Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 145, pp. 1-11. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

ASYMPTOTICALLY LINEAR FOURTH-ORDER ELLIPTIC PROBLEMS WHOSE NONLINEARITY CROSSES SEVERAL EIGENVALUES

EVANDRO MONTEIRO

$$
\begin{aligned}
& \text { AbSTRACT. In this article we prove the existence of multiple solutions for the } \\
& \text { fourth-order elliptic problem } \\
& \qquad \Delta^{2} u+c \Delta u=g(x, u) \text { in } \Omega \\
& \qquad u=\Delta u=0 \text { on } \partial \Omega, \\
& \text { where } \Omega \subset \mathbb{R}^{N} \text { is a bounded domain, } g: \Omega \times \mathbb{R} \rightarrow \mathbb{R} \text { is a function of class } \\
& C^{1} \text { such that } g(x, 0)=0 \text { and it is asymptotically linear at infinity. We study } \\
& \text { the cases when the parameter } c \text { is less than the first eigenvalue, and between } \\
& \text { two consecutive eigenvalues of the Laplacian. To obtain solutions we use the } \\
& \text { Saddle Point Theorem, the Linking Theorem, and Critical Groups Theory. }
\end{aligned}
$$

1. Introduction

Let us consider the problem

$$
\begin{gather*}
\Delta^{2} u+c \Delta u=g(x, u) \quad \text { in } \Omega \\
u=\Delta u=0 \quad \text { on } \partial \Omega, \tag{1.1}
\end{gather*}
$$

where $\Omega \subset \mathbb{R}^{N}$ is a bounded domain with smooth boundary $\partial \Omega$, and $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a function of class C^{1} such that $g(x, 0)=0$. Assume that

$$
\begin{align*}
& g_{0}:=\lim _{t \rightarrow 0} \frac{g(x, t)}{t}, \quad \text { uniformly in } \Omega, \tag{1.2}\\
& g_{\infty}:=\lim _{|t| \rightarrow \infty} \frac{g(x, t)}{t}, \quad \text { uniformly in } \Omega, \tag{1.3}
\end{align*}
$$

where g_{0} and g_{∞} are constants.
Denote by $0<\lambda_{1}<\lambda_{2} \leq \cdots \leq \lambda_{j} \leq \ldots$ the eigenvalues of ($-\Delta, H_{0}^{1}$) and $\mu_{k}(c)=\lambda_{k}\left(\lambda_{k}-c\right)$ the eigenvalues of $\left(\Delta^{2}+c \Delta, H_{0}^{1} \cap H^{2}\right)$. We also denote by φ_{j} the eigenfunction associated with λ_{j} and consequently with μ_{j}.

This fourth-order problem with g asymptotically linear has been studied by Qian and Li [6], where the authors considered the case $c<\lambda_{1}$ and $g_{0}<\mu_{1}<\mu_{k}<g_{\infty}<$ μ_{k+1} and they obtained three nontrivial solutions. Tarantelo 8 found a negative

[^0]solution of (1.1) with the nonlinearity of the form $g(x, u)=b\left[(u+1)^{+}-1\right]$, where b is a constant. With the same type of nonlinearity Micheletti and Pistoia 4] showed that there exist two solutions when $b>\lambda_{1}\left(\lambda_{1}-c\right)$ and three solutions when b is close to $\lambda_{k}\left(\lambda_{k}-c\right)$. Micheletti and Pistoia [5] showed the existence of two solutions for problem (1.1) with linear growth at infinity by the classical Mountain Pass Theorem and a variation of the Linking Theorem. In [7] the authors considered the superlinear case and showed the existence of two nontrivial solutions. Zhang 9 and Zhang and Li [10] proved the existence of solutions when $f(x, u)$ is sublinear at ∞.

In our work we suppose that $c<\lambda_{1}$ and $\mu_{k-1} \leq g_{0}<\mu_{k} \leq \mu_{m}<g_{\infty} \leq \mu_{m+1}$, and we prove the existence of two nontrivial solutions of 1.1). We also obtain results for the case when $\lambda_{\nu}<c<\lambda_{\nu+1}$. The case $\mu_{k-1}<g_{\infty}<\mu_{k} \leq \mu_{m}<g_{0}<$ μ_{m+1} is also considered.

The classical solutions of problem (1.1) correspond to critical points of the functional F defined on $V=H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$, by

$$
\begin{equation*}
F(u)=\frac{1}{2} \int_{\Omega}\left(|\Delta u|^{2}-c|\nabla u|^{2}\right) d x-\int_{\Omega} G(x, u) d x, \quad u \in V \tag{1.4}
\end{equation*}
$$

where $G(x, t)=\int_{0}^{t} g(x, s) d s$. Notice that V is a Hilbert space with the usual inner product $\int_{\Omega}\left(|\Delta v|^{2}+|\nabla v|^{2}\right) d x$. Let $\|\cdot\|$ be norm induced by this inner product. Under the above assumptions F is a functional of class C^{2}.

For the convenience of the reader, we recall some notation of Morse Theory. Let H be a Hilbert space and $F: H \rightarrow \mathbb{R}$ be a functional of class C^{1}. We assume that the set of critical points of F, denoted by K, is finite. Let $y \in H$ be a critical point of F with $c=F(y)$. The group

$$
C_{p}(F, y)=H_{p}\left(F^{c}, F^{c} \backslash\{y\}\right), p=0,1,2, \ldots,
$$

is called the $p^{t h}$ critical group of F at y, where $F^{c}=\{x \in H: F(x) \leq c\}$ and $H_{p}(\cdot, \cdot)$ is the singular relative homology group with integer coefficients.

$$
\text { 2. CASE } c<\lambda_{1}
$$

We denote $\frac{d}{d t} g(x, t)$ by $g^{\prime}(x, t)$. We start with following result.
Theorem 2.1. Assume that $g^{\prime}(x, t) \geq g(x, t) / t$ for all $x \in \Omega$ and $t \in \mathbb{R}$. Suppose that there exists $k \geq 2, m \geq k+1$ such that $\mu_{k-1} \leq g_{0}<\mu_{k}, \mu_{k-1}<g(x, t) / t$ and $\mu_{m}<g_{\infty}<\mu_{m+1}$. Then problem 1.1) has at least two nontrivial solutions.

