Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 152, pp. 1-7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

NONEXISTENCE OF RADIAL POSITIVE SOLUTIONS FOR A NONPOSITONE SYSTEM IN AN ANNULUS

SAID HAKIMI

Abstract

In this article we study the nonexistence of radial positive solutions for a nonpositone system in an annulus by using energy analysis and comparison methods.

1. Introduction

We study the nonexistence of radial positive solutions for the system

$$
\begin{gather*}
-\Delta u(x)=\lambda f(v(x)), \quad x \in \Omega \\
-\Delta v(x)=\mu g(u(x)), \quad x \in \Omega \tag{1.1}\\
u(x)=v(x)=0, \quad x \in \partial \Omega
\end{gather*}
$$

where $\lambda, \mu \geq \varepsilon_{0}>0, \Omega$ is an annulus in $\mathbb{R}^{N}: \Omega=C(0, R, \widehat{R})=\left\{x \in \mathbb{R}^{N}: R<|x|<\right.$ $\widehat{R}\},(0<R<\widehat{R}, N \geq 2), f$ and g are smooth functions that grow at least linearly at infinity. When Ω is a ball, problem (1.1) has been studied by Hai, Oruganti and Shivaji [7.

The nonexistence of radial positive solutions of $\sqrt{1.1}$ is equivalent of the nonexistence of positive solutions of the system

$$
\begin{gather*}
-\left(r^{N-1} u^{\prime}\right)^{\prime}=\lambda r^{N-1} f(v), \quad R<r<\widehat{R} \\
-\left(r^{N-1} v^{\prime}\right)^{\prime}=\mu r^{N-1} g(u), \quad R<r<\widehat{R} \tag{1.2}\\
u(R)=u(\widehat{R})=0=v(R)=v(\widehat{R}) .
\end{gather*}
$$

The purpose of this paper is to prove that the nonexistence of radial positive solutions of 1.1 remains valid when Ω is an annulus and f and g satisfy the following hypotheses
$(\mathrm{C} 1) f, g:[0,+\infty) \rightarrow \mathbb{R}$ are continuous, increasing and $f(0)<0$ and $g(0)<0$.
(C2) There exist two positive real numbers a_{i} and $b_{i}, i=1,2$ such that

$$
f(z) \geq a_{1} z-b_{1}, \quad g(z) \geq a_{2} z-b_{2},
$$

for all $z \geq 0$.

[^0]
2. Main Result

Our main result is the following theorem.
Theorem 2.1. Assume that (C1)-(C2) are satisfied. Then there exists a positive real number σ such that (1.1) has no radial positive solution for $\lambda \mu>\sigma$.

Remark. Existence result for positive solutions with superlinearities satisfying (C1), $\lambda=\mu$ and λ small can be found in [5, 6]. Existence results, for the single equation case can be found in [1, 3, 8, and non-existence results in [1, 2, 2].

To prove Theorem 2.1, we need the next three lemmas. Here we use ideas adapted from Hai, Oruganti and Shivaji [7].

Lemma 2.2. There exists a positive constant C such that for $\lambda \mu$ large,

$$
u\left(R_{0}\right)+v\left(R_{0}\right) \leq C
$$

where $R_{0}=(R+\widehat{R}) / 2$.
Proof. Multiplying the first equation in 1.2 by a positive eigenfunction, say ϕ corresponding to λ_{1}, and using (C1) we obtain

$$
-\int_{R}^{\widehat{R}}\left(r^{N-1} u^{\prime}\right)^{\prime} \phi d r \geq \int_{R}^{\widehat{R}} \lambda\left(a_{1} v-b_{1}\right) \phi r^{N-1} d r
$$

that is,

$$
\begin{equation*}
\int_{R}^{\widehat{R}} \lambda_{1} u r^{N-1} \phi d r \geq \int_{R}^{\widehat{R}} \lambda\left(a_{1} v-b_{1}\right) \phi r^{N-1} d r \tag{2.1}
\end{equation*}
$$

Similarly, using the second equation in (1.2) and (C2), we obtain

$$
\begin{equation*}
\int_{R}^{\widehat{R}} \lambda_{1} v r^{N-1} \phi d r \geq \int_{R}^{\widehat{R}} \mu\left(a_{2} u-b_{2}\right) \phi r^{N-1} d r \tag{2.2}
\end{equation*}
$$

