Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 160, pp. 1–12. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

UME'S U-DISTANCE AND ITS RELATION WITH BOTH (PS)-CONDITION AND COERCIVITY

GEORGIANA GOGA

ABSTRACT. In this article, we study the connection between the u-distance and a new Palais-Smale condition of compactness. We compare this Palais-Smale condition with the coercivity.

1. INTRODUCTION AND PRELIMINARIES

In 1997, Zhong [17, 18] generalized the Ekeland variational principle and proved the existence of minimal points for Gâteaux-differentiable functions under weak (PS) conditions. The following theorem is well-known and we name it Zhong's variational principle (ZVP).

Theorem 1.1 ([17, 18]). Let (X, d) be a complete metric space, $x_0 \in X$ fixed and $f: X \to (-\infty, \infty]$ a proper lower semicontinuous function which is bounded from below. Let $h: [0, \infty) \to [0, \infty)$ be a nondecreasing continuous function such that

$$\int_0^\infty \frac{1}{1+h(r)} \, dr = +\infty.$$

Then, for every $\varepsilon > 0$, every $y \in X$ such that

$$f(y) < \int_{x \in X} f(x) + \varepsilon,$$

and $\lambda > 0$, there exists some point $z \in X$ such that

- (i) $f(z) \le f(y)$,
- (ii) $d(x_0, z) \le r_0 + r^*$,
- (iii) $f(x) \ge \overline{f(z)} \frac{\varepsilon}{\lambda(1+h(d(x_0,z)))} \cdot d(z,x)$, for all $x \in X$, where $r_0 = d(x_0,y)$, and r^* is such that

$$\int_{r_0}^{r_0+r} \frac{1}{1+h(t)} \, dt \ge \lambda$$

In 2010, Ume [15] introduced a new concept of distance called *u*-distance, which generalizes some distances anterior studied (see e.g., ω -distance [9, 16], Tataru's distance [13], τ -distance [11]) and expanded the celebrated Ekeland's variational principle.

Zhong's variational principle.

²⁰⁰⁰ Mathematics Subject Classification. 49K27, 54E35, 54E50, 58E30.

Key words and phrases. u-distance; Palais-Smale condition; coercivity;

^{©2011} Texas State University - San Marcos.

Submitted August 15, 2011. Published November 30, 2011.

In Section 2, we present a generalization of Zhong's variational principle using Ume's *u*-distance. In Section 3, we define a new Palais-Smale condition related to above variational principle and we study the existence of the minimal point for Gâteaux-differentiable functions. In the last section, we deal with the relation between new Palais-Smale condition and the coercivity, following a techniques which is based on *u*-distance. Our results extend and improve other known results due to Zhong [17, 18], Ekeland [6, 7] and Costa & Silva [5].

For the beginning, we present some results needed in our approach. First, we recall Ume's [15] concept of generalized distance in metric spaces.

Definition 1.2. Let (X, d) be a metric space. A function $p: X \times X \to \mathbb{R}_+$ is called *u*-distance on X if there exists a map $\Theta: X \times X \times \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ such that the following conditions hold:

- (U1) $p(x,z) \le p(x,y) + p(y,z)$, for all $x, y, z \in X$;
- (U2) $\Theta(x, y, 0, 0) = 0$ and $\Theta(x, y, s, t) \ge \min\{s, t\}$ for all $x, y \in X, s, t \in \mathbb{R}_+$, and for every $x \in X$ and $\varepsilon > 0$, there is $\delta > 0$ such that

$$|\Theta(x, y, s, t) - \Theta(x, y, s_0, t_0)| < \varepsilon$$

if $|s - s_0| < \delta$, $|t - t_0| < \delta$, $s, s_0, t, t_0 \in \mathbb{R}_+$ whenever $y \in X$;

(U3) $\lim_{n \to \infty} x_n = x$ and $\lim_{n \to \infty} \sup_n \{\Theta(w_n, z_n, p(w_n, x_m), p(z_n, x_m)) : m \ge n\} = 0$ imply

$$p(y,x) \le \liminf_{n \to \infty} p(y,x_n) \quad \text{for } y \in X;$$

(U4) The four equalities

$$\limsup_{n} \{ p(x_n, w_m) : m \ge n \} = 0, \quad \limsup_{n} \{ p(y_n, z_m) : m \ge n \} = 0,$$
$$\lim_{n} \Theta(x_n, w_n, s_n, t_n) = 0, \quad \lim_{n} \Theta(y_n, z_n, s_n, t_n) = 0$$

imply $\lim_{n} \Theta(w_n, z_n, s_n, t_n) = 0$; or the four equalities

$$\limsup_{n} \{ p(w_m, x_n) : m \ge n \} = 0, \quad \limsup_{n} \{ p(z_m, y_n) : m \ge n \} = 0,$$
$$\lim_{n} \Theta(x_n, w_n, s_n, t_n) = 0, \quad \lim_{n} \Theta(y_n, z_n, s_n, t_n) = 0$$

