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ASYMPTOTICALLY LINEAR FOURTH-ORDER ELLIPTIC
PROBLEMS WHOSE NONLINEARITY CROSSES SEVERAL

EIGENVALUES

EVANDRO MONTEIRO

Abstract. In this article we prove the existence of multiple solutions for the
fourth-order elliptic problem

∆2u + c∆u = g(x, u) in Ω

u = ∆u = 0 on ∂Ω,

where Ω ⊂ RN is a bounded domain, g : Ω × R → R is a function of class
C1 such that g(x, 0) = 0 and it is asymptotically linear at infinity. We study
the cases when the parameter c is less than the first eigenvalue, and between
two consecutive eigenvalues of the Laplacian. To obtain solutions we use the
Saddle Point Theorem, the Linking Theorem, and Critical Groups Theory.

1. Introduction

Let us consider the problem

∆2u + c∆u = g(x, u) in Ω
u = ∆u = 0 on ∂Ω,

(1.1)

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, and g : Ω×R → R
is a function of class C1 such that g(x, 0) = 0. Assume that

g0 := lim
t→0

g(x, t)
t

, uniformly in Ω, (1.2)

g∞ := lim
|t|→∞

g(x, t)
t

, uniformly inΩ, (1.3)

where g0 and g∞ are constants.
Denote by 0 < λ1 < λ2 ≤ · · · ≤ λj ≤ . . . the eigenvalues of (−∆,H1

0 ) and
µk(c) = λk(λk − c) the eigenvalues of (∆2 + c∆,H1

0 ∩H2). We also denote by ϕj

the eigenfunction associated with λj and consequently with µj .
This fourth-order problem with g asymptotically linear has been studied by Qian

and Li [6], where the authors considered the case c < λ1 and g0 < µ1 < µk < g∞ <
µk+1 and they obtained three nontrivial solutions. Tarantelo [8] found a negative
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solution of (1.1) with the nonlinearity of the form g(x, u) = b[(u+1)+−1], where b
is a constant. With the same type of nonlinearity Micheletti and Pistoia [4] showed
that there exist two solutions when b > λ1(λ1 − c) and three solutions when b is
close to λk(λk− c). Micheletti and Pistoia [5] showed the existence of two solutions
for problem (1.1) with linear growth at infinity by the classical Mountain Pass
Theorem and a variation of the Linking Theorem. In [7] the authors considered the
superlinear case and showed the existence of two nontrivial solutions. Zhang [9]
and Zhang and Li [10] proved the existence of solutions when f(x, u) is sublinear
at ∞.

In our work we suppose that c < λ1 and µk−1 ≤ g0 < µk ≤ µm < g∞ ≤ µm+1,
and we prove the existence of two nontrivial solutions of (1.1). We also obtain
results for the case when λν < c < λν+1. The case µk−1 < g∞ < µk ≤ µm < g0 <
µm+1 is also considered.

The classical solutions of problem (1.1) correspond to critical points of the func-
tional F defined on V = H1

0 (Ω) ∩H2(Ω), by

F (u) =
1
2

∫
Ω

(|∆u|2 − c|∇u|2)dx−
∫

Ω

G(x, u)dx, u ∈ V, (1.4)

where G(x, t) =
∫ t

0
g(x, s)ds. Notice that V is a Hilbert space with the usual inner

product
∫
Ω
(|∆v|2 + |∇v|2)dx. Let ‖ · ‖ be norm induced by this inner product.

Under the above assumptions F is a functional of class C2.
For the convenience of the reader, we recall some notation of Morse Theory. Let

H be a Hilbert space and F : H → R be a functional of class C1. We assume that
the set of critical points of F , denoted by K, is finite. Let y ∈ H be a critical point
of F with c = F (y). The group

Cp(F, y) = Hp(F c, F c \ {y}), p = 0, 1, 2, . . . ,

is called the pth critical group of F at y, where F c = {x ∈ H : F (x) ≤ c} and
Hp(·, ·) is the singular relative homology group with integer coefficients.

