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UME’S U-DISTANCE AND ITS RELATION WITH BOTH
(PS)-CONDITION AND COERCIVITY

GEORGIANA GOGA

ABSTRACT. In this article, we study the connection between the u-distance and
a new Palais-Smale condition of compactness. We compare this Palais-Smale
condition with the coercivity.

1. INTRODUCTION AND PRELIMINARIES

In 1997, Zhong [I77, 18] generalized the Ekeland variational principle and proved
the existence of minimal points for Gateaux-differentiable functions under weak
(PS) conditions. The following theorem is well-known and we name it Zhong’s
variational principle (ZVP).

Theorem 1.1 ([I7, [18]). Let (X,d) be a complete metric space, zo € X fized and

f: X — (—o00,00] a proper lower semicontinuous function which is bounded from
below. Let h : [0,00) — [0,00) be a nondecreasing continuous function such that

/OO L ey
— dr = +o0.
o 14+h(r)

Then, for every e > 0, every y € X such that
fo)< [ ta)e
zeX

and XA > 0, there exists some point z € X such that
(i) f(z) < f(y),
(11) d(l‘o, Z) <ro+ T*7
(iil) f(z) > f(z) — AT d(z,x), for all x € X, where ro = d(zg,y),

and r* is such that
7"0+T'* 1
—dt > A\
/m L+ h(t)

In 2010, Ume [15] introduced a new concept of distance called u-distance, which
generalizes some distances anterior studied (see e.g., w-distance [9] [16], Tataru’s
distance [I3], 7-distance [I1]) and expanded the celebrated Ekeland’s variational
principle.
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In Section 2, we present a generalization of Zhong’s variational principle using
Ume’s u-distance. In Section 3, we define a new Palais-Smale condition related
to above variational principle and we study the existence of the minimal point
for Gateaux-differentiable functions. In the last section, we deal with the relation
between new Palais-Smale condition and the coercivity, following a techniques which
is based on u-distance. Our results extend and improve other known results due to
Zhong [17, 18], Ekeland [0 [7] and Costa & Silva [5].

For the beginning, we present some results needed in our approach. First, we
recall Ume’s [I5] concept of generalized distance in metric spaces.

Definition 1.2. Let (X, d) be a metric space. A function p : X x X — Ry is called
u-distance on X if there exists a map © : X x X x Ry x Ry — Ry such that the
following conditions hold:

(U1) p(x,z) < p(x,y) + p(y, 2), for all z,y, 2 € X;
(U2) ©(z,y,0,0) =0 and O(x,y, s,t) > min{s, t} for all z,y € X, s,t € R;, and
for every x € X and € > 0, there is 6 > 0 such that

|@(x,y,s,t) - @($7ya507t0)| <e

if [s — so| <0, |t —to] <4, s,50,t,t0 € Ry whenever y € X;
(U3) limy, z, = x and limsup,,{O(wy, 2n, p(Wn, Tm), P(Zn, Tm)) : m > n} =0
imply
p(y,z) <liminfp(y,z,) fory € X;
n—oo

(U4) The four equalities
limsup{p(z,,wy,) :m >n} =0, limsup{p(yn,2m):m >n} =0,
' lirrln O(Ly, Wy Sy tn) =0, lirr;G(yn, Zns Snytn) =0
imply lim,, ©(wy, 2n, Sn, tn) = 0; or the four equalitires
lim sup{p(wsm, zn) : m > n} =0, limsup{p(zm,yn):m >n} =0,
' 1i£n O(Lpy Wny Snytn) =0, liyrbrj(a(yn, Zny Snytn) =0

imply lim,, ©(wy,, 2n, Sn, tn) = 0;
(U5) The two equalities

lim © (wn, 2n, p(Wn, Tn), p(2n, ) = 0,
lim ©(wn, 20, P(Wn, Yn), P(2n; Yn)) = 0
imply lim,, d(x,, y») = 0; or the two equalities
lim ©(an, b, p(Tn, an), p(n, bn)) = 0
lim ©(an, b, p(zn; an)s p(Yn, bn)) = 0
imply lim,, d(z,, yn) = 0.