Combining (2.1) and 2.2 , we obtain

$$
\int_{R}^{\widehat{R}}\left[\lambda_{1}-\lambda \mu \frac{a_{1} a_{2}}{\lambda_{1}}\right] v \Phi r^{N-1} d r \geq \int_{R}^{\widehat{R}} \mu\left[-\lambda \frac{a_{2} b_{1}}{\lambda_{1}}-b_{2}\right] \Phi r^{N-1} d r .
$$

Now, if $\lambda \mu a_{1} a_{2} / 2 \geq \lambda_{1}^{2}$, then

$$
\int_{R}^{\widehat{R}} \mu\left[-\lambda a_{2} b_{1}-b_{2} \lambda_{1}\right] \Phi r^{N-1} d r \leq \int_{R}^{\widehat{R}}-\frac{\lambda \mu}{2} a_{1} a_{2} v \Phi r^{N-1} d r
$$

that is,

$$
\begin{equation*}
\int_{R}^{\widehat{R}} \frac{a_{1} a_{2}}{2} v \Phi r^{N-1} d r \leq \int_{R}^{\widehat{R}}\left[a_{2} b_{1}+\frac{b_{2} \lambda_{1}}{\varepsilon_{0}}\right] \Phi r^{N-1} d r \tag{2.3}
\end{equation*}
$$

(because $\lambda \geq \varepsilon_{0}$). Similarly

$$
\begin{equation*}
\int_{R}^{\widehat{R}} \frac{a_{1} a_{2}}{2} u \Phi r^{N-1} d r \leq \int_{R}^{\widehat{R}}\left[a_{1} b_{2}+\frac{b_{1} \lambda_{1}}{\varepsilon_{0}}\right] \Phi r^{N-1} d r \tag{2.4}
\end{equation*}
$$

Adding (2.3) and (2.4), we obtain the inequality

$$
\int_{R}^{\widehat{R}}(u+v) \Phi r^{N-1} d r \leq \frac{2}{a_{1} a_{2}} \int_{R}^{\widehat{R}}\left[a_{1} b_{2}+\frac{b_{1} \lambda_{1}}{\varepsilon_{0}}+a_{2} b_{1}+\frac{b_{2} \lambda_{1}}{\varepsilon_{0}}\right] \Phi r^{N-1} d r
$$

Then

$$
\begin{aligned}
(u+v)\left(R_{0}\right) \int_{\bar{t}}^{R_{0}} \Phi r^{N-1} d r & \leq \int_{\bar{t}}^{R_{0}}(u+v) \Phi r^{N-1} d r \\
& \leq \int_{R}^{\widehat{R}}(u+v) \Phi r^{N-1} d r \\
& \leq \frac{2}{a_{1} a_{2}} \int_{R}^{\widehat{R}}\left[a_{1} b_{2}+\frac{b_{1} \lambda_{1}}{\varepsilon_{0}}+a_{2} b_{1}+\frac{b_{2} \lambda_{1}}{\varepsilon_{0}}\right] \Phi r^{N-1} d r
\end{aligned}
$$

where $\bar{t}=\max \left(\bar{t}_{1}, \bar{t}_{2}\right)$ with \bar{t}_{1} and \bar{t}_{2} are such that

$$
\bar{t}_{1}=\max \left\{r \in(R, \widehat{R}): u^{\prime}(r)=0\right\}, \quad \bar{t}_{2}=\max \left\{r \in(R, \widehat{R}): v^{\prime}(r)=0\right\}
$$

The proof is complete.
We remark that $\bar{t}_{i} \leq R_{0}$, for $i=1,2$, was shown in [4]. Now, assume that there exists $z \geq 0(z \not \equiv 0)$ on \bar{I} where $I=(\alpha, \beta)$, and a constant γ such that

$$
\begin{equation*}
-\left(r^{N-1} z^{\prime}\right)^{\prime} \geq \gamma r^{N-1} z, \quad r \in I \tag{2.5}
\end{equation*}
$$

Let $\lambda_{1}=\lambda_{1}(I)>0$ denote the principal eigenvalue of

$$
\begin{gather*}
-\left(r^{N-1} \Psi^{\prime}\right)^{\prime}=\lambda r^{N-1} \Psi, \quad r \in(\alpha, \beta) \tag{2.6}\\
\Psi(\alpha)=0=\Psi(\beta)
\end{gather*}
$$

where $0<\alpha<\beta \leq 1$.
Lemma 2.3. Let 2.5 hold. Then $\gamma \leq \lambda_{1}(I)$.
Proof. Multiplying (2.5) by $\Psi(\Phi>0)$, an eigenfunction corresponding to the principal eigenvalue $\lambda_{1}(I)$, and integrating by parts (twice) we obtain

$$
\begin{equation*}
\int_{\alpha}^{\beta}\left[\gamma-\lambda_{1}(I)\right] r^{N-1} z \Psi d r \leq \beta^{N-1} \Psi^{\prime}(\beta) z(\beta)-\alpha^{N-1} \Psi^{\prime}(\alpha) z(\alpha) \tag{2.7}
\end{equation*}
$$