imply $\lim_{n} \Theta(w_n, z_n, s_n, t_n) = 0;$

(U5) The two equalities

$$\lim_{n} \Theta(w_n, z_n, p(w_n, x_n), p(z_n, x_n)) = 0,$$
$$\lim_{n} \Theta(w_n, z_n, p(w_n, y_n), p(z_n, y_n)) = 0$$

imply $\lim_{n \to \infty} d(x_n, y_n) = 0$; or the two equalities

$$\lim_{n} \Theta(a_n, b_n, p(x_n, a_n), p(x_n, b_n)) = 0,$$

$$\lim_{n} \Theta(a_n, b_n, p(z_n, a_n), p(y_n, b_n)) = 0$$

imply $\lim_{n \to \infty} d(x_n, y_n) = 0.$

Example 1.3 ([15]). Let X be a space with norm $\|\cdot\|$. Then the function $p: X \times X \to \mathbb{R}_+$ defined by $p(x, y) = \|x\|$ is a *u*-distance on X, but it is not a τ -distance on X, in Suzuki's sense [11].

Example 1.4 ([15]). Let p be a u-distance on a metric space (X, d) and let c be a real positive number. Then a function $q: X \times X \to \mathbb{R}_+$ defined by q(x, y) = cp(x, y) for every $x, y \in X$ is also a u-distance on X.

By means of the generalized u-distance, Ume obtained in [15] the following version of Ekeland's variational principle. This result will play a crucial role in the proof of our variational principle.

Theorem 1.5 ([15]). Let (X, d) be a complete metric space, let $f : X \to (-\infty, \infty]$ be a proper lower semicontinuous function which is bounded from below, and let $p : X \times X \to \mathbb{R}_+$ be a u-distance on X. Then the following two statements hold:

- (1) For each $x \in X$ with $f(x) < \infty$, there exists $v \in X$ such that $f(v) \le f(x)$ and f(w) > f(v) - p(v, w), for all $w \in X \setminus v$.
- (2) For each $\varepsilon > 0$, $\lambda > 0$ and $x \in X$ with p(x, x) = 0 and $f(x) < \inf_{a \in X} f(a) + \varepsilon$, there exists $v \in X$ such that

$$\begin{split} f(v) &\leq f(x), \quad p(x,v) \leq \lambda, \\ f(w) &> f(v) - \frac{\varepsilon}{\lambda} \cdot p(v,w), \quad \text{for all } w \in X \setminus \{v\}. \end{split}$$

2. A GENERALIZATION OF ZHONG'S VARIATIONAL PRINCIPLE

We start this section by extending a result by Suzuki [12], using the *u*-distance.

Proposition 2.1. Let (X, d) be a complete metric space and let $p: X \times X \to \mathbb{R}_+$ be a u-distance on X. Let $q: X \times X \to \mathbb{R}_+$ be a function such that

- (a) $q(x,z) \le q(x,y) + q(y,z)$ for all $x, y, z \in X$;
- (b) q is lower semicontinuous in its second argument;
- (c) $q(x,y) \ge p(x,y)$ for all $x, y \in X$.

Then q is also a u-distance.

Proof. Assumption (a) is equivalently with $(U1)_q$. Let $\Theta : X \times X \times \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ be a function satisfying (U2)–(U5). Clearly, $(U3)_q$ follows from (b). Now, we assume that

$$\limsup_{n} \{q(x_n, w_m) : m \ge n\} = 0,$$

$$\limsup_{n} \{q(y_n, z_m) : m \ge n\} = 0,$$

$$\lim_{n} \Theta(x_n, w_n, s_n, t_n) = 0,$$

$$\lim_{n} \Theta(y_n, z_n, s_n, t_n) = 0.$$
(2.1)

By (2.1) and (c), we have

$$\limsup_{n} \{ p(x_n, w_m) : m \ge n \} = 0,$$
$$\limsup_{n} \{ p(y_n, z_m) : m \ge n \} = 0.$$

Therefore, by (U4), we find $\lim_{n} \Theta(w_n, z_n, s_n, t_n) = 0$, and derive $(U4)_q$. Next, we assume that

$$\lim_{n} \Theta(w_n, z_n, q(w_n, x_n), q(z_n, x_n)) = 0,$$
(2.2)

$$\lim_{n} \Theta(w_n, z_n, q(w_n, y_n), q(z_n, y_n)) = 0.$$
(2.3)

$$\lim_{n} \Theta(w_n, z_n, p(w_n, x_n), p(z_n, x_n)) = 0,$$
$$\lim_{n} \Theta(w_n, z_n, p(w_n, y_n), p(z_n, y_n)) = 0.$$

By (U5), we have $\lim_{n \to \infty} d(x_n, y_n) = 0$, and $(U5)_q$, is also verified.