Example 1.3 ([15]). Let X be a space with norm || - ||. Then the function p :
X x X — Ry defined by p(z,y) = ||z| is a u-distance on X, but it is not a
7-distance on X, in Suzuki’s sense [I1].
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Example 1.4 ([15]). Let p be a u-distance on a metric space (X, d) and let ¢ be a
real positive number. Then a function ¢ : X x X — R defined by ¢(z,y) = cp(z,y)
for every z,y € X is also a u-distance on X.

By means of the generalized u-distance, Ume obtained in [I5] the following ver-
sion of Ekeland’s variational principle. This result will play a crucial role in the
proof of our variational principle.

Theorem 1.5 ([I5]). Let (X,d) be a complete metric space, let f : X — (—o00, 0]
be a proper lower semicontinuous function which is bounded from below, and let
p: X xX — Ry be au-distance on X. Then the following two statements hold:

(1) For each x € X with f(x) < oo, there exists v € X such that f(v) < f(x)
and f(w) > f(v) — p(v,w), for all w € X\ v}.

(2) Foreache >0, A>0andx € X withp(z,xz) =0 and f(x) < inf,ex f(a)+
€, there exists v € X such that

fw) < f(x), plz,v) <A
flw) > f(v) — ; -p(v,w),  for allw € X\{v}.

2. A GENERALIZATION OF ZHONG’S VARIATIONAL PRINCIPLE
We start this section by extending a result by Suzuki [12], using the u-distance.

Proposition 2.1. Let (X, d) be a complete metric space and let p: X x X — Ry
be a u-distance on X. Let q: X x X — R, be a function such that

(a) q(z,2) < q(x,y) +q(y, 2) for all z,y,z € X;
(b) g is lower semicontinuous in its second argument;

(c) q(z,y) = p(z,y) for all z,y € X.
Then q is also a u-distance.

Proof. Assumption (a) is equivalently with (Ul),. Let © : X x X xRy xRy — Ry
be a function satisfying (U2)-(U5). Clearly, (U3), follows from (b). Now, we
assume that

lim sup{q(xp, wn) : m >n} =0,
n

limsup{q(yn, zm) : m > n} =0,
lim O(zy,, Wh, Sn,ytn) =0,

lHm O (yn, 2n, Sn, tn) = 0.
By (2.1) and (c), we have

lim sup{p(zn, wm) : m >n} =0,

n

lim sup{p(yn, 2m) : m > n} = 0.

Therefore, by (U4), we find lim,, ©(wy, 2, Sn, t,) = 0, and derive (U4),.
Next, we assume that

hm@(wna vaQ(wnyxn)7Q(Znaxn))

— ()’
lim © (wn, 2n, ¢(wn, Yn), 4(2n, yn)) = 0. (2.3)
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Applying again (c¢) in (2.2) and (2.3)), we obtain
lim @(wn, vap(wnv xn),p(zn, xn)) =0
n
hran O(wn, 2n, P(Wns Yn ), P(Zns Yn)) = 0.

By (U5), we have lim,, d(z,,y») = 0, and (U5)g, is also verified. O

Next, we establish a more general variational principle [I} [I4], which is an ex-
tension of both Ekeland’s and Zhong’s variational principles.

Theorem 2.2. Let (X,d) be a complete metric space, a € X be a fixed point and
let p: X x X — Ry be a u-distance on X lower semicontinuous in its second
argument. Let f: X — (—o0,00] be a proper lower semicontinuous function which
is bounded from below and let b : [0,00) — (0,00) be a non-increasing continuous
function such that

B(t):/O b(r)dr,

where B is a C' function from Ry to itself and B(co) = +o00. Let y € X be such
that p(y,y) =0 and

f(y) > inf f(z). (2.4)

zeX
Then, for eg > 0, there exists z € X such that
(i) f(z) < f(y).
(i) pla,z) < B(y) + 8"
€0
A

(iil) f(x) > f(z) — (b(z))p(z,x), for all x € X where B(.) = p(a,.), and B*
is such that

B(y)+8~
[ bdzaw, (2.5)
B(y)

with a(y) = f(y) —infz € X f(x) > A > 0.

