Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 160, pp. 1-12. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

UME'S U-DISTANCE AND ITS RELATION WITH BOTH (PS)-CONDITION AND COERCIVITY

GEORGIANA GOGA

Abstract

In this article, we study the connection between the u-distance and a new Palais-Smale condition of compactness. We compare this Palais-Smale condition with the coercivity.

1. Introduction and preliminaries

In 1997, Zhong [17, 18] generalized the Ekeland variational principle and proved the existence of minimal points for Gâteaux-differentiable functions under weak (PS) conditions. The following theorem is well-known and we name it Zhong's variational principle (ZVP).
Theorem 1.1 (17, 18). Let (X, d) be a complete metric space, $x_{0} \in X$ fixed and $f: X \rightarrow(-\infty, \infty]$ a proper lower semicontinuous function which is bounded from below. Let $h:[0, \infty) \rightarrow[0, \infty)$ be a nondecreasing continuous function such that

$$
\int_{0}^{\infty} \frac{1}{1+h(r)} d r=+\infty
$$

Then, for every $\varepsilon>0$, every $y \in X$ such that

$$
f(y)<\int_{x \in X} f(x)+\varepsilon
$$

and $\lambda>0$, there exists some point $z \in X$ such that
(i) $f(z) \leq f(y)$,
(ii) $d\left(x_{0}, z\right) \leq r_{0}+r^{*}$,
(iii) $f(x) \geq f(z)-\frac{\varepsilon}{\lambda\left(1+h\left(d\left(x_{0}, z\right)\right)\right)} \cdot d(z, x)$, for all $x \in X$, where $r_{0}=d\left(x_{0}, y\right)$, and r^{*} is such that

$$
\int_{r_{0}}^{r_{0}+r^{*}} \frac{1}{1+h(t)} d t \geq \lambda
$$

In 2010, Ume 15 introduced a new concept of distance called u-distance, which generalizes some distances anterior studied (see e.g., ω-distance [9, 16, Tataru's distance [13], τ-distance [11]) and expanded the celebrated Ekeland's variational principle.

[^0]In Section 2, we present a generalization of Zhong's variational principle using Ume's u-distance. In Section 3, we define a new Palais-Smale condition related to above variational principle and we study the existence of the minimal point for Gâteaux-differentiable functions. In the last section, we deal with the relation between new Palais-Smale condition and the coercivity, following a techniques which is based on u-distance. Our results extend and improve other known results due to Zhong [17, 18, Ekeland [6, 7] and Costa \& Silva [5].

For the beginning, we present some results needed in our approach. First, we recall Ume's [15] concept of generalized distance in metric spaces.

Definition 1.2. Let (X, d) be a metric space. A function $p: X \times X \rightarrow \mathbb{R}_{+}$is called u-distance on X if there exists a map $\Theta: X \times X \times \mathbb{R}_{+} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that the following conditions hold:
(U1) $p(x, z) \leq p(x, y)+p(y, z)$, for all $x, y, z \in X$;
(U2) $\Theta(x, y, 0,0)=0$ and $\Theta(x, y, s, t) \geq \min \{s, t\}$ for all $x, y \in X, s, t \in \mathbb{R}_{+}$, and for every $x \in X$ and $\varepsilon>0$, there is $\delta>0$ such that

$$
\left|\Theta(x, y, s, t)-\Theta\left(x, y, s_{0}, t_{0}\right)\right|<\varepsilon
$$

if $\left|s-s_{0}\right|<\delta,\left|t-t_{0}\right|<\delta, s, s_{0}, t, t_{0} \in \mathbb{R}_{+}$whenever $y \in X$;
(U3) $\lim _{n} x_{n}=x$ and $\lim \sup _{n}\left\{\Theta\left(w_{n}, z_{n}, p\left(w_{n}, x_{m}\right), p\left(z_{n}, x_{m}\right)\right): m \geq n\right\}=0$ imply

$$
p(y, x) \leq \liminf _{n \rightarrow \infty} p\left(y, x_{n}\right) \quad \text { for } y \in X
$$

(U4) The four equalities

$$
\begin{gathered}
\underset{n}{\limsup }\left\{p\left(x_{n}, w_{m}\right): m \geq n\right\}=0, \quad \limsup _{n}\left\{p\left(y_{n}, z_{m}\right): m \geq n\right\}=0 \\
\quad \lim _{n} \Theta\left(x_{n}, w_{n}, s_{n}, t_{n}\right)=0, \quad \lim _{n} \Theta\left(y_{n}, z_{n}, s_{n}, t_{n}\right)=0
\end{gathered}
$$

imply $\lim _{n} \Theta\left(w_{n}, z_{n}, s_{n}, t_{n}\right)=0$; or the four equalitires

$$
\begin{gathered}
\underset{n}{\limsup }\left\{p\left(w_{m}, x_{n}\right): m \geq n\right\}=0, \quad \limsup _{n}\left\{p\left(z_{m}, y_{n}\right): m \geq n\right\}=0 \\
\lim _{n} \Theta\left(x_{n}, w_{n}, s_{n}, t_{n}\right)=0, \quad \lim _{n} \Theta\left(y_{n}, z_{n}, s_{n}, t_{n}\right)=0
\end{gathered}
$$

imply $\lim _{n} \Theta\left(w_{n}, z_{n}, s_{n}, t_{n}\right)=0 ;$
(U5) The two equalities