2. Case c < λ1

We denote d
dtg(x, t) by g′(x, t). We start with following result.

Theorem 2.1. Assume that g′(x, t) ≥ g(x, t)/t for all x ∈ Ω and t ∈ R. Suppose
that there exists k ≥ 2, m ≥ k + 1 such that µk−1 ≤ g0 < µk, µk−1 < g(x, t)/t and
µm < g∞ < µm+1. Then problem (1.1) has at least two nontrivial solutions.

First we will prove that the associated functional satisfies the Palais-Smale con-
dition. We remind that V is a Hilbert space with the inner product

(u, v)0 =
∫

Ω

(|∆u|2 − c|∇u|2)dx.

Indeed, ‖u‖0 =
√

(u, u)0 is equivalent to norm ‖u‖, provided c < λ1.

Lemma 2.2. If there exists m ≥ 1 such that µm < g∞ < µm+1 then the functional
F defined in (1.4) satisfies the Palais-Smale condition.

Proof. Let (un) ⊂ V be a Palais-Smale sequence; that is, a sequence such that
F (un) → C and F ′(un) → 0. Since g is a sublinear function, it is sufficient to prove
that (‖un‖0)n∈N is bounded. By contradiction we suppose that limn→∞ ‖un‖0 = ∞.
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Up to a subsequence we can assume that vn = un/‖un‖0 converge to v weakly in
V , strongly in L2(Ω) and pointwise in Ω.

Let φ ∈ V . Then

F ′(un)φ =
∫

Ω

(∆un∆φ− c∇un∇φ)dx−
∫

Ω

g(x, un)φdx,

thus
F ′(un)
‖un‖0

φ =
∫

Ω

(∆vn∆φ− c∇vn∇φ)dx−
∫

Ω

g(x, un)
un

vnφdx.

Taking the limit in the last expression and using the above convergence, we obtain

∆2v + c∆v = g∞v. (2.1)

in the weak sense.
In fact, define A+ = {x ∈ Ω; v(x) > 0 a. e. } and A− = {x ∈ Ω; v(x) < 0 a. e. }

then un(x) →∞ a.e. if x ∈ A+ and un(x) → −∞ a.e. if x ∈ A−. Using (g∞) and
the fact that over A0 = {x ∈ Ω; v(x) = 0 a.e. }, we obtain g(x,un)

un
is bounded.

Now we will prove that v 6= 0. Note that

F (un)
‖un‖20

=
1
2
−

∫
Ω

G(x, un)
‖un‖20

dx =
1
2
−

∫
Ω

G(x, un)
u2

n

v2
ndx.

Taking the limit in this expression and using the fact F (un) → C as n → ∞, we
obtain ∫

Ω

g∞v2dx =
1
2
,

which proves that v 6= 0. Thus, we conclude that g∞ is an eigenvalue of (∆2 +
c∆, V ), contradiction. Therefore, (‖un‖0)n∈N is bounded. The proof is complete.

�

For the next lemma, we split the space V in the following way: V = H ⊕ H3,
where H = span{ϕ1, . . . , ϕm} and H3 = H⊥.

Lemma 2.3. Suppose there exists m ≥ 1 such that µm < g∞ < µm+1. Then:
(1) F (u) → −∞ as ‖u‖0 →∞ for u ∈ H.
(2) There exists C1 > 0 such that F (u) ≥ −C1 for all u ∈ H3.

Proof. Because µm < g∞, there exist ε, C > 0 such that

G(x, t) ≥ t2

2
(µm + ε)− C. (2.2)

Thus

F (u) =
1
2

∫
Ω

(|∆u|2 − c|∇u|2)dx−
∫

Ω

G(x, u)dx

≤ 1
2
‖u‖20 −

∫
Ω

u2

2
(µm + ε)dx + C

∫
Ω

|u|dx

≤ 1
2
‖u‖20(1−

µm + ε

µm
) + C|Ω|,

which proves (1).
Using the fact g∞ < µm+1 and a similar argument as in the proof of (1), we

obtain (2). �
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Now, we split the space H as follows

H = H1 ⊕H2,

where H1 = span{ϕ1 . . . , ϕk−1} and H2 = span{ϕk, . . . , ϕm}. Thus V = H1⊕H2⊕
H3.