However, $\Psi^{\prime}(\beta)<0$ and $\Psi^{\prime}(\alpha)>0$; hence the right-hand side of 2.7) is less than or equal to zero. Then $\gamma \leq \lambda_{1}(I)$, and the proof is complete.

Now, we define

$$
R_{1}=R_{0}+\frac{\widehat{R}-R_{0}}{3}, \quad R_{2}=R_{0}+\frac{2\left(\widehat{R}-R_{0}\right)}{3}
$$

Lemma 2.4. For $\lambda \mu$ sufficiently large, $u\left(R_{2}\right) \leq \beta_{2}$ or $v\left(R_{2}\right) \leq \beta_{1}$, where β_{1} and β_{2} are the unique positive zeros of f and g respectively.

Proof. We argue by contradiction. Suppose that $u\left(R_{2}\right)>\beta_{2}$ and $v\left(R_{2}\right)>\beta_{1}$.
Case 1: $u\left(R_{1}\right)>\rho_{2}$ or $v\left(R_{1}\right)>\rho_{1}$, where $\rho_{1}=\frac{\beta_{1}+\theta_{1}}{2}$ and $\rho_{2}=\frac{\beta_{2}+\theta_{2}}{2}\left(\theta_{1}\right.$ and θ_{2} are the unique zeros of F and G respectively where $F(x)=\int_{0}^{x} f(t) d t$ and $\left.G(x)=\int_{0}^{x} g(t) d t\right)$. If $u\left(R_{1}\right)>\rho_{2}$ then

$$
-\left(r^{N-1} v^{\prime}\right)^{\prime}=\mu r^{N-1} g(u) \geq \varepsilon_{0} r^{N-1} g\left(\rho_{2}\right) \quad \text { in } J=\left(R_{0}, R_{1}\right)
$$

and $v(r) \geq \beta_{1}$ on \bar{J}.
Let ω be the unique solution of

$$
\begin{gathered}
-\left(r^{N-1} \omega^{\prime}\right)^{\prime}=\varepsilon_{0} r^{N-1} g\left(\rho_{2}\right) \quad \text { in } J \\
\omega=\beta_{1} \quad \text { in } \partial J .
\end{gathered}
$$

Then by comparison arguments, $v(r) \geq \omega(r)=\varepsilon_{0} g\left(\rho_{2}\right) \omega_{0}(r)+\beta_{1}$ on \bar{J}, where ω_{0} is the unique (positive) solution of

$$
\begin{gathered}
-\left(r^{N-1} \omega_{0}^{\prime}\right)^{\prime}=r^{N-1} \quad \text { in } J \\
\omega_{0}=0 \quad \text { on } \partial J
\end{gathered}
$$

In particular, there exists $\bar{\beta}_{1}>\beta_{1}$ (we choose $\bar{\beta}_{1}$ such that $\left.f\left(\bar{\beta}_{1}\right) \neq 0\right)$ such that

$$
v\left(R_{0}+\frac{2\left(R_{1}-R_{0}\right)}{3}\right) \geq \omega\left(R_{0}+\frac{2\left(R_{1}-R_{0}\right)}{3}\right) \geq \bar{\beta}_{1}
$$

in $J^{*}=\left(R_{0}+\frac{R_{1}-R_{0}}{3}, R_{0}+\frac{2\left(R_{1}-R_{0}\right)}{3}\right)$. Then

$$
\begin{aligned}
-\left(r^{N-1}\left(u-\beta_{2}\right)^{\prime}\right)^{\prime} & =\lambda r^{N-1} f(v) \\
& \geq \lambda r^{N-1} f\left(\bar{\beta}_{1}\right) \\
& \geq\left(\frac{\lambda f\left(\bar{\beta}_{1}\right)}{C}\right) r^{N-1}\left(u-\beta_{2}\right) \quad \text { on } J^{*}
\end{aligned}
$$