$$
\begin{aligned}
& \lim _{n} \Theta\left(w_{n}, z_{n}, p\left(w_{n}, x_{n}\right), p\left(z_{n}, x_{n}\right)\right)=0 \\
& \lim _{n} \Theta\left(w_{n}, z_{n}, p\left(w_{n}, y_{n}\right), p\left(z_{n}, y_{n}\right)\right)=0
\end{aligned}
$$

imply $\lim _{n} d\left(x_{n}, y_{n}\right)=0$; or the two equalities

$$
\begin{aligned}
& \lim _{n} \Theta\left(a_{n}, b_{n}, p\left(x_{n}, a_{n}\right), p\left(x_{n}, b_{n}\right)\right)=0 \\
& \lim _{n} \Theta\left(a_{n}, b_{n}, p\left(z_{n}, a_{n}\right), p\left(y_{n}, b_{n}\right)\right)=0
\end{aligned}
$$

imply $\lim _{n} d\left(x_{n}, y_{n}\right)=0$.
Example 1.3 (15). Let X be a space with norm $\|\cdot\|$. Then the function p : $X \times X \rightarrow \mathbb{R}_{+}$defined by $p(x, y)=\|x\|$ is a u-distance on X, but it is not a τ-distance on X, in Suzuki's sense [11].

Example $1.4([15)$. Let p be a u-distance on a metric space (X, d) and let c be a real positive number. Then a function $q: X \times X \rightarrow \mathbb{R}_{+}$defined by $q(x, y)=c p(x, y)$ for every $x, y \in X$ is also a u-distance on X.

By means of the generalized u-distance, Ume obtained in [15] the following version of Ekeland's variational principle. This result will play a crucial role in the proof of our variational principle.
Theorem 1.5 ([15]). Let (X, d) be a complete metric space, let $f: X \rightarrow(-\infty, \infty]$ be a proper lower semicontinuous function which is bounded from below, and let $p: X \times X \rightarrow \mathbb{R}_{+}$be a u-distance on X. Then the following two statements hold:
(1) For each $x \in X$ with $f(x)<\infty$, there exists $v \in X$ such that $f(v) \leq f(x)$ and $f(w)>f(v)-p(v, w)$, for all $w \in X \backslash v\}$.
(2) For each $\varepsilon>0, \lambda>0$ and $x \in X$ with $p(x, x)=0$ and $f(x)<\inf _{a \in X} f(a)+$ ε, there exists $v \in X$ such that

$$
\begin{gathered}
f(v) \leq f(x), \quad p(x, v) \leq \lambda \\
f(w)>f(v)-\frac{\varepsilon}{\lambda} \cdot p(v, w), \quad \text { for all } w \in X \backslash\{v\}
\end{gathered}
$$

2. A GEnERALIZATION OF ZHONG'S VARIATIONAL PRINCIPLE

We start this section by extending a result by Suzuki [12], using the u-distance.
Proposition 2.1. Let (X, d) be a complete metric space and let $p: X \times X \rightarrow \mathbb{R}_{+}$ be a u-distance on X. Let $q: X \times X \rightarrow \mathbb{R}_{+}$be a function such that
(a) $q(x, z) \leq q(x, y)+q(y, z)$ for all $x, y, z \in X$;
(b) q is lower semicontinuous in its second argument;
(c) $q(x, y) \geq p(x, y)$ for all $x, y \in X$.

Then q is also a u-distance.
Proof. Assumption (a) is equivalently with (U1) . Let $\Theta: X \times X \times \mathbb{R}_{+} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$ be a function satisfying (U2)-(U5). Clearly, (U3) follows from (b). Now, we assume that

$$
\begin{gather*}
\limsup _{n}\left\{q\left(x_{n}, w_{m}\right): m \geq n\right\}=0 \\
\limsup _{n}\left\{q\left(y_{n}, z_{m}\right): m \geq n\right\}=0 \\
\lim _{n} \Theta\left(x_{n}, w_{n}, s_{n}, t_{n}\right)=0 \tag{2.1}\\
\lim _{n} \Theta\left(y_{n}, z_{n}, s_{n}, t_{n}\right)=0
\end{gather*}
$$

By (2.1) and (c), we have

$$
\begin{aligned}
& \limsup _{n}\left\{p\left(x_{n}, w_{m}\right): m \geq n\right\}=0 \\
& \limsup _{n}\left\{p\left(y_{n}, z_{m}\right): m \geq n\right\}=0
\end{aligned}
$$

Therefore, by (U4), we find $\lim _{n} \Theta\left(w_{n}, z_{n}, s_{n}, t_{n}\right)=0$, and derive (U 4$)_{q}$.
Next, we assume that

$$
\begin{align*}
& \lim _{n} \Theta\left(w_{n}, z_{n}, q\left(w_{n}, x_{n}\right), q\left(z_{n}, x_{n}\right)\right)=0 \tag{2.2}\\
& \lim _{n} \Theta\left(w_{n}, z_{n}, q\left(w_{n}, y_{n}\right), q\left(z_{n}, y_{n}\right)\right)=0 \tag{2.3}
\end{align*}
$$

Applying again (c) in 2.2 and 2.3), we obtain

$$
\begin{aligned}
& \lim _{n} \Theta\left(w_{n}, z_{n}, p\left(w_{n}, x_{n}\right), p\left(z_{n}, x_{n}\right)\right)=0 \\
& \lim _{n} \Theta\left(w_{n}, z_{n}, p\left(w_{n}, y_{n}\right), p\left(z_{n}, y_{n}\right)\right)=0
\end{aligned}
$$

By (U5), we have $\lim _{n} d\left(x_{n}, y_{n}\right)=0$, and $(\mathrm{U} 5)_{q}$, is also verified.
Next, we establish a more general variational principle [1, 14, which is an extension of both Ekeland's and Zhong's variational principles.