First we will prove that the associated functional satisfies the Palais-Smale condition. We remind that V is a Hilbert space with the inner product

$$
(u, v)_{0}=\int_{\Omega}\left(|\Delta u|^{2}-c|\nabla u|^{2}\right) d x
$$

Indeed, $\|u\|_{0}=\sqrt{(u, u)_{0}}$ is equivalent to norm $\|u\|$, provided $c<\lambda_{1}$.
Lemma 2.2. If there exists $m \geq 1$ such that $\mu_{m}<g_{\infty}<\mu_{m+1}$ then the functional F defined in 1.4 satisfies the Palais-Smale condition.

Proof. Let $\left(u_{n}\right) \subset V$ be a Palais-Smale sequence; that is, a sequence such that $F\left(u_{n}\right) \rightarrow C$ and $F^{\prime}\left(u_{n}\right) \rightarrow 0$. Since g is a sublinear function, it is sufficient to prove that $\left(\left\|u_{n}\right\|_{0}\right)_{n \in \mathbb{N}}$ is bounded. By contradiction we suppose that $\lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{0}=\infty$.

Up to a subsequence we can assume that $v_{n}=u_{n} /\left\|u_{n}\right\|_{0}$ converge to v weakly in V, strongly in $L^{2}(\Omega)$ and pointwise in Ω.

Let $\phi \in V$. Then

$$
F^{\prime}\left(u_{n}\right) \phi=\int_{\Omega}\left(\Delta u_{n} \Delta \phi-c \nabla u_{n} \nabla \phi\right) d x-\int_{\Omega} g\left(x, u_{n}\right) \phi d x
$$

thus

$$
\frac{F^{\prime}\left(u_{n}\right)}{\left\|u_{n}\right\|_{0}} \phi=\int_{\Omega}\left(\Delta v_{n} \Delta \phi-c \nabla v_{n} \nabla \phi\right) d x-\int_{\Omega} \frac{g\left(x, u_{n}\right)}{u_{n}} v_{n} \phi d x
$$

Taking the limit in the last expression and using the above convergence, we obtain

$$
\begin{equation*}
\Delta^{2} v+c \Delta v=g_{\infty} v \tag{2.1}
\end{equation*}
$$

in the weak sense.
In fact, define $A_{+}=\{x \in \Omega ; v(x)>0$ a. e. $\}$ and $A_{-}=\{x \in \Omega ; v(x)<0$ a. e. $\}$ then $u_{n}(x) \rightarrow \infty$ a.e. if $x \in A_{+}$and $u_{n}(x) \rightarrow-\infty$ a.e. if $x \in A_{-}$. Using $\left(g_{\infty}\right)$ and the fact that over $A_{0}=\{x \in \Omega ; v(x)=0$ a.e. $\}$, we obtain $\frac{g\left(x, u_{n}\right)}{u_{n}}$ is bounded.

Now we will prove that $v \neq 0$. Note that

$$
\frac{F\left(u_{n}\right)}{\left\|u_{n}\right\|_{0}^{2}}=\frac{1}{2}-\int_{\Omega} \frac{G\left(x, u_{n}\right)}{\left\|u_{n}\right\|_{0}^{2}} d x=\frac{1}{2}-\int_{\Omega} \frac{G\left(x, u_{n}\right)}{u_{n}^{2}} v_{n}^{2} d x .
$$

Taking the limit in this expression and using the fact $F\left(u_{n}\right) \rightarrow C$ as $n \rightarrow \infty$, we obtain

$$
\int_{\Omega} g_{\infty} v^{2} d x=\frac{1}{2}
$$

which proves that $v \neq 0$. Thus, we conclude that g_{∞} is an eigenvalue of $\left(\Delta^{2}+\right.$ $c \Delta, V)$, contradiction. Therefore, $\left(\left\|u_{n}\right\|_{0}\right)_{n \in \mathbb{N}}$ is bounded. The proof is complete.

For the next lemma, we split the space V in the following way: $V=H \oplus H_{3}$, where $H=\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{m}\right\}$ and $H_{3}=H^{\perp}$.

Lemma 2.3. Suppose there exists $m \geq 1$ such that $\mu_{m}<g_{\infty}<\mu_{m+1}$. Then:
(1) $F(u) \rightarrow-\infty$ as $\|u\|_{0} \rightarrow \infty$ for $u \in H$.
(2) There exists $C_{1}>0$ such that $F(u) \geq-C_{1}$ for all $u \in H_{3}$.

Proof. Because $\mu_{m}<g_{\infty}$, there exist $\epsilon, C>0$ such that

$$
\begin{equation*}
G(x, t) \geq \frac{t^{2}}{2}\left(\mu_{m}+\epsilon\right)-C \tag{2.2}
\end{equation*}
$$

Thus

$$
\begin{aligned}
F(u) & =\frac{1}{2} \int_{\Omega}\left(|\Delta u|^{2}-c|\nabla u|^{2}\right) d x-\int_{\Omega} G(x, u) d x \\
& \leq \frac{1}{2}\|u\|_{0}^{2}-\int_{\Omega} \frac{u^{2}}{2}\left(\mu_{m}+\epsilon\right) d x+C \int_{\Omega}|u| d x \\
& \leq \frac{1}{2}\|u\|_{0}^{2}\left(1-\frac{\mu_{m}+\epsilon}{\mu_{m}}\right)+C|\Omega|
\end{aligned}
$$

which proves (1).
Using the fact $g_{\infty}<\mu_{m+1}$ and a similar argument as in the proof of (1), we obtain (2).