(where C is as in Lemma 2.2. Since $u-\beta_{2}>0$ on \bar{J}^{*}, it follows that

$$
\begin{equation*}
\frac{\lambda f\left(\bar{\beta}_{1}\right)}{C} \leq \lambda_{1}\left(J^{*}\right) \tag{2.8}
\end{equation*}
$$

where $\lambda_{1}\left(J^{*}\right)$ is the principal value of 2.6 (with $(\alpha, \beta)=J^{*}$).
Next we consider

$$
\begin{aligned}
\left(r^{N-1}\left(v-\beta_{1}\right)^{\prime}\right)^{\prime} & =\mu r^{N-1} g(u) \\
& \geq \mu r^{N-1} g\left(\rho_{2}\right) \\
& \geq\left(\frac{\mu g\left(\rho_{2}\right)}{C}\right) r^{N-1}\left(v-\beta_{1}\right) \quad \text { on } J
\end{aligned}
$$

Since $v-\beta_{1}>0$ on \bar{J}, it follows that

$$
\begin{equation*}
\frac{\mu g\left(\rho_{2}\right)}{C} \leq \lambda_{1}(J) \tag{2.9}
\end{equation*}
$$

where $\lambda_{1}(J)$ is the principal value of 2.6 (with $\left.(\alpha, \beta)=J\right)$. Combining 2.8 and (2.9), we obtain

$$
\frac{\lambda \mu f\left(\bar{\beta}_{1}\right) g\left(\rho_{2}\right)}{C^{2}} \leq \lambda_{1}\left(J^{*}\right) \lambda_{1}(J)
$$

But $f\left(\bar{\beta}_{1}\right), g\left(\rho_{2}\right)$ and C are fixed positive constants. This is a contradiction for $\lambda \mu$ large. A similar contradiction can be reached for the case $v\left(R_{1}\right)>\rho_{1}$.
Case 2: $u\left(R_{1}\right) \leq \rho_{2}$ and $v\left(R_{1}\right) \leq \rho_{1}$. Then $\beta_{2}<u \leq \rho_{2}$ and $\beta_{1}<v \leq \rho_{1}$ on $J_{1}=\left[R_{1}, R_{2}\right]$. Then by the mean value theorem, there exist $c_{1}, c_{2} \in\left(R_{1}, R_{2}\right)$ such that

$$
\left|u^{\prime}\left(c_{2}\right)\right| \leq \frac{\rho_{2}}{R_{2}-R_{1}}, \quad\left|v^{\prime}\left(c_{1}\right)\right| \leq \frac{\rho_{1}}{R_{2}-R_{1}}
$$

Since $-\left(r^{N-1} u^{\prime}\right)^{\prime} \geq 0$ on $\left[R_{1}, R_{2}\right)$, we have

$$
-r^{N-1} u^{\prime}(r) \leq-c_{2}^{N-1} u^{\prime}\left(c_{2}\right) \quad \text { on } J_{2}=\left[R_{1}, c_{2}\right)
$$

thus

$$
\left|u^{\prime}(r)\right| \leq \frac{c_{2}^{N-1}}{r^{N-1}} u^{\prime}\left(c_{2}\right) \leq\left(\frac{R_{2}}{R_{1}}\right)^{N-1} \frac{\rho_{2}}{R_{2}-R_{1}} \quad \text { in } J_{2}
$$

Similarly, we obtain

$$
\left|v^{\prime}(r)\right| \leq\left(\frac{R_{2}}{R_{1}}\right)^{N-1} \frac{\rho_{1}}{R_{2}-R_{1}} \quad \text { in } J_{3}=\left[R_{1}, c_{1}\right)
$$

Hence there exists $r_{0} \in\left(R_{1}, R_{2}\right)$ such that

$$
\left|u^{\prime}\left(r_{0}\right)\right| \leq \widetilde{c}, \quad v^{\prime}\left(r_{0}\right) \mid \leq \widetilde{c}
$$

where

$$
\widetilde{c}=\frac{1}{R_{2}-R_{1}}\left(\frac{R_{2}}{R_{1}}\right)^{N-1} \max \left(\rho_{2}, \rho_{1}\right) .
$$

