,z)

b(t) dt ≤ b(p(a, z))p(z, x) = b((β(z)))p(z, x); (2.14)

multiplying by (−1) and, using (2.8) and (2.11), for 0 < B(β∗) ≤ ε0, we obtain

f(x) > f(z)− B(β∗)
α(y)

· q(z, x) ≥ f(z)− ε0
λ

q(z, x) ≥ f(z)− ε

λ
b((β(z)))p(z, x),
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for all x ∈ X, and (iii) is verified. This completes the proof. �

Remark 2.3. Let a, f , b, p, α(y), β(y), β∗, and X be as in Theorem 2.2.
(i) When a = y, b(t) ≡ 1, β∗ = λ, ε0 > α(y) ≥ λ > 0, and p(x, y) = d(x, y),

Theorem 2.2 reduces to Ekeland’s variational principle (EVP) [6, 7].
(ii) Take a = x0,

b(t) =
1

1 + h(t)
,

where h : [0,∞) → [0,∞) is a continuous nondecreasing function such that∫ ∞

0

1
1 + h(r)

dr = +∞,

ε0 > α(y) ≥ λ > 0, β(y) = d(x0, y) = r0, β∗ = r∗ and p(x, y) = d(x, y).
Therefore, Theorem 2.2 implies Theorem 1.1.

3. The b-(PS) condition and the existence of a minimal point

Throughout this section X denotes a Banach space. We recall that a function
f : X → (−∞,∞] is called Gâteaux differentiable at x ∈ X with f(x) < ∞ if there
exists a continuous linear functional f ′(x) such that

lim
t→0

f(x + ty)− f(x)
t

= 〈f ′(x), y〉

holds for every y ∈ X.
In the following, we assume that f : X → (−∞,∞] is Gâteaux differentiable.

Theorem 3.1. Let a ∈ X be fixed and p : X ×X → R+ a u-distance on X lower
semicontinuous in its second argument. Let f : X → (−∞,∞] be a proper lower
semicontinuous function which is bounded from below and let b : [0,∞) → (0,∞)
be a nonincreasing continuous function such that

B(t) =
∫ t

0

b(r)dr,

where B is a C1 function from R+ to itself such that B(∞) = +∞. Let y ∈ X be
such that p(y, y) = 0 and

f(y) > inf
x∈X

f(x).

Then, for every ε > 0, there exists z ∈ X such that
(i’) f(z) ≤ f(y),
(ii’) β(z) ≤ β(y) + β∗,
(iii’) ‖f ′(z)‖/b(β(z)) ≤ ε for all x ∈ X, where β(.) = p(a, .), and β∗ is a real

number such that ∫ β(y)+β∗

β(y)

b(t) dt ≥ α(y),

with α(y) = f(y)− infx∈X f(x) > 0.

Proof. We have the hypotheses of Theorem 2.2. So, applying this theorem, we
obtain (i’) and (ii’) from (i) and (ii). Moreover, (iii) guaranties that there exists
z ∈ X such that

f(x) ≥ f(z)− ε

λ
b(β(z))p(z, x), for all x ∈ X, (3.1)
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where 0 < λ ≤ α(y). Choose x = z + ty with ‖y‖ = 1 in (3.1) and obtain
f(z + ty)− f(z)

t
≥ − ε

λ

b(β(z))p(z, z + ty)
t

, (3.2)

for every t > 0. Let λ be such that

lim
t→0

p(z, z + ty)
t

≤ λ. (3.3)

Then, letting t → 0 in (3.2) and using (3.3), we conclude that

〈f ′(z), y〉 ≥ −ε · b(β(z)), (3.4)

for all y ∈ X with ‖y‖ = 1. Since (3.4) is true for ±y, we deduce that

|〈f ′(z), y〉| ≤ ε · b(β(z)). (3.5)

Now, from (3.5), we obtain

‖f ′(z)‖ = sup
y∈X,‖y‖=1

|〈f ′(z), y〉|
‖y‖

≤ ε · b(β(z)),

and the claim (iii’) holds. �

Corollary 3.2. Suppose that the hypotheses of Theorem 3.1 are verified. Then
there exists a minimizing sequence {zn}n of f such that

f(zn) < inf
x∈X

f(x) + ε,

‖f ′(zn)‖/b(β(zn)) → 0.