Next, we establish a more general variational principle [1, 14], which is an extension of both Ekeland's and Zhong's variational principles.

Theorem 2.2. Let (X, d) be a complete metric space, $a \in X$ be a fixed point and let $p : X \times X \to \mathbb{R}_+$ be a u-distance on X lower semicontinuous in its second argument. Let $f : X \to (-\infty, \infty]$ be a proper lower semicontinuous function which is bounded from below and let $b : [0, \infty) \to (0, \infty)$ be a non-increasing continuous function such that

$$B(t) = \int_0^t b(r) dr,$$

where B is a C^1 function from \mathbb{R}_+ to itself and $B(\infty) = +\infty$. Let $y \in X$ be such that p(y, y) = 0 and

$$f(y) > \inf_{x \in X} f(x). \tag{2.4}$$

Then, for $\epsilon_0 > 0$, there exists $z \in X$ such that

(i) f(z) ≤ f(y),
(ii) p(a, z) ≤ β(y) + β*,
(iii) f(x) > f(z) - ^{ε₀}/_λb(β(z))p(z, x), for all x ∈ X where β(.) = p(a, .), and β* is such that

$$\int_{\beta(y)}^{\beta(y)+\beta^*} b(t) \, dt \ge \alpha(y), \tag{2.5}$$

with $\alpha(y) = f(y) - \inf x \in X f(x) \ge \lambda > 0.$

Proof. First, we define the function $q: X \times X \to \mathbb{R}_+$ by

$$q(x,y) := \int_{p(a,x)}^{p(a,x)+p(x,y)} b(t) \, dt$$

Since b is non-increasing, for $(x, z) \in X \times X$, we deduce

$$\begin{split} q(x,z) &= \int_{p(a,x)}^{p(a,x)+p(x,z)} b(t) \, dt \\ &\leq \int_{p(a,x)}^{p(a,x)+p(x,y)+p(y,z)} b(t) \, dt \\ &= \int_{p(a,x)}^{p(a,x)+p(x,y)} b(t) \, dt + \int_{p(a,x)+p(x,y)}^{p(a,x)+p(x,y)+p(y,z)} b(t) \, dt \\ &\leq \int_{p(a,x)}^{p(a,x)+p(x,y)} b(t) \, dt + \int_{p(a,y)}^{p(a,y)+p(y,z)} b(t) \, dt \\ &= q(x,y) + q(y,z). \end{split}$$

4

EJDE-2011/160

In addition, q is obviously lower semicontinuous in its second variable. On the other hand, we have

$$q(x,y) = \int_{p(a,x)}^{p(a,x)+p(x,y)} b(t) dt$$

= $B(p(a,x) + p(x,y)) - B(p(a,x))$
 $\geq b(p(a,x) + p(x,y))p(x,y).$ (2.6)

Taking into account the definition of function b, we obtain boundedness from below,

$$b(p(a,x) + p(x,y)) > b(\infty) \ge M \ge 0$$
 (2.7)

Combining (2.6) and (2.7), we deduce

$$q(x,y) \ge Mp(x,y).$$

Since Mp(x, y) is a *u*-distance and the assumptions of Proposition 2.1 are verified, q(x, y) is also *u*-distance.

Now, from (2.4) and (2.5), we obtain

$$0 < \lambda \leq f(y) - \inf_{x \in X} f(x) = \alpha(y)$$

$$\leq \int_{\beta(y)}^{\beta(y) + \beta^*} b(t) dt = \int_0^{\beta^*} b(u + \beta(y)) du$$

$$\leq \int_0^{\beta^*} b(u) du = B(\beta^*).$$
 (2.8)

So by the above inequality,

$$f(y) \le \inf_{x \in X} f(x) + B(\beta^*),$$

and the Theorem 1.5 is applicable to q(x,y) for $\varepsilon = B(\beta^*) > 0$ and $\lambda = \alpha(y) > 0$. Therefore, there exists $z \in X$ such that

$$f(z) \le f(y),\tag{2.9}$$

$$q(y,z) \le \alpha(y) \tag{2.10}$$

$$f(x) > f(z) - \frac{B(\beta^*)}{\alpha(y)} \cdot q(z, x), \quad \forall x \neq z, \ x \in X.$$

$$(2.11)$$

By (U1), we know that

$$p(a,z) \le p(a,y) + p(y,z) = \beta(y) + p(y,z).$$
(2.12)

On the other hand, from (2.5) and (2.10) it follows that

$$B(\beta(y) + p(y, z)) - B(\beta(y)) \le \alpha(y) \le B(\beta(y) + \beta^*) - B(\beta(y)).$$

Thereby, we find that

$$p(y,z) \le \beta^*,\tag{2.13}$$

because B is a nondecreasing function. Thus, (ii) follows from (2.12) and (2.13). Moreover, since

$$q(z,x) = \int_{p(a,z)}^{p(a,z)+p(z,x)} b(t) \, dt \le b(p(a,z))p(z,x) = b((\beta(z)))p(z,x); \qquad (2.14)$$

multiplying by (-1) and, using (2.8) and (2.11), for $0 < B(\beta^*) \le \epsilon_0$, we obtain

$$f(x) > f(z) - \frac{B(\beta^*)}{\alpha(y)} \cdot q(z, x) \ge f(z) - \frac{\epsilon_0}{\lambda} q(z, x) \ge f(z) - \frac{\epsilon}{\lambda} b((\beta(z)))p(z, x),$$

for all $x \in X$, and (iii) is verified. This completes the proof.