Now, we split the space H as follows

$$
H=H_{1} \oplus H_{2},
$$

where $H_{1}=\operatorname{span}\left\{\varphi_{1} \ldots, \varphi_{k-1}\right\}$ and $H_{2}=\operatorname{span}\left\{\varphi_{k}, \ldots, \varphi_{m}\right\}$. Thus $V=H_{1} \oplus H_{2} \oplus$ H_{3}.

Lemma 2.4. Suppose that there are $\alpha, \delta>0$ such that $\mu_{k-1} \leq g(x, t) / t \leq \alpha<\mu_{k}$, for $|t|<\delta, k \geq 2$, and $g^{\prime}(x, t) \geq \mu_{k-1}$. Moreover, assume that there exists $m \geq k+1$ such that $\mu_{m}<g_{\infty}<\mu_{m+1}$. The following statements hold:
(1) There are $r>0$ and $A>0$ such that $F(u) \geq A$ for all $u \in H_{2} \oplus H_{3}$ with $\|u\|_{0}=r$.
(2) $F(u) \rightarrow-\infty$, as $\|u\|_{0} \rightarrow \infty$ for all $u \in H_{1} \oplus H_{2}$.
(3) $F(u) \leq 0$ for all $u \in H_{1}$.

Proof. Let $H^{m+1}=\operatorname{ker}\left(\Delta^{2}+c \Delta-\mu_{m+1} I\right)$. Then $H_{2} \oplus H_{3}=U \oplus W$, where $U=H_{2} \oplus H^{m+1}$. For $v \in V$ put $v=u+w, u \in U$ and $w \in W$. Since $\operatorname{dim} U<+\infty$ then U is generated by eigenfunctions which are $L^{\infty}(\Omega)$, then there exists $r>0$ such that

$$
\sup _{x \in \Omega}|u(x)| \leq \frac{\gamma-\mu_{k}}{\gamma-\alpha} \delta \quad \text { if }\|u\|_{0} \leq r
$$

where $\gamma>\mu_{k}$ and $\int_{\Omega}\left(|\Delta w|^{2}-c|\nabla w|^{2}\right) d x \geq \gamma \int_{\Omega}|w|^{2} d x$, for all $w \in W$.
Suppose that $\|u\|_{0} \leq r$. If $|u(x)+w(x)| \leq \delta$, then

$$
\begin{aligned}
& \frac{1}{2} \mu_{2}|u|^{2}+\frac{1}{4} \gamma|w|^{2}-G(x, u+w) \\
& \geq \frac{1}{2} \mu_{2}|u|^{2}+\frac{1}{4} \gamma|w|^{2}-\frac{1}{2} \alpha(u+w)^{2} \\
& =-\frac{1}{4} \alpha|w|^{2}+\frac{1}{4}(\gamma-\alpha)|w|^{2}+\frac{1}{2}\left(\mu_{2}-\alpha\right) u^{2}-\alpha u w \\
& \geq-\frac{1}{4} \mu_{2}|w|^{2}+\frac{1}{2}\left(\mu_{2}-\alpha\right) u^{2}-\alpha u w
\end{aligned}
$$

If $|u(x)+w(x)|>\delta$, then

$$
|G(x, u+w)| \leq \frac{1}{2} \mu_{k}(u+w)^{2}-\frac{1}{2}\left(\mu_{k}-\alpha\right) \delta^{2}
$$

Thus,

$$
\begin{aligned}
& \frac{1}{2} \mu_{2}|u|^{2}+\frac{1}{4} \gamma|w|^{2}-G(x, u+w) \\
& \geq \frac{1}{2} \mu_{2}|u|^{2}+\frac{1}{4} \gamma|w|^{2}-\frac{1}{2} \mu_{k}(u+w)^{2}+\frac{1}{2}\left(\mu_{k}-\alpha\right) \delta^{2} \\
& =-\frac{1}{4} \mu_{k}|w|^{2}+\frac{1}{2}\left(\mu_{2}-\alpha\right)|u|^{2}-\alpha u w+\frac{1}{4}\left(\gamma-\mu_{k}\right)|w|^{2}+\left(\alpha-\mu_{k}\right) u w \\
& \quad+\frac{1}{2}\left(\alpha-\mu_{k}\right)|u|^{2}+\frac{1}{2}\left(\mu_{k}-\alpha\right) \delta^{2} \\
& \geq-\frac{1}{4} \mu_{k}|w|^{2}+\frac{1}{2}\left(\mu_{2}-\alpha\right)|u|^{2}-\alpha u w
\end{aligned}
$$

where the last inequality follows from the fact that the quadrat form below is positive (see [3, p. 235]).

$$
\frac{1}{4}\left(\gamma-\mu_{k}\right)|w|^{2}+\left(\alpha-\mu_{k}\right) u w+\frac{1}{2}\left(\alpha-\mu_{k}\right)|u|^{2}+\frac{1}{2}\left(\mu_{k}-\alpha\right) \delta^{2}
$$

Therefore,

$$
\begin{aligned}
F(v) & =\frac{1}{2}\|u+w\|_{0}^{2}-\int_{\Omega} G(x, u+w) d x \\
& \geq \frac{1}{4}\|w\|_{0}^{2}-\frac{1}{4} \mu_{k} \int_{\Omega}|w|^{2} d x+\frac{1}{2}\left(\mu_{2}-\alpha\right) \int_{\Omega}|u|^{2} d x \\
& \geq \min \left\{\frac{1}{4}\left(1-\frac{\mu_{k}}{\gamma}\right), \frac{\mu_{2}-\alpha}{2 \mu_{k}}\right\}\|v\|_{0}^{2},
\end{aligned}
$$

which proves assertion (1).
The proof of (2) follows by the same argument as in the proof of (1) of Lemma 2.2. For (3), observe that $g^{\prime}(x, s) \geq \mu_{k-1}$ and so $G(x, t) \geq \mu_{k-1} t^{2} / 2$. Thus, if $u \in H_{1}$ then $u=\sum_{i=1}^{k-1} m_{i} \varphi_{i}$ for some constant $m \in \mathbb{R}$. Hence