Now, we define the energy function

$$
E(r)=u^{\prime}(r) v^{\prime}(r)+\lambda F(v(r))+\mu G(u(r))
$$

Then

$$
E^{\prime}(r)=-\frac{2(N-1)}{r} u^{\prime}(r) v^{\prime}(r) \leq 0
$$

and hence $E \geq 0$ on $[R, \widehat{R}]$, (because $u^{\prime}(\widehat{R}) v^{\prime}(\widehat{R}) \geq 0$). However,

$$
\begin{equation*}
E\left(r_{0}\right) \leq \widetilde{c}^{2}+\lambda F\left(\rho_{1}\right)+\mu G\left(\rho_{2}\right) \tag{2.10}
\end{equation*}
$$

and $F\left(\rho_{1}\right)<0$ and $G\left(\rho_{2}\right)<0$. Hence $E\left(r_{0}\right)<0$ for $\lambda \mu$ large which is a contradiction. The proof is complete.

Proof of Theorem 2.1. Assume $\lambda \mu$ is large enough so that both lemmas 2.2, 2.4 hold. We take the case when $u\left(R_{2}\right) \leq \beta_{2}$. Then

$$
\begin{gathered}
-\left(r^{N-1} v^{\prime}\right)^{\prime}=\mu r^{N-1} g(u) \leq 0 \quad \text { on } J_{3}=\left(R_{2}, \widehat{R}\right) \\
v\left(R_{2}\right) \leq C, \quad v(\widehat{R})=0
\end{gathered}
$$

hence, by a comparison argument, $v(r) \leq \widetilde{\omega}(r)$, where $\widetilde{\omega}$ is the solution of

$$
\begin{aligned}
& -\left(r^{N-1} \widetilde{\omega}^{\prime}\right)^{\prime}=0 \quad \text { on } J_{3} \\
& \widetilde{\omega}\left(R_{2}\right)=C, \quad \widetilde{\omega}(\widehat{R})=0
\end{aligned}
$$

However, $\widetilde{\omega}(r)=C \int_{r}^{\widehat{R}} s^{1-N} d s / \int_{R_{2}}^{\widehat{R}} s^{1-N} d s$ decreases from C to 0 on $\left[R_{2}, \widehat{R}\right]$, hence there exists $r_{1} \in\left(R_{2}, \widehat{R}\right)$ (independent of $\lambda \mu$) such that $\widetilde{\omega}\left(r_{1}\right)=\beta_{1} / 2$.

Remark. Here, we assume that $\beta_{1} / 2<C$, unless we can choose N_{0} such that $\beta_{1} / N_{0}<C$.

Hence $v\left(r_{1}\right) \leq \beta_{1} / 2$, and

$$
\begin{aligned}
-\left(r^{N-1}\left(\beta_{2}-u\right)^{\prime}\right)^{\prime} & =-\lambda r^{N-1} f(v) \\
& \geq-\lambda r^{N-1} f\left(\frac{\beta_{1}}{2}\right) \\
& \geq \lambda\left(-f\left(\frac{\beta_{1}}{2}\right)\right) r^{N-1} \frac{\beta_{2}-u}{\beta_{2}} \quad \text { on } J_{4}=\left(r_{1}, \widehat{R}\right) .
\end{aligned}
$$

Since $\beta_{2}-u>0$ on \bar{J}_{4}, we have

$$
\begin{equation*}
\frac{\lambda \widetilde{K}_{1}}{\beta_{2}} \leq \lambda_{1}\left(J_{4}\right) \tag{2.11}
\end{equation*}
$$

where $\widetilde{K}_{1}=-f\left(\beta_{1} / 2\right)$ and $\lambda_{1}\left(J_{4}\right)$ is the principal eigenvalue of (2.6) (with $(\alpha, \beta)=$ $\left.J_{4}\right)$. Similarly, there exists $r_{2} \in\left(r_{1}, \widehat{R}\right)$ (independent of $\lambda \mu$) such that

$$
v\left(r_{2}\right)<\frac{\beta_{1}}{2}
$$

Hence

$$
\begin{gathered}
-\left(r^{N-1} u^{\prime}\right)^{\prime}=\mu r^{N-1} f(v) \leq 0 \quad \text { on } J_{5}=\left(r_{2}, \widehat{R}\right) \\
u\left(r_{2}\right) \leq C, \quad u(\widehat{R})=0
\end{gathered}
$$

then, by a comparison argument we obtain

$$
u(r) \leq \omega_{1}(r)=\frac{C}{\int_{r_{2}}^{\widehat{R}} s^{1-N} d s} \int_{r}^{\widehat{R}} s^{1-N} d s
$$

thus

$$
\begin{aligned}
& -\left(r^{N-1} \omega_{1}^{\prime}\right)^{\prime}=0, \quad \text { on } J_{5}, \\
& \omega_{1}\left(r_{2}\right)=C, \quad \omega_{1}(\widehat{R})=0 .
\end{aligned}
$$