Theorem 2.2. Let (X, d) be a complete metric space, $a \in X$ be a fixed point and let $p: X \times X \rightarrow \mathbb{R}_{+}$be a u-distance on X lower semicontinuous in its second argument. Let $f: X \rightarrow(-\infty, \infty]$ be a proper lower semicontinuous function which is bounded from below and let $b:[0, \infty) \rightarrow(0, \infty)$ be a non-increasing continuous function such that

$$
B(t)=\int_{0}^{t} b(r) d r
$$

where B is a C^{1} function from \mathbb{R}_{+}to itself and $B(\infty)=+\infty$. Let $y \in X$ be such that $p(y, y)=0$ and

$$
\begin{equation*}
f(y)>\inf _{x \in X} f(x) \tag{2.4}
\end{equation*}
$$

Then, for $\epsilon_{0}>0$, there exists $z \in X$ such that
(i) $f(z) \leq f(y)$,
(ii) $p(a, z) \leq \beta(y)+\beta^{*}$,
(iii) $f(x)>f(z)-\frac{\epsilon_{0}}{\lambda} b(\beta(z)) p(z, x)$, for all $x \in X$ where $\beta()=.p(a,$.$) , and \beta^{*}$ is such that

$$
\begin{equation*}
\int_{\beta(y)}^{\beta(y)+\beta^{*}} b(t) d t \geq \alpha(y) \tag{2.5}
\end{equation*}
$$

with $\alpha(y)=f(y)-\inf x \in X f(x) \geq \lambda>0$.
Proof. First, we define the function $q: X \times X \rightarrow \mathbb{R}_{+}$by

$$
q(x, y):=\int_{p(a, x)}^{p(a, x)+p(x, y)} b(t) d t
$$

Since b is non-increasing, for $(x, z) \in X \times X$, we deduce

$$
\begin{aligned}
q(x, z) & =\int_{p(a, x)}^{p(a, x)+p(x, z)} b(t) d t \\
& \leq \int_{p(a, x)}^{p(a, x)+p(x, y)+p(y, z)} b(t) d t \\
& =\int_{p(a, x)}^{p(a, x)+p(x, y)} b(t) d t+\int_{p(a, x)+p(x, y)}^{p(a, x)+p(x, y)+p(y, z)} b(t) d t \\
& \leq \int_{p(a, x)}^{p(a, x)+p(x, y)} b(t) d t+\int_{p(a, y)}^{p(a, y)+p(y, z)} b(t) d t \\
& =q(x, y)+q(y, z) .
\end{aligned}
$$

In addition, q is obviously lower semicontinuous in its second variable. On the other hand, we have

$$
\begin{align*}
q(x, y) & =\int_{p(a, x)}^{p(a, x)+p(x, y)} b(t) d t \\
& =B(p(a, x)+p(x, y))-B(p(a, x)) \tag{2.6}\\
& \geq b(p(a, x)+p(x, y)) p(x, y)
\end{align*}
$$

Taking into account the definition of function b, we obtain boundedness from below,

$$
\begin{equation*}
b(p(a, x)+p(x, y))>b(\infty) \geq M \geq 0 \tag{2.7}
\end{equation*}
$$

Combining 2.6 and 2.7, we deduce

$$
q(x, y) \geq M p(x, y)
$$

Since $M p(x, y)$ is a u-distance and the assumptions of Proposition 2.1 are verified, $q(x, y)$ is also u-distance.

Now, from 2.4 and 2.5 , we obtain

$$
\begin{align*}
0 & <\lambda \leq f(y)-\inf _{x \in X} f(x)=\alpha(y) \\
& \leq \int_{\beta(y)}^{\beta(y)+\beta^{*}} b(t) d t=\int_{0}^{\beta^{*}} b(u+\beta(y)) d u \tag{2.8}\\
& \leq \int_{0}^{\beta^{*}} b(u) d u=B\left(\beta^{*}\right)
\end{align*}
$$

So by the above inequality,

$$
f(y) \leq \inf _{x \in X} f(x)+B\left(\beta^{*}\right)
$$

and the Theorem 1.5 is applicable to $q(x, y)$ for $\varepsilon=B\left(\beta^{*}\right)>0$ and $\lambda=\alpha(y)>0$. Therefore, there exists $z \in X$ such that

$$
\begin{gather*}
f(z) \leq f(y) \tag{2.9}\\
q(y, z) \leq \alpha(y) \tag{2.10}\\
f(x)>f(z)-\frac{B\left(\beta^{*}\right)}{\alpha(y)} \cdot q(z, x), \quad \forall x \neq z, x \in X . \tag{2.11}
\end{gather*}
$$

By (U1), we know that

$$
\begin{equation*}
p(a, z) \leq p(a, y)+p(y, z)=\beta(y)+p(y, z) \tag{2.12}
\end{equation*}
$$

On the other hand, from 2.5 and 2.10 it follows that

$$
B(\beta(y)+p(y, z))-B(\beta(y)) \leq \alpha(y) \leq B\left(\beta(y)+\beta^{*}\right)-B(\beta(y))
$$