Remark 2.3. Let $a, f, b, p, \alpha(y), \beta(y), \beta^*$, and X be as in Theorem 2.2.

- (i) When a = y, $b(t) \equiv 1$, $\beta^* = \lambda$, $\epsilon_0 > \alpha(y) \ge \lambda > 0$, and p(x, y) = d(x, y), Theorem 2.2 reduces to Ekeland's variational principle (EVP) [6, 7].
- (ii) Take $a = x_0$,

$$b(t) = \frac{1}{1+h(t)}$$

where $h: [0,\infty) \to [0,\infty)$ is a continuous nondecreasing function such that

$$\int_0^\infty \frac{1}{1+h(r)} dr = +\infty,$$

 $\epsilon_0 > \alpha(y) \ge \lambda > 0, \ \beta(y) = d(x_0, y) = r_0, \ \beta^* = r^* \text{ and } p(x, y) = d(x, y).$ Therefore, Theorem 2.2 implies Theorem 1.1.

3. The B-(PS) condition and the existence of a minimal point

Throughout this section X denotes a Banach space. We recall that a function $f: X \to (-\infty, \infty]$ is called Gâteaux differentiable at $x \in X$ with $f(x) < \infty$ if there exists a continuous linear functional f'(x) such that

$$\lim_{t \to 0} \frac{f(x+ty) - f(x)}{t} = \langle f'(x), y \rangle$$

holds for every $y \in X$.

In the following, we assume that $f: X \to (-\infty, \infty]$ is Gâteaux differentiable.

Theorem 3.1. Let $a \in X$ be fixed and $p: X \times X \to \mathbb{R}_+$ a u-distance on X lower semicontinuous in its second argument. Let $f: X \to (-\infty, \infty]$ be a proper lower semicontinuous function which is bounded from below and let $b: [0, \infty) \to (0, \infty)$ be a nonincreasing continuous function such that

$$B(t) = \int_0^t b(r)dr$$

where B is a C^1 function from \mathbb{R}_+ to itself such that $B(\infty) = +\infty$. Let $y \in X$ be such that p(y, y) = 0 and

$$f(y) > \inf_{x \in X} f(x).$$

Then, for every $\epsilon > 0$, there exists $z \in X$ such that

(i') $f(z) \le f(y)$,

wi

- (ii') $\beta(z) \leq \beta(y) + \beta^*$,
- (iii') $\|f'(z)\|/b(\beta(z)) \leq \epsilon$ for all $x \in X$, where $\beta(.) = p(a,.)$, and β^* is a real number such that

$$\int_{\beta(y)}^{\beta(y)+\beta^*} b(t) \, dt \ge \alpha(y),$$

th $\alpha(y) = f(y) - \inf_{x \in X} f(x) > 0.$

Proof. We have the hypotheses of Theorem 2.2. So, applying this theorem, we obtain (i') and (ii') from (i) and (ii). Moreover, (iii) guaranties that there exists $z \in X$ such that

$$f(x) \ge f(z) - \frac{\epsilon}{\lambda} b(\beta(z))p(z, x), \quad \text{for all } x \in X,$$
(3.1)

where $0 < \lambda \leq \alpha(y)$. Choose x = z + ty with ||y|| = 1 in (3.1) and obtain

$$\frac{f(z+ty) - f(z)}{t} \ge -\frac{\epsilon}{\lambda} \frac{b(\beta(z))p(z, z+ty)}{t},$$
(3.2)

for every t > 0. Let λ be such that

$$\lim_{t \to 0} \frac{p(z, z + ty)}{t} \le \lambda.$$
(3.3)

Then, letting $t \to 0$ in (3.2) and using (3.3), we conclude that

$$\langle f'(z), y \rangle \ge -\epsilon \cdot b(\beta(z)),$$
(3.4)

for all $y \in X$ with ||y|| = 1. Since (3.4) is true for $\pm y$, we deduce that

$$\langle f'(z), y \rangle | \le \epsilon \cdot b(\beta(z)).$$
 (3.5)

Now, from (3.5), we obtain

$$\|f'(z)\| = \sup_{y \in X, \|y\|=1} \frac{|\langle f'(z), y \rangle|}{\|y\|} \le \epsilon \cdot b(\beta(z)),$$

holds.

and the claim (iii') holds.