Proof. First, we define the function ¢ : X x X — R, by

p(a,z)+p(z,y)
o) = [ b1 d.
p(a,z)

Since b is non-increasing, for (z,z) € X x X, we deduce

p(a,z)+p(z,z)
q(z,z) = / b(t) dt
p

(a,z)

p(a,z)+p(z,y)+p(y,2)
</
P

b(t) dt

(a,z)

p(a,z)+p(z,y) p(a,z)+p(z,y)+p(y,2)
:/ b@ﬁ+/ b(t) dt
p(a,z) p(a,z)+p(z,y)

p(a,z)+p(z,y) p(a,y)er(y,z)

< / b(t) dt + / b(t) dt
p(a,r) p(a,y)

=q(z,y) +q(y, 2).
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In addition, g is obviously lower semicontinuous in its second variable. On the other

hand, we have
p(a,z)+p(z,y)
afe.) = | b(t) di
P

(a,x)
— B(p(a,2) + p(. 1)) — Blp(a,)) (26)

> b(p(a, z) + p(z, y))p(z,y)-
Taking into account the definition of function b, we obtain boundedness from below,

b(p(a, z) + p(x,y)) > b(oc) 2 M =0 (2.7)
Combining ([2.6)) and , we deduce
q(x,y) > Mp(z,y).

Since Mp(z,y) is a u-distance and the assumptions of Proposition [2.1] are verified,
q(x,y) is also u-distance.

Now, from (2.4) and (2.5, we obtain
0 <A< fly)— inf f(z) = aly)

B(y)+B" B
</ﬁ(y) b(t) dtz/o b(u+ B(y)) du (2.8)

pe
§/ b(u)du = B(8").
0
So by the above inequality,
< i *
f(y) < inf f(z)+ B(5"),

and the Theorem is applicable to ¢(z,y) for e = B(8*) > 0 and A = «a(y) > 0.
Therefore, there exists z € X such that

f(2) < fy), (2.9)
q(y,2) < a(y) (2.10)
fl@)> f(z) — Ba((i? ~q(z,x), Vx#z xe€X. (2.11)
By (U1), we know that
pla, 2) < pla,y) +py, 2) = B(y) + p(y, 2). (212)

On the other hand, from (2.5 and (2.10)) it follows that

B(B(y) +p(y, 2)) = B(B(y)) < aly) < B(By) + 87) — B(B(y))-
Thereby, we find that
p(y,2) < 5%, (2.13)
because B is a nondecreasing function. Thus, (ii) follows from and .
Moreover, since

p(a,2)+p(z,2)
q(z,x) = /( : b(t) dt < b(p(a, 2))p(z,2) = b((B(2)))p(z, 2);  (2.14)

multiplying by (—1) and, using (2.8) and (2.11)), for 0 < B(5*) < €p, we obtain

fa)> )= 0 ) 2 10 - Laeo) 2 £6) - SUEEDME)
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for all z € X, and (iii) is verified. This completes the proof. O

Remark 2.3. Let a, f, b, p, a(y), B(y), %, and X be as in Theorem
(i) When a =y, b(t) = 1, B* = A, €0 > a(y) > A > 0, and p(z,y) = d(z,y),
Theorem reduces to Ekeland’s variational principle (EVP) [6] [7].
(ii) Take a = zo,
1
b(t) = —
®) 1+ h(t)’

where h : [0,00) — [0,00) is a continuous nondecreasing function such that

/0071 dr = +
r = 400,
o L1+ h(r)

€ > a(y) = A >0, B(y) = d(xo,y) = ro, B =" and p(z,y) = d(,y).
Therefore, Theorem [2.2] implies Theorem

3. THE B-(PS) CONDITION AND THE EXISTENCE OF A MINIMAL POINT

Throughout this section X denotes a Banach space. We recall that a function
f:X — (—o00,00] is called Gateaux differentiable at x € X with f(z) < oo if there
exists a continuous linear functional f’(x) such that

. fle+ty) — f(z
tiy JEEZTE) 1)

t—0 t

holds for every y € X.
In the following, we assume that f: X — (—o0, 00] is Gateaux differentiable.

Theorem 3.1. Let a € X be fizred and p: X x X — Ry a u-distance on X lower
semicontinuous in its second argument. Let f : X — (—o0, 00| be a proper lower
semicontinuous function which is bounded from below and let b : [0,00) — (0, 00)
be a nonincreasing continuous function such that

B(t) = /O “b(r)dr.

where B is a C' function from R, to itself such that B(co) = +oo. Let y € X be
such that p(y,y) =0 and

inf .
f(y) > inf f(z)
Then, for every € > 0, there exists z € X such that

(i) f(2) < f(w),
(ii") B(2) < B(y) + 6%,
i) ||f ())/b(B(2)) < € for all x € X, where 5(.) = p(a,.), and §* is a real

number such that
B(y)+B"
[ bazaw.
B(y)

with a(y) = f(y) — infyex f(z) > 0.