$$
\begin{aligned}
F(u) & \leq \sum_{i=1}^{k-1} \frac{1}{2} \int_{\Omega}\left(\left|\Delta \varphi_{i}\right|^{2}-c\left|\nabla \varphi_{i}\right|^{2}\right) d x-\sum_{i=1}^{k-1} \mu_{k-1} \int_{\Omega} \frac{\varphi_{i}^{2}}{2} d x \\
& \leq \sum_{i=1}^{k-1} \frac{m_{i}^{2}}{2}\left(\left\|\varphi_{i}\right\|_{0}^{2}-\mu_{i} \int_{\Omega} \varphi_{i}^{2}\right)=0
\end{aligned}
$$

which proves (3). The proof of lemma is complete.
Conclusion of de proof Theorem 2.1. By Lemmas 2.2 and 2.3, we have that the functional F satisfies the (PS) condition and has the geometry of Saddle Point Theorem. Therefore there exists u_{1}, a critical point of F, such that

$$
\begin{equation*}
C_{m}\left(F, u_{1}\right) \neq 0 . \tag{2.3}
\end{equation*}
$$

Moreover, by conditions $\mu_{k-1} \leq g_{0}<\mu_{k}$ and $g^{\prime}(x, t) \geq g(x, t) / t$ for all $x \in \Omega$ and $t \in \mathbb{R}$, we verifies the hypotheses of Lemma 2.4. It follows that the functional F satisfies the geometry of Linking Theorem. Thus, there is a critical point u_{2} of F satisfying

$$
C_{k}\left(F, u_{2}\right) \neq 0
$$

Since $\mu_{k-1} \leq g_{0}<\mu_{k}$, then $m(0)+n(0) \leq k-1$, and by a corollary of Shifting Theorem [2, Corollary 5.1, Chapter 1], we have $C_{p}(F, 0)=0$ for all $p>k-1$. Therefore u_{1} and u_{2} are nontrivial critical points of F. The theorem follows from the next claim.
Claim: $C_{p}\left(F, u_{2}\right)=\delta_{p k} G$.
From (2.3) and the Shifting Theorem we have that $m\left(u_{2}\right) \leq k$. We will show that $m\left(u_{2}\right)=k$. Indeed, by $g(x, t) / t>\mu_{k-1}$ we have that $\beta_{i}\left(g\left(x, u_{2}\right) / u_{2}\right)<$ $\beta_{i}\left(\mu_{k-1}\right) \leq 1$ for all $i \leq k-1$. Now, we have that

$$
\Delta^{2} u_{2}+c \Delta u_{2}=\frac{g\left(x, u_{2}\right)}{u_{2}} u_{2}
$$

This implies that $\beta_{k}\left(g\left(x, u_{2}\right) / u_{2}\right) \leq 1$. Then, it follows from $g^{\prime}(x, t) \geq g(x, t) / t$, that $\beta_{k}\left(g^{\prime}\left(x, u_{2}\right)\right)<1$. This implies that $m\left(u_{2}\right) \geq k$, then $m\left(u_{2}\right)=k$. Again, the Shifting Theorem and (2.3) imply the Claim.

Theorem 2.5. Assume that $\mu_{k-1} \leq g^{\prime}(x, t)<\mu_{m+1}$ for all $x \in \Omega$ and $t \in \mathbb{R}$. Suppose that there exists $k \geq 2$, $m \geq k+1$ such that $\mu_{k-1}<g_{0}<\mu_{k}$ and $\mu_{m}<$ $g_{\infty}<\mu_{m+1}$. Then problem 1.1) has at least two nontrivial solutions.

Proof. By hypotheses $\mu_{k-1}<g_{0}<\mu_{k}$ and $\mu_{k-1} \leq g^{\prime}(x, t)<\mu_{m+1}$ for all $x \in \Omega$ and $t \in \mathbb{R}$, we verifies the Lemma 2.4. Thus, as in the proof of the previous theorem there exists critical points u_{1} and u_{2} such that

$$
C_{m}\left(F, u_{1}\right) \neq 0 \quad \text { and } \quad C_{k}\left(F, u_{2}\right) \neq 0
$$

moreover, we can conclude that u_{1} and u_{2} are nontrivial solutions, provided $\mu_{k-1} \leq$ $g_{0}<\mu_{k}$.

We will show that $u_{1} \neq u_{2}$. Since $g^{\prime}(x, t)<\mu_{m+1}$ we obtain

$$
\begin{aligned}
F^{\prime \prime}\left(u_{1}\right)(v, v) & =\int_{\Omega}\left(|\Delta v|^{2}-c|\nabla v|^{2}\right) d x-\int_{\Omega} g^{\prime}\left(x, u_{1}\right) v^{2} d x \\
& >\int_{\Omega}\left(|\Delta v|^{2}-c|\nabla v|^{2}\right) d x-\mu_{m+1} \int_{\Omega}|v|^{2} d x \geq 0
\end{aligned}
$$

for all $v \in \operatorname{span}\left\{\varphi_{m+1}, \ldots\right\}$. Hence $m\left(u_{1}\right)+n\left(u_{1}\right) \leq m$. On the other hand, $C_{m}\left(F, u_{1}\right) \neq 0$. Thus, by a corollary of Shifting Theorem $C_{p}\left(F, u_{1}\right)=\delta_{p m} \mathbb{Z}$. Therefore $u_{1} \neq u_{2}$, which completes the proof.

Theorem 2.6. Assume that $\mu_{1}<g_{\infty}<\mu_{2}$ and there exists $m \geq 2$ such that $\mu_{m}<g_{0}<\mu_{m+1}$. Then 1.1 has at least two nontrivial solutions.