Corollary 3.2. Suppose that the hypotheses of Theorem 3.1 are verified. Then there exists a minimizing sequence $\{z_n\}_n$ of f such that

$$f(z_n) < \inf_{x \in X} f(x) + \epsilon,$$

$$\|f'(z_n)\|/b(\beta(z_n)) \to 0.$$

The proof follows form taking $\epsilon = \frac{1}{n}$, n = 1, 2, ... in Theorem 3.1.

Let \mathcal{B} be the set of all non-increasing and strictly positive continuous functions $b: [0, \infty) \to (0, \infty)$ such that

$$\int_0^\infty b(t)\,dt = \infty.$$

Let $p: X \times X \to \mathbb{R}_+$ be a *u*-distance on X lower semicontinuous in its second variable with $p(x, x) = 0 \ \forall x \in X$, $a \in X$ a fixed point and $\beta: X \to \mathbb{R}_+$ defined by $\beta(x) = p(a, x)$.

Definition 3.3. Let $f: X \to (-\infty, +\infty]$ be a C^1 function, $c \in \mathbb{R}$ and $b \in \mathcal{B}$.

- f is said to satisfy the b-(PS) condition if any sequence $\{x_n\}_n$ in X such that $\{f(x_n)\}$ is bounded and $||f'(x_n)||/b(\beta(x_n)) \to 0$ has a convergent subsequence.
- f is said to satisfy the b-(PS)_c condition if any sequence $\{x_n\}_n$ in X such that $f(x_n) \to c$ and $||f'(x_n)||/b(\beta(x_n)) \to 0$ has a convergent subsequence.

Remark 3.4. Suppose that $\beta(x) = d(a, x)$.

- Then the b-(PS) condition is the Schechter-(PS) condition [10].
- If b is constant, then the b-(PS) condition is the usual (PS) condition.
- If b(t) = 1/(1+t), then the b-(PS) condition is the Cerami-(PS) condition [4].
- If b(t) = 1/(1+h(t)), where $h : [0, \infty) \to [0, \infty)$ is a non-decreasing function, then the b-(PS) condition is the Zhong-(WPS) condition [17, 18].

Theorem 3.5. If f is bounded below and satisfying the b-(PS) condition, then f has a minimal point.

Proof. By Corollary 3.2, there is a minimizing sequence $\{z_n\}_n$ in X such that $f(z_n) < \inf_{x \in X} f(x) + \epsilon$ and $||f'(z_n)||/b(\beta(z_n)) \to 0$. The b-(PS) condition implies that $\{z_n\}_n$ has a subsequence $\{z_{n_k}\}_k$ convergent to some point z^* . Since f is lower semicontinuous, we obtain

$$\inf_{X} f \leq f(z^*) \leq \liminf_{k \to \infty} f(z_{n_k}) \leq \inf_{X} f.$$

Therefore, $f(z^*) = \inf_{X} f.$

4. The b-(PS) condition versus coercivity

Using the method of gradient flows, Li [8] first observed that the (PS) condition implies the coercivity for C^1 functionals bounded from below. Using Ekeland's variational principle, Caklovic, Li and Willem [3] proved the same result for a Gâteaux differentiable functional which is lower semicontinuous. The same conclusion was also proved by Costa and Silva [5] and Brezis and Nirenberg [2] for C^1 functionals by also employing Ekeland's principle. Using ZVP, Zhong [17] studied the connection between (WPS) and coercivity. A similar result was established by Suzuki [11], using τ -distance.

In this section, we discuss the relation between the b-(PS) condition and coercivity. We recall that a function $f: X \to (-\infty, \infty]$ is said to be coercive if

$$\lim_{r \to \infty} \inf_{\|x\| \ge r} f(x) = \infty.$$

For our aim, we first prove the following lemma.

Lemma 4.1. Let $p: X \times X \to \mathbb{R}_+$ be a u-distance on X and $f: X \to \mathbb{R}$ is a Gâteaux differentiable function. Suppose that there are $\xi \ge 0$, $\delta > 0$ and either of the following conditions is satisifed:

- $f(y) \ge f(x) \xi p(x, y)$ for all $y \in X$ with $0 < p(x, y) < \delta$; or
- $f(y) \le f(x) + \xi p(x, y)$ for all $y \in X$ with $0 < p(x, y) < \delta$.

Then $||f'(x)|| \leq \xi$.

