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NONEXISTENCE OF RADIAL POSITIVE SOLUTIONS FOR A
NONPOSITONE SYSTEM IN AN ANNULUS

SAID HAKIMI

ABSTRACT. In this article we study the nonexistence of radial positive solu-
tions for a nonpositone system in an annulus by using energy analysis and
comparison methods.

1. INTRODUCTION
We study the nonexistence of radial positive solutions for the system
—Au(z) = Af(v(z)), z€Q
—Av(z) = pg(u(z)), x€Q (1.1)
u(z) =v(z) =0, x€dQ,
where \, > g9 > 0, Qis an annulus in RY: Q = C(0,R,R) = {z e RV : R < || <
R}, 0<R< R, N >2), fand g are smooth functions that grow at least linearly
at infinity. When Q is a ball, problem (/1.1)) has been studied by Hai, Oruganti and
Shivaji [1].
The nonexistence of radial positive solutions of (|1.1]) is equivalent of the nonex-
istence of positive solutions of the system

—(rNWY = ANl f(w), R<r<R
g(u), R<r<R (1.2)
uw(R) = u(R) = 0 =v(R) = v(R).

_(erlvl)/ _ ILLT‘N71

The purpose of this paper is to prove that the nonexistence of radial positive solu-
tions of (|1.1) remains valid when € is an annulus and f and g satisfy the following
hypotheses

(C1) f, g:]0,+00) — R are continuous, increasing and f(0) < 0 and g(0) < 0.
(C2) There exist two positive real numbers a; and b;, ¢ = 1,2 such that

f(Z) Zalzibla g(Z) ZGJQZ*an
for all z > 0.
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2. MAIN RESULT
Our main result is the following theorem.

Theorem 2.1. Assume that (C1)—(C2) are satisfied. Then there exists a positive
real number o such that (1.1) has no radial positive solution for Ay > o.

Remark. Existence result for positive solutions with superlinearities satisfying
(C1), A = p and A small can be found in [5] [6]. Existence results, for the single
equation case can be found in [T}, B, [§], and non-existence results in [IJ, 2 @].

To prove Theorem [2.1], we need the next three lemmas. Here we use ideas adapted
from Hai, Oruganti and Shivaji [7].

Lemma 2.2. There exists a positive constant C' such that for Ay large,
U(Ro) + ’U(Ro) <,
where Ry = (R+ R)/2.

Proof. Multiplying the first equation in (1.2)) by a positive eigenfunction, say ¢
corresponding to A1, and using (C1) we obtain

R R
—/ (rN =Y pdr > / Mayv — by)orY ~Ldr;
R

R
that is,
R R
/ Mur™N ~Lodr > / Mayv — by)or¥ ~Ldr. (2.1)
R R
Similarly, using the second equation in (1.2)) and (C2), we obtain
R R
/ MorN " Lodr > / plagu — by)orN ~Ldr. (2.2)
R R

Combining (2.1) and (2.2)), we obtain
R R
b
/ M= 2N 1 > / W22 eV gy,
R A1 R A1
Now, if Auajaz/2 > A2, then

R LW
/ pu[—Aagby — b2/\1]<I>TN71dT < / — L arav®rNdr,
R R 2
that is,
R R
bo A
/ Qa2 v®drV gy < / [azby + 24 1]<I>7"N*1dr, (2.3)
R 2 R €0
(because A > g¢). Similarly
R R
bi A
/ N2 N1y < / [atbs + ——]0rN dr. (2.4)
R 2 R €0

Adding (2.3) and (2.4), we obtain the inequality

R R

2 biA ba A

/ (u+0)@rVar < / [a1bsy + =22 + agby + —2L)&rN .
R ai1a2 JRr €0 €0
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Then

Ro RD
(u+v)(R0)/ @rN_ldrg/ (u+v)®rN "y
t t

R
< / (u+v)®rNdr
R

<
a1az

R

b1 ba A

/ [a1b2 + 171 + agbl —+ 2 I]CI)TN_ld’I’,
R €0 €0

where ¢ = max(#1,t2) with ¢; and ¢, are such that
Ty = max{r € (R, R) : /(r) =0}, T =max{r e (R,R):v'(r) =0}
The proof is complete. O

We remark that ¢; < Ry, for i = 1,2, was shown in []. Now, assume that there
exists z > 0 (2 #0) on I where I = («, 8), and a constant + such that

— (PN >N rel (2.5)

Let Ay = A\1(I) > 0 denote the principal eigenvalue of
N=1g,/V/ N-1
—(r U = Ar U, rela
V) (a,0) .
U(a) =0=9(0),

where 0 < a < 6 < 1.
Lemma 2.3. Let (2.5)) hold. Then v < A1(I).

Proof. Multiplying (2.5) by ¥ (® > 0), an eigenfunction corresponding to the
principal eigenvalue A;(I), and integrating by parts (twice) we obtain

16}
/ b= M DI 2 Wdr < AN (B)2(8) — oV W (0)z(a).  (27)

However, ¥/(3) < 0 and ¥'(«) > 0; hence the right-hand side of (2.7) is less than
or equal to zero. Then v < A1(I), and the proof is complete. (Il

Now, we define

R-R 2(R— R
3 07 R2=Ro+7( 3 0).

Lemma 2.4. For Au sufficiently large, u(R2) < B2 or v(Ra) < (1, where 51 and
B are the unique positive zeros of f and g respectively.