Thereby, we find that

$$
\begin{equation*}
p(y, z) \leq \beta^{*} \tag{2.13}
\end{equation*}
$$

because B is a nondecreasing function. Thus, (ii) follows from 2.12) and 2.13). Moreover, since

$$
\begin{equation*}
q(z, x)=\int_{p(a, z)}^{p(a, z)+p(z, x)} b(t) d t \leq b(p(a, z)) p(z, x)=b((\beta(z))) p(z, x) \tag{2.14}
\end{equation*}
$$

multiplying by (-1) and, using 2.8 and 2.11, for $0<B\left(\beta^{*}\right) \leq \epsilon_{0}$, we obtain

$$
f(x)>f(z)-\frac{B\left(\beta^{*}\right)}{\alpha(y)} \cdot q(z, x) \geq f(z)-\frac{\epsilon_{0}}{\lambda} q(z, x) \geq f(z)-\frac{\epsilon}{\lambda} b((\beta(z))) p(z, x)
$$

for all $x \in X$, and (iii) is verified. This completes the proof.
Remark 2.3. Let $a, f, b, p, \alpha(y), \beta(y), \beta^{*}$, and X be as in Theorem 2.2 .
(i) When $a=y, b(t) \equiv 1, \beta^{*}=\lambda, \epsilon_{0}>\alpha(y) \geq \lambda>0$, and $p(x, y)=d(x, y)$, Theorem 2.2 reduces to Ekeland's variational principle (EVP) [6, 7].
(ii) Take $a=x_{0}$,

$$
b(t)=\frac{1}{1+h(t)},
$$

where $h:[0, \infty) \rightarrow[0, \infty)$ is a continuous nondecreasing function such that

$$
\int_{0}^{\infty} \frac{1}{1+h(r)} d r=+\infty
$$

$\epsilon_{0}>\alpha(y) \geq \lambda>0, \beta(y)=d\left(x_{0}, y\right)=r_{0}, \beta^{*}=r^{*}$ and $p(x, y)=d(x, y)$. Therefore, Theorem 2.2 implies Theorem 1.1 .

3. The b-(PS) condition and the existence of a minimal point

Throughout this section X denotes a Banach space. We recall that a function $f: X \rightarrow(-\infty, \infty]$ is called Gâteaux differentiable at $x \in X$ with $f(x)<\infty$ if there exists a continuous linear functional $f^{\prime}(x)$ such that

$$
\lim _{t \rightarrow 0} \frac{f(x+t y)-f(x)}{t}=\left\langle f^{\prime}(x), y\right\rangle
$$

holds for every $y \in X$.
In the following, we assume that $f: X \rightarrow(-\infty, \infty]$ is Gâteaux differentiable.
Theorem 3.1. Let $a \in X$ be fixed and $p: X \times X \rightarrow \mathbb{R}_{+} a u$-distance on X lower semicontinuous in its second argument. Let $f: X \rightarrow(-\infty, \infty]$ be a proper lower semicontinuous function which is bounded from below and let $b:[0, \infty) \rightarrow(0, \infty)$ be a nonincreasing continuous function such that

$$
B(t)=\int_{0}^{t} b(r) d r
$$

where B is a C^{1} function from \mathbb{R}_{+}to itself such that $B(\infty)=+\infty$. Let $y \in X$ be such that $p(y, y)=0$ and

$$
f(y)>\inf _{x \in X} f(x) .
$$

Then, for every $\epsilon>0$, there exists $z \in X$ such that
(i') $f(z) \leq f(y)$,
(ii') $\beta(z) \leq \beta(y)+\beta^{*}$,
(iii') $\left\|f^{\prime}(z)\right\| / b(\beta(z)) \leq \epsilon$ for all $x \in X$, where $\beta()=.p(a,$.$) , and \beta^{*}$ is a real number such that

$$
\int_{\beta(y)}^{\beta(y)+\beta^{*}} b(t) d t \geq \alpha(y)
$$

with $\alpha(y)=f(y)-\inf _{x \in X} f(x)>0$.
Proof. We have the hypotheses of Theorem 2.2 So, applying this theorem, we obtain (i') and (ii') from (i) and (ii). Moreover, (iii) guaranties that there exists $z \in X$ such that

$$
\begin{equation*}
f(x) \geq f(z)-\frac{\epsilon}{\lambda} b(\beta(z)) p(z, x), \quad \text { for all } x \in X, \tag{3.1}
\end{equation*}
$$

where $0<\lambda \leq \alpha(y)$. Choose $x=z+t y$ with $\|y\|=1$ in 3.1) and obtain

$$
\begin{equation*}
\frac{f(z+t y)-f(z)}{t} \geq-\frac{\epsilon}{\lambda} \frac{b(\beta(z)) p(z, z+t y)}{t} \tag{3.2}
\end{equation*}
$$

for every $t>0$. Let λ be such that

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{p(z, z+t y)}{t} \leq \lambda \tag{3.3}
\end{equation*}
$$

Then, letting $t \rightarrow 0$ in (3.2) and using (3.3), we conclude that

$$
\begin{equation*}
\left\langle f^{\prime}(z), y\right\rangle \geq-\epsilon \cdot b(\beta(z)) \tag{3.4}
\end{equation*}
$$

for all $y \in X$ with $\|y\|=1$. Since (3.4) is true for $\pm y$, we deduce that

$$
\begin{equation*}
\left|\left\langle f^{\prime}(z), y\right\rangle\right| \leq \epsilon \cdot b(\beta(z)) \tag{3.5}
\end{equation*}
$$