Proof. Assume that

$$f(y) \ge f(x) - \xi p(x, y) \tag{4.1}$$

for all $y \in X$ with $0 < p(x, y) < \delta$. Set $y = x + \delta z$ in (4.1), and infer that

$$f(x+\delta z) - f(x) \ge -\xi p(x, x+\delta z) > -\xi\delta \tag{4.2}$$

Then,

$$\frac{f(x+\delta z)-f(x)}{\delta} > -\xi.$$
(4.3)

Taking the limit as $\delta \to 0$, we obtain

$$\langle f'(x), y \rangle \ge -\xi. \tag{4.4}$$

As (4.4) holds for both of $\pm y$, we derive

$$|\langle f'(x), y \rangle| \le \xi. \tag{4.5}$$

Then, for all $y \in X$ with ||y|| = 1, the inequality (4.5) implies that

$$||f'(x)|| = \sup_{y \in X, ||y|| = 1} \frac{|\langle f'(x), y \rangle|}{||y||} = \sup_{y \in X, ||y|| = 1} |\langle f'(x), y \rangle| \le \xi,$$

and the desired claim holds.

Next, we consider a more suitable version of Theorem 1.5, for our purpose.

Theorem 4.2. Let (X, d) be a complete metric spaces, let $f : X \to (-\infty, \infty]$ be a proper lower semicontinuous function which is bounded from below, and let $p: X \times X \to \mathbb{R}_+$ be a u-distance on X lower semicontinuous in its second argument. Then for $\varepsilon > 0$ and $x \in X$ with $f(x) < \infty$ and p(x, x) = 0, there exists $v \in X$ such that

- (i) $f(v) \le f(x) \varepsilon p(x, v);$
- (ii) $f(w) > f(v) \varepsilon p(v, w)$, for all $w \in X \setminus \{v\}$.

For the sake of completeness, we supply a proof of the equivalence between Theorems 1.5 and 4.2.

Proof. \Leftarrow Let the assumptions of Theorem 1.5 be satisfied. Obviously, the conclusion of (1) follows by Theorem 4.2. For (2), applying again Theorem 4.2 with $\varepsilon = \frac{e}{\lambda}$, we deduce that

$$p(x,v) \le \frac{\lambda}{e}(f(x) - f(v)) \le \frac{\lambda}{e}e \le \lambda.$$

Hence the conclusion of Theorem 1.5 is valid.

 \Rightarrow Now, suppose that Theorem 1.5 holds. Let $x \in X$ with $f(x) < \infty$ and $\varepsilon > 0$ be given. Fix any $e > f(x) - \inf_{a \in X} f(a)$ and set $\lambda = \frac{e}{\varepsilon}$. Consider

$$M(x) = \{ v \in X \mid f(v) \le f(x) - \varepsilon p(x, v) \}.$$

By the lower semicontinuity of f and p(x, .), the set M(x) is closed. Furthermore, M(x) is nonempty as $x \in M(x)$. Applying Theorem 1.5 (2) for the chosen e, λ and for M(x) instead of X one finds $v \in X$ such that

$$f(v) \le f(x), \quad p(x,v) \le \lambda,$$

$$f(w) > f(v) - \frac{e}{\lambda} \cdot p(v,w), \quad \text{for all } w \in M(x) \setminus \{v\}.$$

Since $v \in M(x)$, then (i) holds.

To show (ii) it is sufficient to check that

$$f(w) > f(v) - \frac{e}{\lambda} \cdot p(v, w), \text{ for all } w \notin M(x).$$

By the definition of M(x), the property $w \notin M(x)$ means that

$$f(w) > f(x) - \varepsilon p(x, w).$$

From this and (i) we easily deduce (ii) and then obtain Theorem 4.2.

We are in position to state the main result of this section. The proof follows a technique developed by Suzuki in [11].

Theorem 4.3. Let X be a Banach space, $a \in X$ fixed, and let $p: X \times X \to \mathbb{R}_+$ be a symmetric u-distance on X, lower semicontinuous in its second argument and such that p(x,x) = 0 for all $x \in X$. Let $f: X \to (-\infty, \infty]$ be a proper lower semicontinuous function which is bounded from below and let $b: [0, \infty) \to (0, \infty)$ be a non-increasing continuous function such that

$$B(t) = \int_0^t b(r) \, dr,$$

G. GOGA

where B is a function from \mathbb{R}_+ to itself such that $B(\infty) = +\infty$. Let $a \in X$ be fixed and $\beta : X \to \mathbb{R}_+$ defined by $\beta(x) = p(a, x)$. Assume that f is Gâteaux differentiable at every point $x \in X$ with $f(x) \in \mathbb{R}$. If

$$\alpha = \liminf_{\beta(y) \to \infty} f(y) \in \mathbb{R},$$

then there exists a sequence $\{z_n\}_n$ in X such that

- (a) $\lim_{n\to\infty} \beta(z_n) = \infty;$
- (b) $\lim_{n\to\infty} f(z_n) = \alpha;$
- (c) $\lim_{n \to \infty} ||f'(z_n)|| / b(\beta(z_n)) = 0.$