Proof. We have the hypotheses of Theorem So, applying this theorem, we
obtain (i’) and (ii’) from (i) and (ii). Moreover, (iii) guaranties that there exists
z € X such that

f@) > f(z) — <b(B(2))p(z,z), forallze X, (3.1)

<
A
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where 0 < A < a(y). Choose z = z + ty with ||y|| =1 in (3.1)) and obtain
ferty) —f(z) o e b(B(z))p(z 2 + ty)

3.2
t A t ’ (32)
for every t > 0. Let A be such that
t
Jim 228 (3.3)
t—0 t
Then, letting ¢ — 0 in (3.2)) and using (3.3]), we conclude that
(f'(2),y) > —€-b(B(2)), (3.4)
for all y € X with ||y|| = 1. Since (3.4) is true for +y, we deduce that
[(f'(2), )] < € b(B(2)). (3.5)
Now, from (3.5]), we obtain
f'(2)y
IFEl= s WLy
yeX,|lyll=1 [yl
and the claim (iii’) holds. O

Corollary 3.2. Suppose that the hypotheses of Theorem are verified. Then
there exists a minimizing sequence {zn}n of f such that

f(zn) < inf f(2) +e,
1 ()l /6(B(20)) — 0.

The proof follows form taking e = %, n=1,2,... in Theorem
Let B be the set of all non-increasing and strictly positive continuous functions

b:]0,00) — (0,00) such that
(o)
/ b(t) dt = 0.
0

Let p : X x X — R, be a u-distance on X lower semicontinuous in its second
variable with p(z,z) = 0 Vz € X, a € X a fixed point and 5 : X — R, defined by
ﬁ(fL‘) = p(a, SL‘)

Definition 3.3. Let f: X — (—00,+00] be a C! function, ¢ € R and b € B.

e f is said to satisfy the b-(PS) condition if any sequence {z,}, in X such
that {f(x,)} is bounded and ||f'(z,)||/b(8(zn)) — 0 has a convergent
subsequence.

o f is said to satisfy the b-(PS). condition if any sequence {z,}, in X such
that f(z,) — c and || f'(z,)||/b(8(zy)) — 0 has a convergent subsequence.

Remark 3.4. Suppose that G(x) = d(a, ).

e Then the b-(PS) condition is the Schechter-(PS) condition [I0].

e If b is constant, then the b-(PS) condition is the usual (PS) condition.
If b(t) = 1/(1 +t), then the b-(PS) condition is the Cerami-(PS) condition
[4].
Ifb(t) = 1/(1+h(t)), where h : [0,00) — [0, 00) is a non-decreasing function,
then the b-(PS) condition is the Zhong-(WPS) condition [I7] 18].

Theorem 3.5. If f is bounded below and satisfying the b-(PS) condition, then f
has a minimal point.
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Proof. By Corollary there is a minimizing sequence {z,}, in X such that
f(zn) <infgex f(z) + e and || f'(z,)|/b(B(2,)) — 0. The b-(PS) condition implies
that {z, }, has a subsequence {zy, }r convergent to some point z*. Since f is lower
semicontinuous, we obtain

i < *) < limi <i .
inf f < f(2") < liminf f(z,,) < inf f
Therefore, f(z*) =infx f. O

4. THE B-(PS) CONDITION VERSUS COERCIVITY

Using the method of gradient flows, Li [8] first observed that the (PS) condition
implies the coercivity for C' functionals bounded from below. Using Ekeland’s vari-
ational principle, Caklovic, Li and Willem [3] proved the same result for a Gateaux
differentiable functional which is lower semicontinuous. The same conclusion was
also proved by Costa and Silva [5] and Brezis and Nirenberg [2] for C''functionals by
also employing Ekeland’s principle. Using ZVP, Zhong [I7] studied the connection
between (WPS) and coercivity. A similar result was established by Suzuki [II],
using 7T-distance.

In this section, we discuss the relation between the b-(PS) condition and coer-
civity. We recall that a function f : X — (—o0, 00] is said to be coercive if

lim inf f(z) = occ.

r—oo|z|zr

For our aim, we first prove the following lemma.