The proof follows form taking ε = 1
n , n = 1, 2, . . . in Theorem 3.1.

Let B be the set of all non-increasing and strictly positive continuous functions
b : [0,∞) → (0,∞) such that ∫ ∞

0

b(t) dt = ∞.

Let p : X × X → R+ be a u-distance on X lower semicontinuous in its second
variable with p(x, x) = 0 ∀x ∈ X, a ∈ X a fixed point and β : X → R+ defined by
β(x) = p(a, x).

Definition 3.3. Let f : X → (−∞,+∞] be a C1 function, c ∈ R and b ∈ B.
• f is said to satisfy the b-(PS) condition if any sequence {xn}n in X such

that {f(xn)} is bounded and ‖f ′(xn)‖/b(β(xn)) → 0 has a convergent
subsequence.

• f is said to satisfy the b-(PS)c condition if any sequence {xn}n in X such
that f(xn) → c and ‖f ′(xn)‖/b(β(xn)) → 0 has a convergent subsequence.

Remark 3.4. Suppose that β(x) = d(a, x).
• Then the b-(PS) condition is the Schechter-(PS) condition [10].
• If b is constant, then the b-(PS) condition is the usual (PS) condition.
• If b(t) = 1/(1 + t), then the b-(PS) condition is the Cerami-(PS) condition

[4].
• If b(t) = 1/(1+h(t)), where h : [0,∞) → [0,∞) is a non-decreasing function,

then the b-(PS) condition is the Zhong-(WPS) condition [17, 18].

Theorem 3.5. If f is bounded below and satisfying the b-(PS) condition, then f
has a minimal point.
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Proof. By Corollary 3.2, there is a minimizing sequence {zn}n in X such that
f(zn) < infx∈X f(x) + ε and ‖f ′(zn)‖/b(β(zn)) → 0. The b-(PS) condition implies
that {zn}n has a subsequence {znk

}k convergent to some point z∗. Since f is lower
semicontinuous, we obtain

inf
X

f ≤ f(z∗) ≤ lim inf
k→∞

f(znk
) ≤ inf

X
f.

Therefore, f(z∗) = infX f . �

4. The b-(PS) condition versus coercivity

Using the method of gradient flows, Li [8] first observed that the (PS) condition
implies the coercivity for C1 functionals bounded from below. Using Ekeland’s vari-
ational principle, Caklovic, Li and Willem [3] proved the same result for a Gâteaux
differentiable functional which is lower semicontinuous. The same conclusion was
also proved by Costa and Silva [5] and Brezis and Nirenberg [2] for C1functionals by
also employing Ekeland’s principle. Using ZVP, Zhong [17] studied the connection
between (WPS) and coercivity. A similar result was established by Suzuki [11],
using τ -distance.

In this section, we discuss the relation between the b-(PS) condition and coer-
civity. We recall that a function f : X → (−∞,∞] is said to be coercive if

lim
r→∞

inf
‖x‖≥r

f(x) = ∞.

For our aim, we first prove the following lemma.

Lemma 4.1. Let p : X × X → R+ be a u-distance on X and f : X → R is a
Gâteaux differentiable function. Suppose that there are ξ ≥ 0, δ > 0 and either of
the following conditions is satisifed:

• f(y) ≥ f(x)− ξp(x, y) for all y ∈ X with 0 < p(x, y) < δ; or
• f(y) ≤ f(x) + ξp(x, y) for all y ∈ X with 0 < p(x, y) < δ.

Then ‖f ′(x)‖ ≤ ξ.

Proof. Assume that
f(y) ≥ f(x)− ξp(x, y) (4.1)

for all y ∈ X with 0 < p(x, y) < δ. Set y = x + δz in (4.1), and infer that

f(x + δz)− f(x) ≥ −ξp(x, x + δz) > −ξδ (4.2)

Then,
f(x + δz)− f(x)

δ
> −ξ. (4.3)

Taking the limit as δ → 0, we obtain

〈f ′(x), y〉 ≥ −ξ. (4.4)

As (4.4) holds for both of ±y, we derive

|〈f ′(x), y〉| ≤ ξ. (4.5)

Then, for all y ∈ X with ‖y‖ = 1, the inequality (4.5) implies that

‖f ′(x)‖ = sup
y∈X,‖y‖=1

|〈f ′(x), y〉|
‖y‖

= sup
y∈X,‖y‖=1

|〈f ′(x), y〉| ≤ ξ,

and the desired claim holds. �
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Next, we consider a more suitable version of Theorem 1.5, for our purpose.