Proof. By Lemmas 2.2 and 2.3, we can apply the Saddle Point Theorem to obtain a solution $u_{1} \neq 0$ such that $C_{1}\left(F, u_{1}\right) \neq 0$.
Claim: $C_{p}\left(F, u_{1}\right)=\delta_{p 1} \mathbb{Z}$.
Actually, we have that $m\left(u_{1}\right) \leq 1$. If $m\left(u_{1}\right)=1$ the claim is proved. If $m\left(u_{1}\right)=$ 0 , then we have that the first eigenvalue β_{1} of the problem

$$
\begin{gather*}
\Delta^{2} v+c \Delta v=\beta g^{\prime}\left(x, u_{1}\right) v \quad \text { in } \Omega \\
v=\Delta v=0 \quad \text { on } \partial \Omega \tag{2.4}
\end{gather*}
$$

satisfies $\beta_{1}=1$ and is simple. It follows that $n\left(u_{1}\right)=1$, and so the claim follows by Shifting Theorem.

We also have that $C_{p}(F, 0)=\delta_{p m} \mathbb{Z}$, provided $\mu_{m}<g_{0}<\mu_{m+1}$. Now, suppose by contradiction that u_{1} and 0 are the unique critical points of F. Thus the Morse Inequality reads as

$$
(-1)=(-1)+(-1)^{m}
$$

This is a contradiction. So there is at least one more nontrivial solution.

$$
\text { 3. THE CASE } \lambda_{1}<c<\lambda_{2}
$$

Since $\lambda_{1}<c<\lambda_{2}$ the first eigenvalue of the problem

$$
\begin{array}{ccc}
\Delta^{2} u+c \Delta u=\mu u \quad \text { in } \quad \Omega \\
u=\Delta u=0 \quad \text { on } \quad \partial \Omega \tag{3.1}
\end{array}
$$

is negative. Thus, $\int_{\Omega}\left(|\Delta v|^{2}-c|\nabla v|^{2}\right) d x$ is not an inner product in V. In this case, consider the following norm: for all $\phi \in V$

$$
\begin{aligned}
\|\phi\|_{1}^{2} & =\alpha_{1}^{2} \int_{\Omega}\left(\left|\Delta \varphi_{1}\right|^{2}+\left|\nabla \varphi_{1}\right|^{2}\right) d x+\int_{\Omega}\left(|\Delta \bar{\phi}|^{2}-c|\nabla \bar{\phi}|^{2}\right) d x \\
& =\alpha_{1}^{2}\left(\lambda_{1}^{2}+\lambda_{1}\right)+\int_{\Omega}\left(|\Delta \bar{\phi}|^{2}-c|\nabla \bar{\phi}|^{2}\right) d x \\
& =\alpha_{1}^{2}\left(\lambda_{1}^{2}+\lambda_{1}\right)+\|\bar{\phi}\|_{0}^{2}
\end{aligned}
$$

where $\phi=\alpha_{1} \varphi_{1}+\bar{\phi}$ with $\bar{\phi} \in \operatorname{span}\left\{\varphi_{1}\right\}^{\perp}$ and $\|\cdot\|_{0}$ was defined in the previous section. Notice that $\|\cdot\|_{0}$ is a norm in $\operatorname{span}\left\{\varphi_{1}\right\}^{\perp}$.

Clearly, the norm $\|\cdot\|_{1}$ is equivalent to usual norm $\|\cdot\|$.
Next lemma will prove that the functional with the above conditions satisfies the Palais-Smale Condition, (PS)-Condition.

Lemma 3.1. Suppose that g_{∞} is not eigenvalue from 3.1). Then the functional (1.4) satisfies the (PS)-Condition.

Proof. Let $\left(u_{n}\right) \subset V$ be a Palais-Smale sequence, that is, a sequence such that $F\left(u_{n}\right) \rightarrow C$ and $F^{\prime}\left(u_{n}\right) \rightarrow 0$. This lemma is proved with the same arguments used in Lemma 2.2. By contradiction, suppose that $\lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{1}=\infty$. Up to a subsequence we can assume that $v_{n}=u_{n} /\left\|u_{n}\right\|_{1}$ converge to v weakly in V strongly in $L^{2}(\Omega)$ and pointwise in Ω. Therefore

$$
\Delta^{2} v+c \Delta v=g_{\infty} v
$$

As in the proof of Lemma 2.2 we have to show that $v \neq 0$. In fact, let $u_{n}=t_{1}^{n} \varphi+\bar{\phi}_{n}$,

$$
\begin{align*}
F\left(u_{n}\right) & =\frac{1}{2} \int_{\Omega}\left(\left|\Delta u_{n}\right|^{2}-c\left|\nabla u_{n}\right|^{2}\right) d x-\int_{\Omega} G\left(x, u_{n}\right) d x \tag{3.2}\\
& =\frac{1}{2}\left\|u_{n}\right\|_{1}^{2}-\frac{1}{2}\left(t_{1}^{n}\right)^{2}\left(\lambda_{1}+c \lambda_{1}\right)-\int_{\Omega} G\left(x, u_{n}\right) d x
\end{align*}
$$

Since $v_{n} \rightarrow v$ in $L^{2}(\Omega)$ as $n \rightarrow \infty$ then $\int v_{n} \varphi_{1} \rightarrow \int v \varphi_{1}=t_{1}$ as $n \rightarrow \infty$. Taking limit in the expression

$$
\begin{equation*}
\frac{F\left(u_{n}\right)}{\left\|u_{n}\right\|_{1}^{2}}=\frac{1}{2}-\frac{1}{2} \frac{\left(t_{1}^{n}\right)^{2}}{\left\|u_{n}\right\|_{1}^{2}}\left(\lambda_{1}+c \lambda_{1}\right)-\int_{\Omega} \frac{G\left(u_{n}\right)}{u_{n}^{2}} v_{n}^{2} d x \tag{3.3}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
0=\frac{1}{2}-\frac{1}{2}\left(t_{1}\right)^{2}\left(\lambda_{1}+c \lambda_{1}\right)-\int_{\Omega} g_{\infty} v^{2} d x \tag{3.4}
\end{equation*}
$$

this implies $v \neq 0$. Thus, Lemma 3.1 is proved.
In the next result we obtain the functional geometry to establish existence of two nontrivial solutions from (1.1).
Lemma 3.2. Suppose that $\mu_{1}<g_{\infty}<\mu_{2}$. Then
(i) $F\left(t \varphi_{1}\right) \rightarrow-\infty$, as $t \rightarrow \infty$.
(ii) There exists $C_{1}>0$ such that $F(u) \geq-C_{1}$ for all $u \in \operatorname{span}\left\{\varphi_{1}\right\}^{\perp}$.