Lemma 4.1. Let p : X x X — Ry be a u-distance on X and f: X — R isa
Gateauz differentiable function. Suppose that there are £ > 0, § > 0 and either of
the following conditions is satisifed:

o f(y) > f(x) — Ep(a,y) for all y € X with 0 < plz,y) < 5; or

o f(y) < f(x) +&p(x,y) for ally € X with 0 < p(z,y) <.
Then || f'(z)] < €.

Proof. Assume that

fy) = fz) = &p(x,y) (4.1)
for all y € X with 0 < p(z,y) <¢. Set y = x + dz in (4.1)), and infer that
F(o+62) = F(@) > —€p(w,z + 62) > —€6 (42)
Then,
52) —
fla+ 2) 1@ e (4.3)
Taking the limit as 6 — 0, we obtain
(f'(2),y) = =€ (4.4)
As (4.4) holds for both of +y, we derive
[(f'(x),y)] <€ (4.5)
Then, for all y € X with ||y|| = 1, the inequality (4.5) implies that
I
x )
IF@l= sp WD <,
vex,yl=1 Il veX,lyll=1

and the desired claim holds. O
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Next, we consider a more suitable version of Theorem [I.5] for our purpose.

Theorem 4.2. Let (X,d) be a complete metric spaces, let f : X — (—o00,00]
be a proper lower semicontinuous function which is bounded from below, and let
p: XxX — Ry be au-distance on X lower semicontinuous in its second argument.
Then for e > 0 and x € X with f(z) < oo and p(x,z) = 0, there erists v € X such
that

(i) f(v) < f(z) —ep(z,v);

(ii) f(w) > f(v) —ep(v,w), for all w € X\{v}.

For the sake of completeness, we supply a proof of the equivalence between

Theorems [LLAl and 4.2

Proof. <= Let the assumptions of Theorem be satisfied. Obviously, the con-
clusion of (1) follows by Theorem For (2), applying again Theorem with

€ = 5, we deduce that

pla,) < 2(f(@) — F(0) <

Hence the conclusion of Theorem [LH is valid.
= Now, suppose that Theorem [L.5] holds. Let 2 € X with f(z) < oo and e >0
be given. Fix any e > f(z) — infuex f(a) and set A = £. Consider

M(z) ={ve X | f(v) < fz) - ep(z,v)}.

By the lower semicontinuity of f and p(z,.), the set M(x) is closed. Furthermore,
M (x) is nonempty as x € M(x). Applymg Theorem- 2) for the chosen e, A and
for M(x) instead of X one finds v € X such that

fw )<f($)a p(z,v) < A,
fw) > f(v) — = -plv,w), forallwe M(z)\{v}.

Since v € M(z), then (i) holds.
To show (ii) it is sufficient to check that

fw) > f(v) — < - plv,w), forallw¢ M(x).
By the definition of M (x), the property w ¢ M (x) means that

f(w) > f(z) — ep(z, w).
From this and (i) we easily deduce (ii) and then obtain Theorem O

We are in position to state the main result of this section. The proof follows a
technique developed by Suzuki in [I1].

Theorem 4.3. Let X be a Banach space, a € X fized, and let p: X x X — R
be a symmetric u-distance on X, lower semicontinuous in its second argument and
such that p(z,z) = 0 for allz € X. Let f : X — (—o0,00] be a proper lower
semicontinuous function which is bounded from below and let b : [0,00) — (0, 00)
be a mon-increasing continuous function such that

B(t):/o b(r) dr,
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where B is a function from Ry to itself such that B(co) = 4+00. Let a € X be fized
and §: X — Ry defined by B(x) = p(a,x). Assume that f is Gateauz differentiable
at every point x € X with f(z) € R. If

a = liminf eR,
Jiminf f ()

then there exists a sequence {zp}n in X such that

(a) limy— oo B(2n) = 005

(b) limy—oo f(2n) = o

(€) limp oo ||/ (zn)I/6(B(2n)) = 0.
Proof. We shall show only the following: for every € > 0, there exists v € X
satisfying 3(v) > L1, |f(v) — a| < e and || f'(v)[|/b(B(v)) < e. Fix e > 0 and define
a function x : [0,00) — [0, 00) by

