
Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 152, pp. 1–7.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

NONEXISTENCE OF RADIAL POSITIVE SOLUTIONS FOR A
NONPOSITONE SYSTEM IN AN ANNULUS

SAID HAKIMI

Abstract. In this article we study the nonexistence of radial positive solu-
tions for a nonpositone system in an annulus by using energy analysis and
comparison methods.

1. Introduction

We study the nonexistence of radial positive solutions for the system

−∆u(x) = λf(v(x)), x ∈ Ω

−∆v(x) = µg(u(x)), x ∈ Ω

u(x) = v(x) = 0, x ∈ ∂Ω,

(1.1)

where λ, µ ≥ ε0 > 0, Ω is an annulus in RN : Ω = C(0, R, R̂) = {x ∈ RN : R < |x| <
R̂}, (0 < R < R̂, N ≥ 2), f and g are smooth functions that grow at least linearly
at infinity. When Ω is a ball, problem (1.1) has been studied by Hai, Oruganti and
Shivaji [7].

The nonexistence of radial positive solutions of (1.1) is equivalent of the nonex-
istence of positive solutions of the system

−(rN−1u′)′ = λrN−1f(v), R < r < R̂

−(rN−1v′)′ = µrN−1g(u), R < r < R̂

u(R) = u(R̂) = 0 = v(R) = v(R̂).

(1.2)

The purpose of this paper is to prove that the nonexistence of radial positive solu-
tions of (1.1) remains valid when Ω is an annulus and f and g satisfy the following
hypotheses

(C1) f , g : [0,+∞) → R are continuous, increasing and f(0) < 0 and g(0) < 0.
(C2) There exist two positive real numbers ai and bi, i = 1, 2 such that

f(z) ≥ a1z − b1, g(z) ≥ a2z − b2,

for all z ≥ 0.
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2. Main result

Our main result is the following theorem.

Theorem 2.1. Assume that (C1)–(C2) are satisfied. Then there exists a positive
real number σ such that (1.1) has no radial positive solution for λµ > σ.

Remark. Existence result for positive solutions with superlinearities satisfying
(C1), λ = µ and λ small can be found in [5, 6]. Existence results, for the single
equation case can be found in [1, 3, 8], and non-existence results in [1, 2, 9].

To prove Theorem 2.1, we need the next three lemmas. Here we use ideas adapted
from Hai, Oruganti and Shivaji [7].

Lemma 2.2. There exists a positive constant C such that for λµ large,

u(R0) + v(R0) ≤ C,

where R0 = (R + R̂)/2.

Proof. Multiplying the first equation in (1.2) by a positive eigenfunction, say φ
corresponding to λ1, and using (C1) we obtain

−
∫ bR

R

(rN−1u′)′φdr ≥
∫ bR

R

λ(a1v − b1)φrN−1dr;

that is, ∫ bR
R

λ1urN−1φdr ≥
∫ bR

R

λ(a1v − b1)φrN−1dr. (2.1)

Similarly, using the second equation in (1.2) and (C2), we obtain∫ bR
R

λ1vrN−1φdr ≥
∫ bR

R

µ(a2u− b2)φrN−1dr. (2.2)

Combining (2.1) and (2.2), we obtain∫ bR
R

[λ1 − λµ
a1a2

λ1
]vΦrN−1dr ≥

∫ bR
R

µ[−λ
a2b1

λ1
− b2]ΦrN−1dr.

Now, if λµa1a2/2 ≥ λ2
1, then∫ bR

R

µ[−λa2b1 − b2λ1]ΦrN−1dr ≤
∫ bR

R

−λµ

2
a1a2vΦrN−1dr;

that is, ∫ bR
R

a1a2

2
vΦrN−1dr ≤

∫ bR
R

[a2b1 +
b2λ1

ε0
]ΦrN−1dr, (2.3)

(because λ ≥ ε0). Similarly∫ bR
R

a1a2

2
uΦrN−1dr ≤

∫ bR
R

[a1b2 +
b1λ1

ε0
]ΦrN−1dr. (2.4)

Adding (2.3) and (2.4), we obtain the inequality∫ bR
R

(u + v)ΦrN−1dr ≤ 2
a1a2

∫ bR
R

[a1b2 +
b1λ1

ε0
+ a2b1 +

b2λ1

ε0
]ΦrN−1dr.
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Then

(u + v)(R0)
∫ R0

t

ΦrN−1dr ≤
∫ R0

t

(u + v)ΦrN−1dr

≤
∫ bR

R

(u + v)ΦrN−1dr

≤ 2
a1a2

∫ bR
R

[a1b2 +
b1λ1

ε0
+ a2b1 +

b2λ1

ε0
]ΦrN−1dr,

where t = max(t1, t2) with t1 and t2 are such that

t1 = max{r ∈ (R, R̂) : u′(r) = 0}, t2 = max{r ∈ (R, R̂) : v′(r) = 0}.
The proof is complete. �

We remark that ti ≤ R0, for i = 1, 2, was shown in [4]. Now, assume that there
exists z ≥ 0 (z 6≡ 0) on I where I = (α, β), and a constant γ such that

− (rN−1z′)′ ≥ γrN−1z , r ∈ I. (2.5)

Let λ1 = λ1(I) > 0 denote the principal eigenvalue of

−(rN−1Ψ′)′ = λrN−1Ψ, r ∈ (α, β)

Ψ(α) = 0 = Ψ(β),
(2.6)

where 0 < α < β ≤ 1.

Lemma 2.3. Let (2.5) hold. Then γ ≤ λ1(I).

Proof. Multiplying (2.5) by Ψ (Φ > 0), an eigenfunction corresponding to the
principal eigenvalue λ1(I), and integrating by parts (twice) we obtain∫ β

α

[γ − λ1(I)]rN−1zΨdr ≤ βN−1Ψ′(β)z(β)− αN−1Ψ′(α)z(α). (2.7)

However, Ψ′(β) < 0 and Ψ′(α) > 0; hence the right-hand side of (2.7) is less than
or equal to zero. Then γ ≤ λ1(I), and the proof is complete. �

Now, we define

R1 = R0 +
R̂−R0

3
, R2 = R0 +

2(R̂−R0)
3

.

Lemma 2.4. For λµ sufficiently large, u(R2) ≤ β2 or v(R2) ≤ β1, where β1 and
β2 are the unique positive zeros of f and g respectively.

Proof. We argue by contradiction. Suppose that u(R2) > β2 and v(R2) > β1.
Case 1: u(R1) > ρ2 or v(R1) > ρ1, where ρ1 = β1+θ1

2 and ρ2 = β2+θ2
2 (θ1

and θ2 are the unique zeros of F and G respectively where F (x) =
∫ x

0
f(t)dt and

G(x) =
∫ x

0
g(t)dt). If u(R1) > ρ2 then

−(rN−1v′)′ = µrN−1g(u) ≥ ε0r
N−1g(ρ2) in J = (R0, R1)

and v(r) ≥ β1 on J̄ .
Let ω be the unique solution of

−(rN−1ω′)′ = ε0r
N−1g(ρ2) in J

ω = β1 in ∂J.
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Then by comparison arguments, v(r) ≥ ω(r) = ε0g(ρ2)ω0(r) + β1 on J̄ , where ω0

is the unique (positive) solution of

−(rN−1ω′
0)
′ = rN−1 in J

ω0 = 0 on ∂J.

In particular, there exists β1 > β1 (we choose β1 such that f(β1) 6= 0) such that

v(R0 +
2(R1 −R0)

3
) ≥ ω(R0 +

2(R1 −R0)
3

) ≥ β1

in J∗ = (R0 + R1−R0
3 , R0 + 2(R1−R0)

3 ). Then

−(rN−1(u− β2)′)′ = λrN−1f(v)

≥ λrN−1f(β1)

≥ (
λf(β1)

C
)rN−1(u− β2) on J∗,

(where C is as in Lemma 2.2). Since u− β2 > 0 on J̄∗, it follows that

λf(β1)
C

≤ λ1(J∗), (2.8)

where λ1(J∗) is the principal value of (2.6) (with (α, β) = J∗).
Next we consider

(rN−1(v − β1)′)′ = µrN−1g(u)

≥ µrN−1g(ρ2)

≥ (
µg(ρ2)

C
)rN−1(v − β1) on J.

Since v − β1 > 0 on J̄ , it follows that

µg(ρ2)
C

≤ λ1(J), (2.9)

where λ1(J) is the principal value of (2.6) (with (α, β) = J). Combining (2.8) and
(2.9), we obtain

λµf(β1)g(ρ2)
C2

≤ λ1(J∗)λ1(J),

But f(β1), g(ρ2) and C are fixed positive constants. This is a contradiction for λµ
large. A similar contradiction can be reached for the case v(R1) > ρ1.
Case 2: u(R1) ≤ ρ2 and v(R1) ≤ ρ1. Then β2 < u ≤ ρ2 and β1 < v ≤ ρ1 on
J1 = [R1, R2]. Then by the mean value theorem, there exist c1, c2 ∈ (R1, R2) such
that

|u′(c2)| ≤
ρ2

R2 −R1
, |v′(c1)| ≤

ρ1

R2 −R1
.