Proof. We shall show only the following: for every $\varepsilon > 0$, there exists $v \in X$ satisfying $\beta(v) \geq \frac{1}{\varepsilon}$, $|f(v) - \alpha| \leq \varepsilon$ and $||f'(v)||/b(\beta(v)) \leq \varepsilon$. Fix $\varepsilon > 0$ and define a function $\chi : [0, \infty) \to [0, \infty)$ by

$$\chi(t) = \frac{1}{2}b(t+1)$$
(4.6)

for $t \in [0, \infty)$. Then χ is non-increasing, and

$$\int_0^\infty \chi(t) \, dt = \frac{1}{2} \int_0^\infty b(t+1) \, dt = \frac{1}{2} \int_1^\infty b(t) \, dt = \infty.$$

We also determine a function $h: X \to (-\infty, +\infty]$ by

$$h(x) = \max\{f(x), \alpha - 2\varepsilon\}$$
(4.7)

for $x \in X$. Then it is obvious that h is proper lower semicontinuous and bounded from below. We choose $r, r' \in \mathbb{R}$ with $\frac{1}{\varepsilon} < r < r', 1 < r$,

$$\inf_{\substack{\beta(y) \ge r \\ \prime}} f(y) > \alpha - \varepsilon, \tag{4.8}$$

$$\int_{r}^{r'} \chi(t) \, dt = 3. \tag{4.9}$$

We also choose $u \in X$ with

$$\beta(u) > r', \quad f(u) < \alpha + \varepsilon.$$
 (4.10)

We note that h(u) = f(u) because $\beta(u) > r' > r$. We know from the earlier that the function $q: X \times X \to \mathbb{R}_+$, defined by

$$q(u,v) = \int_{\beta(u)}^{\beta(u)+p(u,v)} \chi(t) \, dt$$
(4.11)

is a *u*-distance. So, by Proposition 2.1, the function $s: X \times X \to \mathbb{R}_+$, defined by

$$s(u, v) = q(u, v) + q(v, u)$$
(4.12)

is also a u-distance. Thereby, by Theorem 4.2, there exists $v \in X$ such that

$$h(v) \le h(u) - \varepsilon s(u, v), \tag{4.13}$$

$$h(w) > h(v) - \varepsilon s(v, w), \quad \forall w \neq v.$$

$$(4.14)$$

Arguing by contradiction, we assume that $\beta(v) < r$. Moreover, we have

$$\beta(v) < r < r' < \beta(u). \tag{4.15}$$

Also, from (4.11), (4.12) and (4.13), we successively obtain

$$\alpha - 2\varepsilon \le h(v) \le h(u) - \varepsilon \int_{\beta(u)}^{\beta(u) + p(u,v)} \chi(t) dt - \varepsilon \int_{\beta(v)}^{\beta(v) + p(u,v)} \chi(t) dt$$

$$\le h(u) - \varepsilon \int_{\beta(v)}^{\beta(v) + p(u,v)} \chi(t) dt$$

$$\le h(u) - \varepsilon (H(\beta(v) + p(u,v)) - H(\beta(v))),$$
(4.16)

where H is a primitive of χ . Using that H is nondecreasing in (4.16), we obtain

$$\alpha - 2\varepsilon \le h(u) - \varepsilon (H(\beta(u)) - H(\beta(v))) = h(u) - \varepsilon \int_{\beta(v)}^{\beta(u)} \chi(t) \, dt.$$
(4.17)

Then, by (4.15), (4.17) and (4.10), we obtain

$$\alpha - 2\varepsilon \le h(u) - \varepsilon \int_{r}^{r'} \chi(t) \, dt = f(u) - 3\varepsilon < \alpha - 2\varepsilon,$$

which is a contradiction. Therefore,

$$\beta(v) \ge r > \frac{1}{\varepsilon},$$

and (a) holds. Thus, we have h(v) = f(v) and

$$\alpha - \varepsilon < \inf_{\beta(y) \ge r} f(y) \le f(v) \le f(u) < \alpha + \varepsilon.$$

This implies

$$|f(v) - \alpha| \le \varepsilon,$$

that is (b). For (c), from (4.11) , (4.12) and (4.14) and the non-increasing property of χ , we infer

$$h(w) > h(v) - \varepsilon \int_{\beta(v)}^{\beta(v) + p(v,w)} \chi(t) dt - \varepsilon \int_{\beta(w)}^{\beta(w) + p(v,w)} \chi(t) dt$$

$$\geq h(v) - \varepsilon(\chi(\beta(v)) + \chi(\beta(w))) \cdot p(v,w),$$
(4.18)

for $w \in X$, $w \neq v$. Since f is lower semicontinuous and $f(v) > \alpha - 2\varepsilon$, there exists $\delta \in (0, 1)$ such that $f(w) > \alpha - 2\varepsilon$ for $w \in X$ with $p(v, w) < \delta$. Hence, for $w \in X$ with $0 < p(v, w) < \delta$, since h(w) = f(w) and

$$\beta(w) = p(a, w) \ge p(a, v) - p(w, v) > \beta(v) - \delta > \beta(v) - 1 > 0,$$

we derive

$$f(w) > f(v) - \varepsilon(\chi(\beta(v)) + \chi(\beta(v) - 1)) \cdot p(v, w)$$

$$\geq f(v) - 2\varepsilon\chi(\beta(v) - 1) \cdot p(v, w)$$

$$= f(v) - \varepsilon b(\beta(v)) \cdot p(v, w).$$
(4.19)

By means of Lemma 4.1, we reach

$$\|f'(v)\| \le \varepsilon b(\beta(v)),$$

and (c) is verified too. The proof is complete.