Now, from (3.5), we obtain

$$
\left\|f^{\prime}(z)\right\|=\sup _{y \in X,\|y\|=1} \frac{\left|\left\langle f^{\prime}(z), y\right\rangle\right|}{\|y\|} \leq \epsilon \cdot b(\beta(z))
$$

and the claim (iii') holds.
Corollary 3.2. Suppose that the hypotheses of Theorem 3.1 are verified. Then there exists a minimizing sequence $\left\{z_{n}\right\}_{n}$ of f such that

$$
\begin{array}{r}
f\left(z_{n}\right)<\inf _{x \in X} f(x)+\epsilon, \\
\left\|f^{\prime}\left(z_{n}\right)\right\| / b\left(\beta\left(z_{n}\right)\right) \rightarrow 0 .
\end{array}
$$

The proof follows form taking $\epsilon=\frac{1}{n}, n=1,2, \ldots$ in Theorem 3.1.
Let \mathcal{B} be the set of all non-increasing and strictly positive continuous functions $b:[0, \infty) \rightarrow(0, \infty)$ such that

$$
\int_{0}^{\infty} b(t) d t=\infty
$$

Let $p: X \times X \rightarrow \mathbb{R}_{+}$be a u-distance on X lower semicontinuous in its second variable with $p(x, x)=0 \forall x \in X, a \in X$ a fixed point and $\beta: X \rightarrow \mathbb{R}_{+}$defined by $\beta(x)=p(a, x)$.
Definition 3.3. Let $f: X \rightarrow(-\infty,+\infty]$ be a C^{1} function, $c \in \mathbb{R}$ and $b \in \mathcal{B}$.

- f is said to satisfy the b-(PS) condition if any sequence $\left\{x_{n}\right\}_{n}$ in X such that $\left\{f\left(x_{n}\right)\right\}$ is bounded and $\left\|f^{\prime}\left(x_{n}\right)\right\| / b\left(\beta\left(x_{n}\right)\right) \rightarrow 0$ has a convergent subsequence.
- f is said to satisfy the $\mathrm{b}-(\mathrm{PS})_{c}$ condition if any sequence $\left\{x_{n}\right\}_{n}$ in X such that $f\left(x_{n}\right) \rightarrow c$ and $\left\|f^{\prime}\left(x_{n}\right)\right\| / b\left(\beta\left(x_{n}\right)\right) \rightarrow 0$ has a convergent subsequence.
Remark 3.4. Suppose that $\beta(x)=d(a, x)$.
- Then the b-(PS) condition is the Schechter-(PS) condition 10 .
- If b is constant, then the b-(PS) condition is the usual $(P S)$ condition.
- If $b(t)=1 /(1+t)$, then the b-(PS) condition is the Cerami-(PS) condition 4].
- If $b(t)=1 /(1+h(t))$, where $h:[0, \infty) \rightarrow[0, \infty)$ is a non-decreasing function, then the b-(PS) condition is the Zhong-(WPS) condition [17, 18].
Theorem 3.5. If f is bounded below and satisfying the b-(PS) condition, then f has a minimal point.

Proof. By Corollary 3.2, there is a minimizing sequence $\left\{z_{n}\right\}_{n}$ in X such that $f\left(z_{n}\right)<\inf _{x \in X} f(x)+\epsilon$ and $\left\|f^{\prime}\left(z_{n}\right)\right\| / b\left(\beta\left(z_{n}\right)\right) \rightarrow 0$. The b-(PS) condition implies that $\left\{z_{n}\right\}_{n}$ has a subsequence $\left\{z_{n_{k}}\right\}_{k}$ convergent to some point z^{*}. Since f is lower semicontinuous, we obtain

$$
\inf _{X} f \leq f\left(z^{*}\right) \leq \liminf _{k \rightarrow \infty} f\left(z_{n_{k}}\right) \leq \inf _{X} f
$$

Therefore, $f\left(z^{*}\right)=\inf _{X} f$.

4. The b-(PS) condition versus coercivity

Using the method of gradient flows, Li [8] first observed that the (PS) condition implies the coercivity for C^{1} functionals bounded from below. Using Ekeland's variational principle, Caklovic, Li and Willem [3] proved the same result for a Gâteaux differentiable functional which is lower semicontinuous. The same conclusion was also proved by Costa and Silva [5] and Brezis and Nirenberg [2] for C^{1} functionals by also employing Ekeland's principle. Using ZVP, Zhong [17] studied the connection between (WPS) and coercivity. A similar result was established by Suzuki [11, using τ-distance.

In this section, we discuss the relation between the b-(PS) condition and coercivity. We recall that a function $f: X \rightarrow(-\infty, \infty]$ is said to be coercive if

$$
\lim _{r \rightarrow \infty} \inf _{\|x\| \geq r} f(x)=\infty
$$

For our aim, we first prove the following lemma.
Lemma 4.1. Let $p: X \times X \rightarrow \mathbb{R}_{+}$be a u-distance on X and $f: X \rightarrow \mathbb{R}$ is a Gâteaux differentiable function. Suppose that there are $\xi \geq 0, \delta>0$ and either of the following conditions is satisifed:

- $f(y) \geq f(x)-\xi p(x, y)$ for all $y \in X$ with $0<p(x, y)<\delta$; or
- $f(y) \leq f(x)+\xi p(x, y)$ for all $y \in X$ with $0<p(x, y)<\delta$.