Lemma 2.4. Suppose that there are α, δ > 0 such that µk−1 ≤ g(x, t)/t ≤ α < µk,
for |t| < δ, k ≥ 2, and g′(x, t) ≥ µk−1. Moreover, assume that there exists m ≥ k+1
such that µm < g∞ < µm+1. The following statements hold:

(1) There are r > 0 and A > 0 such that F (u) ≥ A for all u ∈ H2 ⊕H3 with
‖u‖0 = r.

(2) F (u) → −∞, as ‖u‖0 →∞ for all u ∈ H1 ⊕H2.
(3) F (u) ≤ 0 for all u ∈ H1.

Proof. Let Hm+1 = ker(∆2 + c∆ − µm+1I). Then H2 ⊕ H3 = U ⊕ W , where
U = H2⊕Hm+1. For v ∈ V put v = u+w, u ∈ U and w ∈ W . Since dim U < +∞
then U is generated by eigenfunctions which are L∞(Ω), then there exists r > 0
such that

sup
x∈Ω

|u(x)| ≤ γ − µk

γ − α
δ if ‖u‖0 ≤ r,

where γ > µk and
∫
Ω
(|∆w|2 − c|∇w|2)dx ≥ γ

∫
Ω
|w|2dx, for all w ∈ W .

Suppose that ‖u‖0 ≤ r. If |u(x) + w(x)| ≤ δ, then
1
2
µ2|u|2 +

1
4
γ|w|2 −G(x, u + w)

≥ 1
2
µ2|u|2 +

1
4
γ|w|2 − 1

2
α(u + w)2

= −1
4
α|w|2 +

1
4
(γ − α)|w|2 +

1
2
(µ2 − α)u2 − αuw

≥ −1
4
µ2|w|2 +

1
2
(µ2 − α)u2 − αuw

If |u(x) + w(x)| > δ, then

|G(x, u + w)| ≤ 1
2
µk(u + w)2 − 1

2
(µk − α)δ2.

Thus,
1
2
µ2|u|2 +

1
4
γ|w|2 −G(x, u + w)

≥ 1
2
µ2|u|2 +

1
4
γ|w|2 − 1

2
µk(u + w)2 +

1
2
(µk − α)δ2

= −1
4
µk|w|2 +

1
2
(µ2 − α)|u|2 − αuw +

1
4
(γ − µk)|w|2 + (α− µk)uw

+
1
2
(α− µk)|u|2 +

1
2
(µk − α)δ2

≥ −1
4
µk|w|2 +

1
2
(µ2 − α)|u|2 − αuw,

where the last inequality follows from the fact that the quadrat form below is
positive (see [3, p. 235]).

1
4
(γ − µk)|w|2 + (α− µk)uw +

1
2
(α− µk)|u|2 +

1
2
(µk − α)δ2.
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Therefore,

F (v) =
1
2
‖u + w‖20 −

∫
Ω

G(x, u + w)dx

≥ 1
4
‖w‖20 −

1
4
µk

∫
Ω

|w|2dx +
1
2
(µ2 − α)

∫
Ω

|u|2dx

≥ min
{1

4
(
1− µk

γ

)
,
µ2 − α

2µk

}
‖v‖20,

which proves assertion (1).
The proof of (2) follows by the same argument as in the proof of (1) of Lemma

2.2. For (3), observe that g′(x, s) ≥ µk−1 and so G(x, t) ≥ µk−1t
2/2. Thus, if

u ∈ H1 then u =
∑k−1

i=1 miϕi for some constant m ∈ R. Hence

F (u) ≤
k−1∑
i=1

1
2

∫
Ω

(|∆ϕi|2 − c|∇ϕi|2)dx−
k−1∑
i=1

µk−1

∫
Ω

ϕ2
i

2
dx

≤
k−1∑
i=1

m2
i

2

(
‖ϕi‖20 − µi

∫
Ω

ϕ2
i

)
= 0.