Proof. (i). Hence $\mu_{1}<g_{\infty}<\mu_{2}$ there exists $\epsilon>0$ and $B>0$ such that

$$
G(x, s) \geq \frac{\mu_{1}+\epsilon}{2} s^{2}-B
$$

So,

$$
F\left(t \varphi_{1}\right) \leq \frac{1}{2} t^{2}\left(\lambda_{1}^{2}-c \lambda_{1}\right)-\frac{\mu_{1}+\epsilon}{2} t^{2} \int_{\Omega} \varphi_{1}^{2} d x+B|\Omega|=-\frac{1}{2} t^{2} \epsilon+B|\Omega|
$$

this implies $F\left(t \varphi_{1}\right) \rightarrow-\infty$ as $t \rightarrow \infty$.
The proof of (ii) is analogous of (ii) of Lemma 2.3 .
The next lemma is analogous to Lemma 2.4 .

Lemma 3.3. Suppose that there are $\alpha, \delta>0$ such that $\mu_{k-1} \leq g(x, t) / t \leq \alpha<\mu_{k}$, for $|t|<\delta, k \geq 2$, and $g^{\prime}(x, t) \geq \mu_{k-1}$. Moreover, assume that there exists $m \geq k+1$ such that $\mu_{m}<g_{\infty}<\mu_{m+1}$. The following statements hold:
(i) There exists $r>0$ and $A>0$ such that $F(u) \geq A$ for all $u \in H_{2} \oplus H_{3}$ with $\|u\|_{1}=r$.
(ii) $F(u) \rightarrow-\infty$, as $\|u\|_{1} \rightarrow \infty$ for all $u \in H_{1} \oplus H_{2}$.
(iii) $F(u) \leq 0$ for all $u \in H_{1}$.

Proof. The proof of (i) is analogous to proof of (i), Lemma 2.4 .
Proof of (ii). Let $u \in H_{1} \oplus H_{2}$. Then $u=t \varphi_{1}+w$, where $w \in \operatorname{span}\left\{\varphi_{1}\right\}^{\perp}$. By $\mu_{m}<g_{\infty}$ there exists $\epsilon, C>0$ such that $G(x, s) \geq\left(\left(\mu_{m}+\epsilon\right) / 2\right) s^{2}-C$. Thus,

$$
\begin{aligned}
F(u) & =\frac{1}{2} \int_{\Omega}\left(|\Delta u|^{2}-c|\nabla u|^{2}\right) d x-\int_{\Omega} G(x, u) d x \\
& \leq \frac{1}{2}\|w\|_{0}^{2}+\frac{1}{2} t^{2} \lambda_{1}\left(\lambda_{1}-c\right)-\frac{\mu_{m}+\epsilon}{2} \int_{\Omega}\left(t^{2} \varphi_{1}^{2}+w^{2}\right) d x+C|\Omega| \\
& \leq \frac{1}{2}\|w\|_{0}^{2}\left(1-\frac{\mu_{m}+\epsilon}{\mu_{m}}\right)+\frac{1}{2} t^{2}\left(\lambda_{1}^{2}-c \lambda_{1}\right)-t^{2} \frac{\mu_{m}+\epsilon}{2}+C|\Omega|
\end{aligned}
$$

this implies $F(u) \rightarrow-\infty$ as $\|u\|_{1} \rightarrow \infty$.
Proof of (iii). Since $g^{\prime}(x, s) \geq \mu_{1}$ we obtain $G(x, s) \geq \mu_{1} t^{2} / 2$ and

$$
\begin{aligned}
F\left(t \varphi_{1}\right) & =\frac{1}{2} t^{2} \int_{\Omega}\left(\left|\Delta \varphi_{1}\right|^{2}-c\left|\nabla \varphi_{1}\right|^{2}\right) d x-\int_{\Omega} G\left(x, t \varphi_{1}\right) d x \\
& \leq \frac{t^{2}}{2}\left(\mu_{1}-\int_{\Omega} \mu_{1} \varphi_{1}^{2} d x\right)=0
\end{aligned}
$$

The proof is complete.
From Lemmas 3.2 and 3.3 , we find analogous geometries as in Lemmas 2.3 and 2.4 for functional (1.4). Furthermore, we have the Palais-Smale Condition by Lemma 3.1. Thus, with the same proofs of Theorems 2.1, 2.5 and 2.6, we obtain the following results.

Theorem 3.4. Assume that $g^{\prime}(x, t) \geq g(x, t) / t$ for all $x \in \Omega$ and $t \in \mathbb{R}$. Suppose that there exists $k \geq 2, m \geq k+1$ such that $\mu_{k-1} \leq g_{0}<\mu_{k}$ and $\mu_{m}<g_{\infty}<\mu_{m+1}$ and $\mu_{k-1}<g(x, t) / t$. Then 1.1) has at least two nontrivial solutions.

Theorem 3.5. Assume that $\mu_{k-1} \leq g^{\prime}(x, t)<\mu_{m+1}$ for all $x \in \Omega$ and $t \in \mathbb{R}$. Suppose that there exists $k \geq 2$, $m \geq k+1$ such that $\mu_{k-1} \leq g_{0}<\mu_{k}$ and $\mu_{m}<$ $g_{\infty}<\mu_{m+1}$. Then (1.1) has at least two nontrivial solutions.