Then $\left\|f^{\prime}(x)\right\| \leq \xi$.
Proof. Assume that

$$
\begin{equation*}
f(y) \geq f(x)-\xi p(x, y) \tag{4.1}
\end{equation*}
$$

for all $y \in X$ with $0<p(x, y)<\delta$. Set $y=x+\delta z$ in 4.1, and infer that

$$
\begin{equation*}
f(x+\delta z)-f(x) \geq-\xi p(x, x+\delta z)>-\xi \delta \tag{4.2}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\frac{f(x+\delta z)-f(x)}{\delta}>-\xi \tag{4.3}
\end{equation*}
$$

Taking the limit as $\delta \rightarrow 0$, we obtain

$$
\begin{equation*}
\left\langle f^{\prime}(x), y\right\rangle \geq-\xi \tag{4.4}
\end{equation*}
$$

As 4.4) holds for both of $\pm y$, we derive

$$
\begin{equation*}
\left|\left\langle f^{\prime}(x), y\right\rangle\right| \leq \xi \tag{4.5}
\end{equation*}
$$

Then, for all $y \in X$ with $\|y\|=1$, the inequality 4.5 implies that

$$
\left\|f^{\prime}(x)\right\|=\sup _{y \in X,\|y\|=1} \frac{\left|\left\langle f^{\prime}(x), y\right\rangle\right|}{\|y\|}=\sup _{y \in X,\|y\|=1}\left|\left\langle f^{\prime}(x), y\right\rangle\right| \leq \xi
$$

and the desired claim holds.

Next, we consider a more suitable version of Theorem 1.5, for our purpose.
Theorem 4.2. Let (X, d) be a complete metric spaces, let $f: X \rightarrow(-\infty, \infty]$ be a proper lower semicontinuous function which is bounded from below, and let $p: X \times X \rightarrow \mathbb{R}_{+}$be a u-distance on X lower semicontinuous in its second argument. Then for $\varepsilon>0$ and $x \in X$ with $f(x)<\infty$ and $p(x, x)=0$, there exists $v \in X$ such that
(i) $f(v) \leq f(x)-\varepsilon p(x, v)$;
(ii) $f(w)>f(v)-\varepsilon p(v, w)$, for all $w \in X \backslash\{v\}$.

For the sake of completeness, we supply a proof of the equivalence between Theorems 1.5 and 4.2 .

Proof. \Leftarrow Let the assumptions of Theorem 1.5 be satisfied. Obviously, the conclusion of (1) follows by Theorem 4.2. For (2), applying again Theorem 4.2 with $\varepsilon=\frac{e}{\lambda}$, we deduce that

$$
p(x, v) \leq \frac{\lambda}{e}(f(x)-f(v)) \leq \frac{\lambda}{e} e \leq \lambda
$$

Hence the conclusion of Theorem 1.5 is valid.
\Rightarrow Now, suppose that Theorem 1.5 holds. Let $x \in X$ with $f(x)<\infty$ and $\varepsilon>0$ be given. Fix any $e>f(x)-\inf _{a \in X} f(a)$ and set $\lambda=\frac{e}{\varepsilon}$. Consider

$$
M(x)=\{v \in X \mid f(v) \leq f(x)-\varepsilon p(x, v)\}
$$

By the lower semicontinuity of f and $p(x,$.$) , the set M(x)$ is closed. Furthermore, $M(x)$ is nonempty as $x \in M(x)$. Applying Theorem 1.5 (2) for the chosen e, λ and for $M(x)$ instead of X one finds $v \in X$ such that

$$
\begin{gathered}
f(v) \leq f(x), \quad p(x, v) \leq \lambda \\
f(w)>f(v)-\frac{e}{\lambda} \cdot p(v, w), \quad \text { for all } w \in M(x) \backslash\{v\}
\end{gathered}
$$

Since $v \in M(x)$, then (i) holds.
To show (ii) it is sufficient to check that

$$
f(w)>f(v)-\frac{e}{\lambda} \cdot p(v, w), \quad \text { for all } w \notin M(x)
$$

By the definition of $M(x)$, the property $w \notin M(x)$ means that

$$
f(w)>f(x)-\varepsilon p(x, w)
$$

From this and (i) we easily deduce (ii) and then obtain Theorem 4.2,
We are in position to state the main result of this section. The proof follows a technique developed by Suzuki in [11.

Theorem 4.3. Let X be a Banach space, $a \in X$ fixed, and let $p: X \times X \rightarrow \mathbb{R}_{+}$ be a symmetric u-distance on X, lower semicontinuous in its second argument and such that $p(x, x)=0$ for all $x \in X$. Let $f: X \rightarrow(-\infty, \infty]$ be a proper lower semicontinuous function which is bounded from below and let $b:[0, \infty) \rightarrow(0, \infty)$ be a non-increasing continuous function such that

$$
B(t)=\int_{0}^{t} b(r) d r
$$

where B is a function from \mathbb{R}_{+}to itself such that $B(\infty)=+\infty$. Let $a \in X$ be fixed and $\beta: X \rightarrow \mathbb{R}_{+}$defined by $\beta(x)=p(a, x)$. Assume that f is Gâteaux differentiable at every point $x \in X$ with $f(x) \in \mathbb{R}$. If

$$
\alpha=\liminf _{\beta(y) \rightarrow \infty} f(y) \in \mathbb{R}
$$

then there exists a sequence $\left\{z_{n}\right\}_{n}$ in X such that
(a) $\lim _{n \rightarrow \infty} \beta\left(z_{n}\right)=\infty$;
(b) $\lim _{n \rightarrow \infty} f\left(z_{n}\right)=\alpha$;
(c) $\lim _{n \rightarrow \infty}\left\|f^{\prime}\left(z_{n}\right)\right\| / b\left(\beta\left(z_{n}\right)\right)=0$.