Theorem 4.2. Let (X, d) be a complete metric spaces, let f : X → (−∞,∞]
be a proper lower semicontinuous function which is bounded from below, and let
p : X×X → R+ be a u-distance on X lower semicontinuous in its second argument.
Then for ε > 0 and x ∈ X with f(x) < ∞ and p(x, x) = 0, there exists v ∈ X such
that

(i) f(v) ≤ f(x)− εp(x, v);
(ii) f(w) > f(v)− εp(v, w), for all w ∈ X\{v}.

For the sake of completeness, we supply a proof of the equivalence between
Theorems 1.5 and 4.2.

Proof. ⇐ Let the assumptions of Theorem 1.5 be satisfied. Obviously, the con-
clusion of (1) follows by Theorem 4.2. For (2), applying again Theorem 4.2 with
ε = e

λ , we deduce that

p(x, v) ≤ λ

e
(f(x)− f(v)) ≤ λ

e
e ≤ λ.

Hence the conclusion of Theorem 1.5 is valid.
⇒ Now, suppose that Theorem 1.5 holds. Let x ∈ X with f(x) < ∞ and ε > 0

be given. Fix any e > f(x)− infa∈X f(a) and set λ = e
ε . Consider

M(x) = {v ∈ X | f(v) ≤ f(x)− εp(x, v)}.

By the lower semicontinuity of f and p(x, .), the set M(x) is closed. Furthermore,
M(x) is nonempty as x ∈ M(x). Applying Theorem 1.5 (2) for the chosen e, λ and
for M(x) instead of X one finds v ∈ X such that

f(v) ≤ f(x), p(x, v) ≤ λ,

f(w) > f(v)− e

λ
· p(v, w), for all w ∈ M(x)\{v}.

Since v ∈ M(x), then (i) holds.
To show (ii) it is sufficient to check that

f(w) > f(v)− e

λ
· p(v, w), for all w /∈ M(x).

By the definition of M(x), the property w /∈ M(x) means that

f(w) > f(x)− εp(x,w).

From this and (i) we easily deduce (ii) and then obtain Theorem 4.2. �

We are in position to state the main result of this section. The proof follows a
technique developed by Suzuki in [11].

Theorem 4.3. Let X be a Banach space, a ∈ X fixed, and let p : X × X → R+

be a symmetric u-distance on X, lower semicontinuous in its second argument and
such that p(x, x) = 0 for all x ∈ X. Let f : X → (−∞,∞] be a proper lower
semicontinuous function which is bounded from below and let b : [0,∞) → (0,∞)
be a non-increasing continuous function such that

B(t) =
∫ t

0

b(r) dr,
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where B is a function from R+ to itself such that B(∞) = +∞. Let a ∈ X be fixed
and β : X → R+ defined by β(x) = p(a, x). Assume that f is Gâteaux differentiable
at every point x ∈ X with f(x) ∈ R. If

α = lim inf
β(y)→∞

f(y) ∈ R,

then there exists a sequence {zn}n in X such that

(a) limn→∞ β(zn) = ∞;
(b) limn→∞ f(zn) = α;
(c) limn→∞ ‖f ′(zn)‖/b(β(zn)) = 0.

Proof. We shall show only the following: for every ε > 0, there exists v ∈ X
satisfying β(v) ≥ 1

ε , |f(v)− α| ≤ ε and ‖f ′(v)‖/b(β(v)) ≤ ε. Fix ε > 0 and define
a function χ : [0,∞) → [0,∞) by

χ(t) =
1
2
b(t + 1) (4.6)

for t ∈ [0,∞). Then χ is non-increasing, and∫ ∞

0

χ(t) dt =
1
2

∫ ∞

0

b(t + 1) dt =
1
2

∫ ∞

1

b(t) dt = ∞.