Theorem 3.6. Assume that $\mu_{1}<g_{\infty}<\mu_{2}$. Suppose there exists $m \geq 2$ such that $\mu_{m}<g_{0}<\mu_{m+1}$. Then 1.1 has at least two nontrivial solutions.
4. The CASE $\lambda_{\nu}<c<\lambda_{\nu+1}, \nu \geq 2$

In this section we consider $\lambda_{\nu}<c<\lambda_{\nu+1}$. Thus, the problem

$$
\begin{gather*}
\Delta^{2} u+c \Delta u=\mu u \quad \text { in } \Omega \\
u=\Delta u=0 \quad \text { on } \partial \Omega \tag{4.1}
\end{gather*}
$$

has ν first negative eigenvalues. Therefore, we will define the following norm in V :

$$
\begin{aligned}
\|\phi\|_{\nu}^{2} & =\sum_{i=1}^{\nu} \alpha_{i}^{2} \int_{\Omega}\left(\left|\Delta \varphi_{i}\right|^{2}+\left|\nabla \varphi_{i}\right|^{2}\right) d x+\int_{\Omega}\left(|\Delta \bar{\phi}|^{2}-c|\nabla \bar{\phi}|^{2}\right) d x \\
& =\sum_{i=1}^{\nu} \alpha_{i}^{2}\left(\lambda_{i}^{2}+\lambda_{i}\right)+\int_{\Omega}\left(|\Delta \bar{\phi}|^{2}-c|\nabla \bar{\phi}|^{2}\right) d x \\
& =\sum_{i=1}^{\nu} \alpha_{i}^{2}\left(\lambda_{i}^{2}+\lambda_{i}\right)+\|\bar{\phi}\|_{0}^{2}, \quad \text { for all } \phi \in V
\end{aligned}
$$

where $\phi=\alpha_{1} \varphi_{1}+\cdots+\alpha_{\nu} \varphi_{\nu}+\bar{\phi}$ with $\bar{\phi} \in \operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{\nu}\right\}^{\perp}$.
In this section, results will be obtained with the same arguments used in previous section. The Palais-Smale Condition is proved as Lemma 3.1 with equation 3.2 changed by

$$
\begin{aligned}
F\left(u_{n}\right) & =\frac{1}{2} \int_{\Omega}\left(\left|\Delta u_{n}\right|^{2}-c\left|\nabla u_{n}\right|^{2}\right) d x-\int_{\Omega} G\left(x, u_{n}\right) d x \\
& =\frac{1}{2}\left\|u_{n}\right\|_{\nu}^{2}-\sum_{i=1}^{\nu} \frac{1}{2}\left(t_{i}^{n}\right)^{2}\left(\lambda_{i}+c \lambda_{i}\right)-\int_{\Omega} G\left(x, u_{n}\right) d x
\end{aligned}
$$

and the equation 3.4 changed by

$$
0=\frac{1}{2}-\frac{1}{2} \sum_{i=1}^{\nu}\left(t_{i}\right)^{2}\left(\lambda_{i}+c \lambda_{i}\right)-\int_{\Omega} g_{\infty} v^{2} d x
$$

Suppose V as before and $\mu_{m}<g_{\infty}<\mu_{m+1}$. We can split $V=H \oplus W$ where $H=\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{m}\right\}$ and $W=H^{\perp}$.

Next lemma is analogous to Lemma 3.2.
Lemma 4.1. Assume that $\mu_{m}<g_{\infty}<\mu_{m+1}$ and $\nu \leq m$. Then
(i) $F(u) \rightarrow-\infty$, as $\|u\|_{\nu} \rightarrow \infty$, for $u \in H$.
(ii) There exists $C_{1}>0$ such that $F(w) \geq-C_{1}$ for all $w \in W$.

Proof. The proof of (ii) is similar to the proof of Lemma 3.2, (ii).
The proof of (i) follows from $g_{\infty}>\mu_{m}$. In fact, let $u \in H$. Since $\nu \leq m$, we have $u=\sum_{i=1}^{\nu} t_{i} \varphi_{i}+w$. Thus, we have two cases to consider:

Case 1: $\nu<m$. Then there exists $\epsilon, B>0$ such that

$$
\begin{aligned}
F(u) & =\frac{1}{2} \int_{\Omega}\left(|\Delta u|^{2}-c|\nabla u|^{2}\right) d x-\int_{\Omega} G(x, u) d x \\
& \leq \frac{1}{2}\|w\|_{0}^{2}+\frac{1}{2} \sum_{i=1}^{\nu} t_{i}^{2}\left(\lambda_{i}^{2}-c \lambda_{i}\right)-\frac{\mu_{m}+\epsilon}{2}\left(\sum_{i=1}^{\nu} t_{i}^{2}+\int_{\Omega}|w|^{2} d x\right)+B|\Omega| \\
& \leq \frac{1}{2}\|w\|_{0}^{2}\left(1-\frac{\mu_{m}+\epsilon}{\mu_{m}}\right)+\frac{1}{2} \sum_{i=1}^{\nu} t_{i}^{2}\left(\lambda_{i}^{2}-c \lambda_{i}-\left(\mu_{m}+\epsilon\right)\right)+B|\Omega| .
\end{aligned}
$$

Case 2: $\nu=m$. Then

$$
\begin{aligned}
F(u) & =\frac{1}{2} \int_{\Omega}\left(|\Delta u|^{2}-c|\nabla u|^{2}\right) d x-\int_{\Omega} G(x, u) d x \\
& \leq \frac{1}{2} \sum_{i=1}^{\nu} t_{i}^{2}\left(\lambda_{i}^{2}-c \lambda_{i}-\left(\mu_{\nu}+\epsilon\right)\right)+B|\Omega|
\end{aligned}
$$

In both cases $F(u) \rightarrow-\infty$ as $\|u\|_{\nu} \rightarrow \infty$, which completes the proof.