Corollary 4.4. Let X be a Banach space. Let $f: X \to (-\infty, \infty]$ be a proper lower semicontinuous function which is bounded from below. Assume that f is Gâteaux differentiable at every point $x \in X$ with $f(x) \in \mathbb{R}$. If f satisfies the b- $(PS)_c$ condition for all $c \in \mathbb{R}$, then f is coercive; i.e., $f(x) \to \infty$ as $\beta(x) \to \infty$.

G. GOGA

Proof. Suppose the contrary; then $\alpha = \liminf_{\beta(x)\to\infty} f(x) \in \mathbb{R}$. By Theorem 4.3, there exists a sequence $\{z_n\}_n$ in X such that $\beta(z_n) \to \infty$, $f(z_n) \to \alpha$ and $\|f'(z_n)\|/b(\beta(z_n)) \to 0$. Then, the b-(PS) $_\alpha$ condition implies that $\{z_n\}_n$ has a convergent subsequence, which clearly leads to a contradiction.

Remark 4.5. Corollary 4.4 generalizes the result proved by [8] using a gradient flow, by Costa-Silva [5], Caklovic-Li-Willem [3] and Brezis-Nirenberg [2] using EVP, and by Zhong [17] using ZVP.

References

- [1] T. Q. Bao, P. Q. Khanh; Are several recent generalizations of Ekeland's variational principle more general than the original principle? Acta Math. Vietnam **28** (2003), 345-35.
- [2] H. Brezis, L. Nirenberg; *Remarks on finding critical points*, Comm. Pure Appl. Math., 44 (1991), 939-963.
- [3] L. Caklovic, S. J. Li, M. Willem; A note on Palais-Smale condition and coercivity, Diff. Int. Eq., 3 (1990), 799-800.
- [4] G. Cerami; Un criterio di esistenza per i punti critici su varieta illimitate, Rend. Accad. Sc. Lett. Ist. Lombardo, A 112 (1978), 332-336.
- [5] D. G. Costa, E. A. B. Silva; The Palais-Smale condition versus coercivity, Nonlinear Anal., 16 (1991), 371-381.
- [6] I. Ekeland; On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353
- [7] I. Ekeland; Nonconvex minimization problems, Bull. Am. Math. Soc., 1 (1979), 443-474.
- [8] S. Li; An existence theorem on multiple critical points and its applications, Acta Math. Sci., 4 (1984).
- [9] O. Kada, T. Suzuki, W. Takahashi; Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Jap., 44 (1996), 381 - 391.
- [10] M. Schechter; A variation of the mountain pass lemma and applications, J. London Math. Soc., 44 (1991), 491-502.
- [11] T. Suzuki; Generalized distances and existence theorems in complete metric spaces, J. Math. Anal. Appl., 253 (2001), 440-458.
- [12] T. Suzuki; On the relation between the weak Palais-Smale condition and coercivity given by Zhong, Nonlinear Anal. 68 (2008), 2471 - 2478.
- [13] D. Tataru; Viscosity solutions of Hamilton- Jacobi equations with unbounded nonlinear terms, J. Math. Anal. Appl., 163 (1992), 354 - 392.
- [14] M. Turinici; Function variational principles and coercivity, J. Math. Anal. Appl., 304 (2005), 236-248.
- [15] J. S. Ume; Existence theorems for generalized distance on complete metric spaces, Hindawi Publishing Corporation, Fixed Point Theory and Appl., vol. 2010, ID 397150, 21 pp.
- [16] Z. Wu; Equivalent extensions to Caristi-Kirk's fixed point theorem, Ekeland's variational principle and Takahashi's minimization theorem, Hindawi Publishing Corporation, Fixed Point Theory and Appl., vol. 2010, ID 970579, 20 pp.
- [17] C.-K. Zhong; A generalization of Ekeland's variational principle and applications to the study of the relation between the weak PS condition and coercivity, Nonlinear Anal. 29 (1997), 1421-1431
- [18] C.-K. Zhong; On Ekeland's variational principle and a minimax theorem, J. Math. Anal. Appl., 205 (1997) 239-250.

Georgiana Goga

NICOLAE ROTARU COLLEGE, 2, ION CORVIN ST., CONSTANTA, ROMANIA E-mail address: georgia_goga@yahoo.com