R =Ry +

Proof. We argue by contradiction. Suppose that w(Rg) > 82 and v(Rs) > 0.
Case 1: u(Ry) > p2 or v(Ry) > p1, where p; = w and py = w (61
and 6y are the unique zeros of F' and G respectively where F(z) = fOT f(t)dt and
G(z) = [ g(t)dt). If u(Ry) > py then

—(rN ) = Nl g(u) > eorN Trg(pe) in J = (Ro, Ry)
and v(r) > 3; on J.
Let w be the unique solution of

— (NI = gorN T lg(pe) in J

w=p1 in dJ.
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Then by comparison arguments, v(r) > w(r) = e9g(p2)wo(r) + B1 on J, where wy
is the unique (positive) solution of
—(rN ) =N in g

wog=0 ondlJ

In particular, there exists 3, > 31 (we choose (3; such that f(3;) # 0) such that

2(Ry — Ro) 2(Ry — Ro)

’U(Ro + 3

) = w(Ro + ) > By

in J* = (Ry + izt Ry 4 2Hzfo)y Then

—(TN_I(’U, _ ﬂz)/)/ _ )\rN_lf(v)
> AN (By)
A (By)

2 (T)TN%(U —f2) onJ*,
(where C' is as in Lemma. Since u — B2 > 0 on J*, it follows that
AT
00 <o, 28)
where A1(J*) is the principal value of (2.6 (with (o, 3) = J*).

Next we consider
(o= B = N ()
> N g(p2)

> (ugg)Q))rN_l(v —B1) onJ.

Since v — 31 > 0 on J, it follows that

1902) < 5 (a), (29)
where A1 (J) is the principal value of (2.6) (with («, 8) = J). Combining (2.8]) and
(2.9), we obtain

At (B1)g(p2)
o2
But £(8;), g(p2) and C are fixed positive constants. This is a contradiction for Au
large. A similar contradiction can be reached for the case v(R1) > p;.
Case 2: u(Ry) < p2 and v(Ry) < p1. Then By < u < py and B < v < p; on
J1 = [R1, R2]. Then by the mean value theorem, there exist ¢, c2 € (Ry, Rg) such
that

< A ()AL (),

/ < P2 ’ < P1 )
‘U/ (02)|— RQ*R]’ |'U (Cl)|_ RQ*Rl
Since —(rN~1u’) > 0 on [Ry, Ry), we have
—rN=l/ (r) < —cév_lu’(CQ) on Jy = [Ry, ca);

thus

()] < 2 l(e) < (N1 P2y g,
:

" Ry — Ry
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Similarly, we obtain

Ry n_ p1 )
/ < (Z2\N-1_ Pt - .
"U (r)‘ — (R1 ) R2 _ R1 m J3 [R17 Cl)

Hence there exists rg € (Ry, R2) such that
W/ (ro)| <€ '(ro)| <7,

where
c= _ 1 &)N
Ry — Ry Ry
Now, we define the energy function

E(r) = u'(r)o'(r) + AF(v(r)) + pG(u(r)).

~t max(ps, p1).

Then
B(r) = -2 =) <o
and hence E > 0 on [R, R], (because /(R)v'(R) > 0). However,
E(ro) <&+ AF(p1) + pG(p2), (2.10)
and F(p1) < 0 and G(p2) < 0. Hence E(rg) < 0 for Ay large which is a contradic-
tion. The proof is complete. ([l

Proof of Theorem[2.1] Assume Ap is large enough so that both lemmas
hold. We take the case when u(Rg) < 3. Then

~N ) = N () <O on Jy = (R R)

U(R2) < Cv U(R) = 0)
hence, by a comparison argument, v(r) < @(r), where @ is the solution of

—(rN7Y =0 on Js

5(R:) =C, G(R)=0.

However, &(r) = C fTR s1=Nds/ ff; s1=Nds decreases from C to 0 on [Ry, R], hence

~

there exists r; € (Rg, R) (independent of Au) such that @(ry) = 51/2.

Remark. Here, we assume that (1/2 < C, unless we can choose Ny such that
B1/No < C.

Hence v(r1) < 51/2, and

—(rN (B —w)) = =MV (v)
> —MN_lf(%)

> (- f(%))rN_l% on Jy = (rl,ﬁ).

Since B2 —u > 0 on Jy, we have

M < Ai(Js), (2.11)
B2
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where K1 = —f(81/2) and Ay (Jy) is the principal eigenvalue of ([2.6) (with (a, 3) =
Jy). Similarly, there exists ro € (r1, R) (independent of M) such that

Hence
—(rN WY = N f(0) <0 on Js = (rg, R)
U(TQ) S Ca U(E) = Oa
then, by a comparison argument we obtain
C R
u(r) < () = ———— [ Vs
J. st Nds Jr
2
thus
—(rN"')) =0, onJs,
wi(ry) =C, wi(R)=0.
Arguing as before there exists r3 € (5, R) (independent of Ay) such that

u(rs) <wi(rs) < % <C.
Hence

—(rNTH (B —0)) = =N g(v)
)
2

> (=g on s = (ra )

> —prNlg(

Since 81 — v > 0 on Jg, it follows that
MIN(Q
p
where K, = —g(81/2) and Ay (Jg) is the principal eigenvalue of ([2.6) (with (a, ) =
Js). Combining (2.11)) and (2.12)), we obtain
)\‘LLIA(/IIA(/Q
P12

which is a contradiction to Au being large.
A similar contradiction can be reached for the case v(Rz) < ;. Hence Theorem
2] is proven. O

< A1 (Je), (2.12)

< Mi(Ja)Ai(Js),
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