From the Palais-Smale Condition and Lemma 4.1, we obtain the following result.
Theorem 4.2. Assume that $\mu_{m}<g_{\infty}<\mu_{m+1}$ and $\nu \leq m$. Suppose, there exists $s \geq m+1$ such that $\mu_{s}<g_{0}<\mu_{s+1}$. Then 1.1) has at least one nontrivial solution.

To study multiplicity of solutions we have an analogous lemma to Lemma 3.3
Lemma 4.3. Assume that $\nu \leq k$. Suppose that there are $\alpha, \delta>0$ such that $\mu_{k-1} \leq g(x, t) / t \leq \alpha<\mu_{k}$, for $|t|<\delta, k \geq 2$, and $g^{\prime}(x, t) \geq \mu_{k-1}$. Moreover, assume that there exists $m \geq k+1$ such that $\mu_{m}<g_{\infty}<\mu_{m+1}$. The following statements hold:
(i) There exists $r>0$ and $A>0$ such that $F(u) \geq A$ for all $u \in H_{2} \oplus H_{3}$ with $\|u\|_{\nu}=r$.
(ii) $F(u) \rightarrow-\infty$, as $\|u\|_{\nu} \rightarrow \infty$ for $u \in H_{1} \oplus H_{2}$.
(iii) $F(u) \leq 0$ for all $u \in H_{1}$.

Thus we obtain the main theorem of this section.
Theorem 4.4. Suppose there exist $k \in \mathbb{N}, m \geq k+1$ such that $\mu_{k-1}<g_{0}<\mu_{k}$, $\mu_{m}<g_{\infty}<\mu_{m+1}$ and $\nu \leq m$. Assume that $\mu_{k-1} \leq g^{\prime}(x, t) \leq \mu_{m+1}$, for all $x \in \Omega$ and $t \in \mathbb{R}$. If $\nu \leq k$ problem 1.1 has at least two nontrivial solutions; If $k+1 \leq \nu$ problem 1.1 has at least one nontrivial solution.

Proof. Since $\nu \leq k+1$ then, by Lemma 4.1 and the Palais-Smale Condition, we conclude that functional F has the geometry of Saddle Point Theorem. Then there exists u_{1}, a critical point of F, such that

$$
\begin{equation*}
C_{m}\left(F, u_{1}\right) \neq 0 \tag{4.2}
\end{equation*}
$$

On the other hand, from Lemma 4.3 there exists u_{2} a critical point of F, such that

$$
\begin{equation*}
C_{k}\left(F, u_{2}\right) \neq 0 \tag{4.3}
\end{equation*}
$$

The proof is completed with the same arguments as Theorem 2.5
If $k \leq \nu$ is immediate from Lemma 4.1 and $\mu_{k-1} \leq g_{0}<\mu_{k}$ that there exists nontrivial solution u_{1}.

To finish, with the same arguments as in Theorem 2.1 we obtain the following result.

Theorem 4.5. Suppose there exist $k \in \mathbb{N}, m \geq k+1$ such that $\mu_{k-1} \leq g_{0}<\mu_{k}$, $\mu_{m}<g_{\infty}<\mu_{m+1}$ and $\nu \leq m$. Assume that $g^{\prime}(x, t) \geq g(x, t) / t$ for all $x \in \Omega$ and $t \in \mathbb{R}$; and $\mu_{k-1} \leq g^{\prime}(x, t)$. Then: if $\nu \leq k+1$ problem 1.1 has at least two nontrivial solutions; if $k \leq \nu$ problem 1.1 has at least one nontrivial solution.

Acknowledgements. This work was done while the author was a Ph. D. student at the Mathematics Department of the State University of Campinas. The author would like to thank the anonymous referee for his/her helpful comments and suggestions.

References

[1] T. Bartsch, K. C. Chang, Z.-Q. Wang, On the Morse indices of sign changing solutions of nonlinear elliptic problems. Math. Z., 233 (2000), 655-677.
2] K. C. Chang, Infinite Dimensional Morse Theory and Multiple Solutions Problems, Birkhäuser, Boston, 1993.
[3] F. O. V. De Paiva, Multiple Solutions for Asymptotically Linear Ressonant Elliptics Problems. Topol. Methods Nonlinear Anal., 21 (2003), 227-247.
[4] A. M. Micheletti, A. Pistoia, Multiplicity results for a fourth-order semilinear elliptic problem. Nonlinear Analysis Theory, Meth. \& Applications, 317 (1998), 895-908.
[5] A. M. Micheletti, A. Pistoia, Nontrivial solutions for some fourth-order semilinear elliptic problems. Nonlinear Analysis, 34 (1998), 509-523.
[6] A. Qian, S. Li Multiple Solutions for a fourth-order asymptotically linear elliptic problem. Acta Mathematica Sinica, English Series, vol. 22, no. 4 (2006), 1121-1126.
[7] A. Qian, S. Li On the existence of nontrivial solutions for a fourth-order semilinear elliptic problems. Abstract and App. Analysis, 6 (2005), 673-683.
[8] G. Tarantello, A note on a semilinear elliptic problem. Diff. and Integral Equations, vol. 5, no. 3 (1992), 561-565.
[9] J. Zhang, Existence results for some fourth-order nonlinear elliptic problems, Nonlinear Analysis 45 (2001), 29-36.
[10] J. Zhang, S. Li Multiple nontrivial solutions for a some foutrh-order semilinear elliptic problems, Nonlinear Analysis 60 (2005), 221-230.

Evandro Monteiro
Unifal-MG, Rua Gabriel Monteiro da Silva, 700. Centro, CEP 37130-000 Alfenas-MG, Brazil

E-mail address: evandromonteiro@unifal-mg.edu.br

[^0]: 2000 Mathematics Subject Classification. 35J30, 35J35.
 Key words and phrases. Asymptotically linear; Morse theory; shifting theorem; multiplicity of solutions.
 © 2011 Texas State University - San Marcos.
 Submitted February 15, 2011. Published November 2, 2011.