Proof. We shall show only the following: for every $\varepsilon>0$, there exists $v \in X$ satisfying $\beta(v) \geq \frac{1}{\varepsilon},|f(v)-\alpha| \leq \varepsilon$ and $\left\|f^{\prime}(v)\right\| / b(\beta(v)) \leq \varepsilon$. Fix $\varepsilon>0$ and define a function $\chi:[0, \infty) \rightarrow[0, \infty)$ by

$$
\begin{equation*}
\chi(t)=\frac{1}{2} b(t+1) \tag{4.6}
\end{equation*}
$$

for $t \in[0, \infty)$. Then χ is non-increasing, and

$$
\int_{0}^{\infty} \chi(t) d t=\frac{1}{2} \int_{0}^{\infty} b(t+1) d t=\frac{1}{2} \int_{1}^{\infty} b(t) d t=\infty
$$

We also determine a function $h: X \rightarrow(-\infty,+\infty]$ by

$$
\begin{equation*}
h(x)=\max \{f(x), \alpha-2 \varepsilon\} \tag{4.7}
\end{equation*}
$$

for $x \in X$. Then it is obvious that h is proper lower semicontinuous and bounded from below. We choose $r, r^{\prime} \in \mathbb{R}$ with $\frac{1}{\varepsilon}<r<r^{\prime}, 1<r$,

$$
\begin{gather*}
\inf _{\beta(y) \geq r} f(y)>\alpha-\varepsilon, \tag{4.8}\\
\int_{r}^{r^{\prime}} \chi(t) d t=3 \tag{4.9}
\end{gather*}
$$

We also choose $u \in X$ with

$$
\begin{equation*}
\beta(u)>r^{\prime}, \quad f(u)<\alpha+\varepsilon . \tag{4.10}
\end{equation*}
$$

We note that $h(u)=f(u)$ because $\beta(u)>r^{\prime}>r$. We know from the earlier that the function $q: X \times X \rightarrow \mathbb{R}_{+}$, defined by

$$
\begin{equation*}
q(u, v)=\int_{\beta(u)}^{\beta(u)+p(u, v)} \chi(t) d t \tag{4.11}
\end{equation*}
$$

is a u-distance. So, by Proposition 2.1, the function $s: X \times X \rightarrow \mathbb{R}_{+}$, defined by

$$
\begin{equation*}
s(u, v)=q(u, v)+q(v, u) \tag{4.12}
\end{equation*}
$$

is also a u-distance. Thereby, by Theorem 4.2, there exists $v \in X$ such that

$$
\begin{gather*}
h(v) \leq h(u)-\varepsilon s(u, v), \tag{4.13}\\
h(w)>h(v)-\varepsilon s(v, w), \quad \forall w \neq v . \tag{4.14}
\end{gather*}
$$

Arguing by contradiction, we assume that $\beta(v)<r$. Moreover, we have

$$
\begin{equation*}
\beta(v)<r<r^{\prime}<\beta(u) \tag{4.15}
\end{equation*}
$$

Also, from 4.11, 4.12 and 4.13, we successively obtain

$$
\begin{align*}
\alpha-2 \varepsilon & \leq h(v) \leq h(u)-\varepsilon \int_{\beta(u)}^{\beta(u)+p(u, v)} \chi(t) d t-\varepsilon \int_{\beta(v)}^{\beta(v)+p(u, v)} \chi(t) d t \\
& \leq h(u)-\varepsilon \int_{\beta(v)}^{\beta(v)+p(u, v)} \chi(t) d t \tag{4.16}\\
& \leq h(u)-\varepsilon(H(\beta(v)+p(u, v))-H(\beta(v))),
\end{align*}
$$

where H is a primitive of χ. Using that H is nondecreasing in (4.16), we obtain

$$
\begin{equation*}
\alpha-2 \varepsilon \leq h(u)-\varepsilon(H(\beta(u))-H(\beta(v)))=h(u)-\varepsilon \int_{\beta(v)}^{\beta(u)} \chi(t) d t \tag{4.17}
\end{equation*}
$$

Then, by 4.15, 4.17 and 4.10, we obtain

$$
\alpha-2 \varepsilon \leq h(u)-\varepsilon \int_{r}^{r^{\prime}} \chi(t) d t=f(u)-3 \varepsilon<\alpha-2 \varepsilon
$$

which is a contradiction. Therefore,

$$
\beta(v) \geq r>\frac{1}{\varepsilon}
$$

and (a) holds. Thus, we have $h(v)=f(v)$ and

$$
\alpha-\varepsilon<\inf _{\beta(y) \geq r} f(y) \leq f(v) \leq f(u)<\alpha+\varepsilon
$$

This implies

$$
|f(v)-\alpha| \leq \varepsilon,
$$

that is (b). For (c), from 4.11, 4.12 and 4.14 and the non-increasing property of χ, we infer

$$
\begin{align*}
h(w) & >h(v)-\varepsilon \int_{\beta(v)}^{\beta(v)+p(v, w)} \chi(t) d t-\varepsilon \int_{\beta(w)}^{\beta(w)+p(v, w)} \chi(t) d t \tag{4.18}\\
& \geq h(v)-\varepsilon(\chi(\beta(v))+\chi(\beta(w))) \cdot p(v, w)
\end{align*}
$$

for $w \in X, w \neq v$. Since f is lower semicontinuous and $f(v)>\alpha-2 \varepsilon$, there exists $\delta \in(0,1)$ such that $f(w)>\alpha-2 \varepsilon$ for $w \in X$ with $p(v, w)<\delta$. Hence, for $w \in X$ with $0<p(v, w)<\delta$, since $h(w)=f(w)$ and

$$
\beta(w)=p(a, w) \geq p(a, v)-p(w, v)>\beta(v)-\delta>\beta(v)-1>0
$$

we derive

$$
\begin{align*}
f(w) & >f(v)-\varepsilon(\chi(\beta(v))+\chi(\beta(v)-1)) \cdot p(v, w) \\
& \geq f(v)-2 \varepsilon \chi(\beta(v)-1) \cdot p(v, w) \tag{4.19}\\
& =f(v)-\varepsilon b(\beta(v)) \cdot p(v, w)
\end{align*}
$$