Since −(rN−1u′)′ ≥ 0 on [R1, R2), we have

−rN−1u′(r) ≤ −cN−1
2 u′(c2) on J2 = [R1, c2);

thus

|u′(r)| ≤ cN−1
2

rN−1
u′(c2) ≤ (

R2

R1
)N−1 ρ2

R2 −R1
in J2.



EJDE-2011/152 NONEXISTENCE OF RADIAL POSITIVE SOLUTIONS 5

Similarly, we obtain

|v′(r)| ≤ (
R2

R1
)N−1 ρ1

R2 −R1
in J3 = [R1, c1).

Hence there exists r0 ∈ (R1, R2) such that

|u′(r0)| ≤ c̃, v′(r0)| ≤ c̃,

where

c̃ =
1

R2 −R1
(
R2

R1
)N−1 max(ρ2, ρ1).

Now, we define the energy function

E(r) = u′(r)v′(r) + λF (v(r)) + µG(u(r)).

Then

E′(r) = −2(N − 1)
r

u′(r)v′(r) ≤ 0,

and hence E ≥ 0 on [R, R̂], (because u′(R̂)v′(R̂) ≥ 0). However,

E(r0) ≤ c̃2 + λF (ρ1) + µG(ρ2), (2.10)

and F (ρ1) < 0 and G(ρ2) < 0. Hence E(r0) < 0 for λµ large which is a contradic-
tion. The proof is complete. �

Proof of Theorem 2.1. Assume λµ is large enough so that both lemmas 2.2, 2.4
hold. We take the case when u(R2) ≤ β2. Then

−(rN−1v′)′ = µrN−1g(u) ≤ 0 on J3 = (R2, R̂)

v(R2) ≤ C, v(R̂) = 0,

hence, by a comparison argument, v(r) ≤ ω̃(r), where ω̃ is the solution of

−(rN−1ω̃′)′ = 0 on J3

ω̃(R2) = C, ω̃(R̂) = 0.

However, ω̃(r) = C
∫ bR

r
s1−Nds/

∫ bR
R2

s1−Nds decreases from C to 0 on [R2, R̂], hence

there exists r1 ∈ (R2, R̂) (independent of λµ) such that ω̃(r1) = β1/2.
Remark. Here, we assume that β1/2 < C, unless we can choose N0 such that

β1/N0 < C.
Hence v(r1) ≤ β1/2, and

−(rN−1(β2 − u)′)′ = −λrN−1f(v)

≥ −λrN−1f(
β1

2
)

≥ λ
(
− f(

β1

2
)
)
rN−1 β2 − u

β2
on J4 = (r1, R̂).

Since β2 − u > 0 on J̄4, we have

λK̃1

β2
≤ λ1(J4), (2.11)
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where K̃1 = −f(β1/2) and λ1(J4) is the principal eigenvalue of (2.6) (with (α, β) =
J4). Similarly, there exists r2 ∈ (r1, R̂) (independent of λµ) such that

v(r2) <
β1

2
.

Hence

−(rN−1u′)′ = µrN−1f(v) ≤ 0 on J5 = (r2, R̂)

u(r2) ≤ C, u(R̂) = 0,

then, by a comparison argument we obtain

u(r) ≤ ω1(r) =
C∫ bR

r2
s1−Nds

∫ bR
r

s1−Nds;

thus

−(rN−1ω′
1)
′ = 0, on J5,

ω1(r2) = C, ω1(R̂) = 0.

Arguing as before there exists r3 ∈ (r2, R̂) (independent of λµ) such that

u(r3) ≤ ω1(r3) ≤
β2

2
< C.

Hence

−(rN−1(β1 − v)′)′ = −µrN−1g(v)

≥ −µrN−1g(
β2

2
)

≥ µ
(
− g(

β2

2
)
)
rN−1 β1 − v

β1
on J6 = (r3, R̂).

Since β1 − v > 0 on J̄6, it follows that

µK̃2

β1
≤ λ1(J6), (2.12)

where K̃2 = −g(β1/2) and λ1(J6) is the principal eigenvalue of (2.6) (with (α, β) =
J6). Combining (2.11) and (2.12), we obtain

λµK̃1K̃2

β1β2
≤ λ1(J4)λ1(J6),

which is a contradiction to λµ being large.
A similar contradiction can be reached for the case v(R2) ≤ β1. Hence Theorem

2.1 is proven. �
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BP 2121, Tétouan, Morocco

E-mail address: h saidhakimi@yahoo.fr


	1. Introduction
	2. Main result
	References