1
x(t) = ib(t +1) (4.6)

for t € [0,00). Then y is non-increasing, and

/Ooox(t)dt_;/Ooob(tﬂ)dt_;/lmb(t)dt_oq

We also determine a function h : X — (—o0, +00] by
h(z) = max{f(z),« — 2¢} (4.7

for z € X. Then it is obvious that h is proper lower semicontinuous and bounded
from below. We choose r, 7’ € R with % <r<ri,l<r,

g(i;;fzrf(y) >a—e, (4.8)
/T x(t)dt = 3. (4.9)

We also choose u € X with
Bu)>r", flu) <a+e. (4.10)

We note that h(u) = f(u) because S(u) > ' > r. We know from the earlier that
the function ¢ : X x X — R, defined by

B(u)+p(u,v)
q(u,v) = / x(t)dt (4.11)
B(u)

is a u-distance. So, by Proposition the function s : X x X — R, defined by

s(u,v) = q(u,v) + q(v,u) (4.12)
is also a u-distance. Thereby, by Theorem [£.2] there exists v € X such that

h(v) < h(u) — es(u, v), (4.13)
h(w) > h(v) —es(v,w), Vw # v. (4.14)

Arguing by contradiction, we assume that 5(v) < r. Moreover, we have

Bv) <r<r' < B(u). (4.15)
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Also, from (4.11)), (4.12)) and (4.13)), we successively obtain

B(u)+p(u,v) B(v)+p(u,v)
a—2e < h(v) < h(u) — 5/ x(t) dt — 8/ x(t) dt
B(u) B(v)

B(0) +p(us0) (4.16)
< h(u)— e / () dt
B(v)

< h(u) — e(H(B(v) + p(u,v)) = H(B(v))),
where H is a primitive of x. Using that H is nondecreasing in (4.16)), we obtain

B(u)
o — 2 < h(u) — e(H(B(u) — H(B©))) = h(u) — ¢ / x(tydt.  (417)

Then, by (4.15), (4.17) and (4.10), we obtain

’

a—25§h(u)—6/r x(t)dt = f(u) —3e < a — 2e,

which is a contradiction. Therefore,
1
Bv) >r > =
and (a) holds. Thus, we have h(v) = f(v) and
a—e< inf fly) < fv) < flu) <a+e.
By)=r

This implies

[f(v) —af <e,
that is (b). For (c), from (4.11)) , (4.12)) and (4.14) and the non-increasing property
of x, we infer

B(v)+p(v,w) B(w)+p(v,w)

h(w) > h(v) — E/ﬁ(v) x(t) dt — 5/5(1”) x(t)dt (4.18)

2 h(v) —e(x(8(v)) + x(B(w))) - p(v,w),
for w € X, w # v. Since f is lower semicontinuous and f(v) > a — 2¢, there exists
0 € (0,1) such that f(w) > o — 2¢ for w € X with p(v,w) < §. Hence, for w € X
with 0 < p(v,w) < §, since h(w) = f(w) and
B(w) = p(a,w) = p(a,v) — p(w,v) > B(v) =6 > f(v) =1 >0,
we derive
> f(v) —e(x(B(v)) + x(B(v) = 1)) - p(v, w)
> f(v) = 2ex(B(v) — 1) - p(v,w) (4.19)
f(v) —eb(B(v)) - p(v, w).
By means of Lemma [4.1] we reach
1/ (v)[| < eb(B(v)),
and (c) is verified too. The proof is complete. O
Corollary 4.4. Let X be a Banach space. Let f : X — (—o00,00] be a proper lower
semicontinuous function which is bounded from below. Assume that f is Gateauz

differentiable at every point x € X with f(x) € R. If f satisfies the b-(PS).
condition for all ¢ € R, then f is coercive; i.e., f(x) — oo as f(x) — oo.
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Proof. Suppose the contrary; then a = liminfg,) o f(#) € R. By Theorem
there exists a sequence {z,}, in X such that 8(z,) — oo, f(z,) — a and
' (za)]l/b(B(2n)) — 0. Then, the b-(PS), condition implies that {z,}, has a
convergent subsequence, which clearly leads to a contradiction. ([

Remark 4.5. Corollary generalizes the result proved by [8] using a gradient
flow, by Costa-Silva [5], Caklovic-Li-Willem [3] and Brezis-Nirenberg [2] using EVP,
and by Zhong [I7] using ZVP.
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