We also determine a function h : X → (−∞,+∞] by

h(x) = max{f(x), α− 2ε} (4.7)

for x ∈ X. Then it is obvious that h is proper lower semicontinuous and bounded
from below. We choose r, r′ ∈ R with 1

ε < r < r′, 1 < r,

inf
β(y)≥r

f(y) > α− ε, (4.8)∫ r′

r

χ(t) dt = 3. (4.9)

We also choose u ∈ X with

β(u) > r′, f(u) < α + ε. (4.10)

We note that h(u) = f(u) because β(u) > r′ > r. We know from the earlier that
the function q : X ×X → R+, defined by

q(u, v) =
∫ β(u)+p(u,v)

β(u)

χ(t) dt (4.11)

is a u-distance. So, by Proposition 2.1, the function s : X ×X → R+, defined by

s(u, v) = q(u, v) + q(v, u) (4.12)

is also a u-distance. Thereby, by Theorem 4.2, there exists v ∈ X such that

h(v) ≤ h(u)− εs(u, v), (4.13)

h(w) > h(v)− εs(v, w), ∀w 6= v. (4.14)

Arguing by contradiction, we assume that β(v) < r. Moreover, we have

β(v) < r < r′ < β(u). (4.15)
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Also, from (4.11), (4.12) and (4.13), we successively obtain

α− 2ε ≤ h(v) ≤ h(u)− ε

∫ β(u)+p(u,v)

β(u)

χ(t) dt− ε

∫ β(v)+p(u,v)

β(v)

χ(t) dt

≤ h(u)− ε

∫ β(v)+p(u,v)

β(v)

χ(t) dt

≤ h(u)− ε(H(β(v) + p(u, v))−H(β(v))),

(4.16)

where H is a primitive of χ. Using that H is nondecreasing in (4.16), we obtain

α− 2ε ≤ h(u)− ε(H(β(u))−H(β(v))) = h(u)− ε

∫ β(u)

β(v)

χ(t) dt. (4.17)

Then, by (4.15), (4.17) and (4.10), we obtain

α− 2ε ≤ h(u)− ε

∫ r′

r

χ(t) dt = f(u)− 3ε < α− 2ε,

which is a contradiction. Therefore,

β(v) ≥ r >
1
ε
,

and (a) holds. Thus, we have h(v) = f(v) and

α− ε < inf
β(y)≥r

f(y) ≤ f(v) ≤ f(u) < α + ε.

This implies
|f(v)− α| ≤ ε,

that is (b). For (c), from (4.11) , (4.12) and (4.14) and the non-increasing property
of χ, we infer

h(w) > h(v)− ε

∫ β(v)+p(v,w)

β(v)

χ(t) dt− ε

∫ β(w)+p(v,w)

β(w)

χ(t) dt

≥ h(v)− ε(χ(β(v)) + χ(β(w))) · p(v, w),
(4.18)

for w ∈ X, w 6= v. Since f is lower semicontinuous and f(v) > α− 2ε, there exists
δ ∈ (0, 1) such that f(w) > α − 2ε for w ∈ X with p(v, w) < δ. Hence, for w ∈ X
with 0 < p(v, w) < δ, since h(w) = f(w) and

β(w) = p(a,w) ≥ p(a, v)− p(w, v) > β(v)− δ > β(v)− 1 > 0,

we derive
f(w) > f(v)− ε(χ(β(v)) + χ(β(v)− 1)) · p(v, w)

≥ f(v)− 2εχ(β(v)− 1) · p(v, w)

= f(v)− εb(β(v)) · p(v, w).
(4.19)

By means of Lemma 4.1, we reach

‖f ′(v)‖ ≤ εb(β(v)),

and (c) is verified too. The proof is complete. �

Corollary 4.4. Let X be a Banach space. Let f : X → (−∞,∞] be a proper lower
semicontinuous function which is bounded from below. Assume that f is Gâteaux
differentiable at every point x ∈ X with f(x) ∈ R. If f satisfies the b-(PS)c

condition for all c ∈ R, then f is coercive; i.e., f(x) →∞ as β(x) →∞.
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Proof. Suppose the contrary; then α = lim infβ(x)→∞ f(x) ∈ R. By Theorem
4.3, there exists a sequence {zn}n in X such that β(zn) → ∞, f(zn) → α and
‖f ′(zn)‖/b(β(zn)) → 0. Then, the b-(PS)α condition implies that {zn}n has a
convergent subsequence, which clearly leads to a contradiction. �

Remark 4.5. Corollary 4.4 generalizes the result proved by [8] using a gradient
flow, by Costa-Silva [5], Caklovic-Li-Willem [3] and Brezis-Nirenberg [2] using EVP,
and by Zhong [17] using ZVP.
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