By means of Lemma 4.1, we reach

$$
\left\|f^{\prime}(v)\right\| \leq \varepsilon b(\beta(v))
$$

and (c) is verified too. The proof is complete.
Corollary 4.4. Let X be a Banach space. Let $f: X \rightarrow(-\infty, \infty]$ be a proper lower semicontinuous function which is bounded from below. Assume that f is Gâteaux differentiable at every point $x \in X$ with $f(x) \in \mathbb{R}$. If f satisfies the $b-(P S)_{c}$ condition for all $c \in \mathbb{R}$, then f is coercive; i.e., $f(x) \rightarrow \infty$ as $\beta(x) \rightarrow \infty$.

Proof. Suppose the contrary; then $\alpha=\liminf _{\beta(x) \rightarrow \infty} f(x) \in \mathbb{R}$. By Theorem 4.3. there exists a sequence $\left\{z_{n}\right\}_{n}$ in X such that $\beta\left(z_{n}\right) \rightarrow \infty, f\left(z_{n}\right) \rightarrow \alpha$ and $\left\|f^{\prime}\left(z_{n}\right)\right\| / b\left(\beta\left(z_{n}\right)\right) \rightarrow 0$. Then, the b-(PS $)_{\alpha}$ condition implies that $\left\{z_{n}\right\}_{n}$ has a convergent subsequence, which clearly leads to a contradiction.

Remark 4.5. Corollary 4.4 generalizes the result proved by 8 using a gradient flow, by Costa-Silva [5, Caklovic-Li-Willem 3] and Brezis-Nirenberg [2] using EVP, and by Zhong [17] using ZVP.

References

[1] T. Q. Bao, P. Q. Khanh; Are several recent generalizations of Ekeland's variational principle more general than the original principle? Acta Math. Vietnam 28 (2003), 345-35.
[2] H. Brezis, L. Nirenberg; Remarks on finding critical points, Comm. Pure Appl. Math., 44 (1991), 939-963.
[3] L. Caklovic, S. J. Li, M. Willem; A note on Palais-Smale condition and coercivity, Diff. Int. Eq., 3 (1990), 799-800.
[4] G. Cerami; Un criterio di esistenza per i punti critici su varieta illimitate, Rend. Accad. Sc. Lett. Ist. Lombardo, A 112 (1978), 332-336.
[5] D. G. Costa, E. A. B. Silva; The Palais-Smale condition versus coercivity, Nonlinear Anal., 16 (1991), 371-381.
[6] I. Ekeland; On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353
[7] I. Ekeland; Nonconvex minimization problems, Bull. Am. Math. Soc., 1 (1979), 443-474.
[8] S. Li; An existence theorem on multiple critical points and its applications, Acta Math. Sci., 4 (1984).
[9] O. Kada, T. Suzuki, W. Takahashi; Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Jap., 44 (1996), 381-391.
[10] M. Schechter; A variation of the mountain pass lemma and applications, J. London Math. Soc., 44 (1991), 491-502.
[11] T. Suzuki; Generalized distances and existence theorems in complete metric spaces, J. Math. Anal. Appl., 253 (2001), 440-458.
[12] T. Suzuki; On the relation between the weak Palais-Smale condition and coercivity given by Zhong, Nonlinear Anal. 68 (2008), 2471-2478.
[13] D. Tataru; Viscosity solutions of Hamilton- Jacobi equations with unbounded nonlinear terms, J. Math. Anal. Appl., 163 (1992), 354-392.
[14] M. Turinici; Function variational principles and coercivity, J. Math. Anal. Appl., 304 (2005), 236-248.
[15] J. S. Ume; Existence theorems for generalized distance on complete metric spaces, Hindawi Publishing Corporation, Fixed Point Theory and Appl., vol. 2010, ID 397150, 21 pp.
[16] Z. Wu; Equivalent extensions to Caristi-Kirk's fixed point theorem, Ekeland's variational principle and Takahashi's minimization theorem, Hindawi Publishing Corporation, Fixed Point Theory and Appl., vol. 2010, ID 970579, 20 pp.
[17] C.-K. Zhong; A generalization of Ekeland's variational principle and applications to the study of the relation between the weak PS condition and coercivity, Nonlinear Anal. 29 (1997), 1421-1431
[18] C.-K. Zhong; On Ekeland's variational principle and a minimax theorem, J. Math. Anal. Appl., 205 (1997) 239-250.

Georgiana Goga
Nicolae Rotaru College, 2, Ion Corvin St., Constanta, Romania
E-mail address: georgia_goga@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 49K27, 54E35, 54E50, 58E30.
 Key words and phrases. u-distance; Palais-Smale condition; coercivity;
 Zhong's variational principle.
 © 2011 Texas State University - San Marcos.
 Submitted August 15, 2011. Published November 30, 2011.