Arguing as before there exists $r_{3} \in\left(r_{2}, \widehat{R}\right)$ (independent of $\lambda \mu$) such that

$$
u\left(r_{3}\right) \leq \omega_{1}\left(r_{3}\right) \leq \frac{\beta_{2}}{2}<C
$$

Hence

$$
\begin{aligned}
-\left(r^{N-1}\left(\beta_{1}-v\right)^{\prime}\right)^{\prime} & =-\mu r^{N-1} g(v) \\
& \geq-\mu r^{N-1} g\left(\frac{\beta_{2}}{2}\right) \\
& \geq \mu\left(-g\left(\frac{\beta_{2}}{2}\right)\right) r^{N-1} \frac{\beta_{1}-v}{\beta_{1}} \quad \text { on } J_{6}=\left(r_{3}, \widehat{R}\right) .
\end{aligned}
$$

Since $\beta_{1}-v>0$ on \bar{J}_{6}, it follows that

$$
\begin{equation*}
\frac{\mu \widetilde{K}_{2}}{\beta_{1}} \leq \lambda_{1}\left(J_{6}\right) \tag{2.12}
\end{equation*}
$$

where $\widetilde{K}_{2}=-g\left(\beta_{1} / 2\right)$ and $\lambda_{1}\left(J_{6}\right)$ is the principal eigenvalue of 2.6 (with $(\alpha, \beta)=$ $\left.J_{6}\right)$. Combining (2.11) and 2.12), we obtain

$$
\frac{\lambda \mu \widetilde{K}_{1} \widetilde{K}_{2}}{\beta_{1} \beta_{2}} \leq \lambda_{1}\left(J_{4}\right) \lambda_{1}\left(J_{6}\right)
$$

which is a contradiction to $\lambda \mu$ being large.
A similar contradiction can be reached for the case $v\left(R_{2}\right) \leq \beta_{1}$. Hence Theorem 2.1 is proven.

References

[1] D. Arcoya and A. Zertiti; Existence and non-existence of radially symmetric non-negative solutions for a class of semi-positone problems in annulus, Rendiconti di Mathematica, serie VII, Volume 14, Roma (1994), 625-646.
[2] K .J. Brown, A. Castro and R. Shivaji; Non-existence of radially symmetric non-negative solutions for a class of semi-positone problems, Diff. and Int. Equations,2. (1989), 541-545.
[3] A. Castro and R. Shivaji; Nonnegative solutions for a class of radially symmetric nonpositone problems, Proc. AMS, 106(3) (1989), pp. 735-740.
[4] B. Gidas, W. M. Ni and L. Nirenberg; Symmetry and related properties via the maximum principle, Commun. Maths Phys., 68 (1979), 209-243.
[5] D. D. Hai; On a class of semilinear elliptic systems, Journal of Mathematical Analysis and Applications. Volume 285, issue 2, (2003), pp. 477-486.
[6] D. D. Hai and R. Shivaji; Positive solutions for semipositone systems in the annulus, Rocky Mountain J. Math., 29(4) (1999), pp. 1285-1299.
[7] D. D. Hai, R. Shivaji and S. Oruganti; Nonexistence of Positive Solutions for a Class of Semilinear Elliptic Systems, Rocky Mountain Journal of Mathematics. Volume 36, Number 6 (2006), 1845-1855.
[8] S. Hakimi and A. Zertiti; Radial positive solutions for a nonpositone problem in a ball, Eletronic Journal of Differential Equations, Vol. 2009 (2009), No. 44, pp. 1-6.
[9] S. Hakimi and A. Zertiti; Nonexistence of radial positive solutions for a nonpositone problem; Eletronic Journal of Differential Equations, Vol. 2011 (2011), No. 26, pp. 1-7.

Said Hakimi
Université Abdelmalek Essaadi, Faculté des sciences, Département de Mathématiques, BP 2121, Tétouan, Morocco

E-mail address: h_saidhakimi@yahoo.fr

[^0]: 2000 Mathematics Subject Classification. 35J25, 34B18.
 Key words and phrases. Nonpositone problem; radial positive solutions.
 (C) 2011 Texas State University - San Marcos.

 Submitted May 2, 2011. Published November 10, 2011.