which proves (3). The proof of lemma is complete. �

Conclusion of de proof Theorem 2.1. By Lemmas 2.2 and 2.3, we have that
the functional F satisfies the (PS) condition and has the geometry of Saddle Point
Theorem. Therefore there exists u1, a critical point of F , such that

Cm(F, u1) 6= 0. (2.3)

Moreover, by conditions µk−1 ≤ g0 < µk and g′(x, t) ≥ g(x, t)/t for all x ∈ Ω and
t ∈ R, we verifies the hypotheses of Lemma 2.4. It follows that the functional F
satisfies the geometry of Linking Theorem. Thus, there is a critical point u2 of F
satisfying

Ck(F, u2) 6= 0.

Since µk−1 ≤ g0 < µk, then m(0) + n(0) ≤ k − 1, and by a corollary of Shifting
Theorem [2, Corollary 5.1, Chapter 1], we have Cp(F, 0) = 0 for all p > k − 1.
Therefore u1 and u2 are nontrivial critical points of F . The theorem follows from
the next claim.
Claim: Cp(F, u2) = δpkG.

From (2.3)) and the Shifting Theorem we have that m(u2) ≤ k. We will show
that m(u2) = k. Indeed, by g(x, t)/t > µk−1 we have that βi(g(x, u2)/u2) <
βi(µk−1) ≤ 1 for all i ≤ k − 1. Now, we have that

∆2u2 + c∆u2 =
g(x, u2)

u2
u2.

This implies that βk(g(x, u2)/u2) ≤ 1. Then, it follows from g′(x, t) ≥ g(x, t)/t,
that βk(g′(x, u2)) < 1. This implies that m(u2) ≥ k, then m(u2) = k. Again, the
Shifting Theorem and (2.3)) imply the Claim.

Theorem 2.5. Assume that µk−1 ≤ g′(x, t) < µm+1 for all x ∈ Ω and t ∈ R.
Suppose that there exists k ≥ 2, m ≥ k + 1 such that µk−1 < g0 < µk and µm <
g∞ < µm+1. Then problem (1.1)) has at least two nontrivial solutions.
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Proof. By hypotheses µk−1 < g0 < µk and µk−1 ≤ g′(x, t) < µm+1 for all x ∈ Ω
and t ∈ R, we verifies the Lemma 2.4. Thus, as in the proof of the previous theorem
there exists critical points u1 and u2 such that

Cm(F, u1) 6= 0 and Ck(F, u2) 6= 0,

moreover, we can conclude that u1 and u2 are nontrivial solutions, provided µk−1 ≤
g0 < µk.

We will show that u1 6= u2. Since g′(x, t) < µm+1 we obtain

F ′′(u1)(v, v) =
∫

Ω

(|∆v|2 − c|∇v|2)dx−
∫

Ω

g′(x, u1)v2dx

>

∫
Ω

(|∆v|2 − c|∇v|2)dx− µm+1

∫
Ω

|v|2dx ≥ 0,

for all v ∈ span{ϕm+1, . . . }. Hence m(u1) + n(u1) ≤ m. On the other hand,
Cm(F, u1) 6= 0. Thus, by a corollary of Shifting Theorem Cp(F, u1) = δpmZ.
Therefore u1 6= u2, which completes the proof. �

Theorem 2.6. Assume that µ1 < g∞ < µ2 and there exists m ≥ 2 such that
µm < g0 < µm+1. Then (1.1) has at least two nontrivial solutions.

Proof. By Lemmas 2.2 and 2.3, we can apply the Saddle Point Theorem to obtain
a solution u1 6= 0 such that C1(F, u1) 6= 0.
Claim: Cp(F, u1) = δp1Z.

Actually, we have that m(u1) ≤ 1. If m(u1) = 1 the claim is proved. If m(u1) =
0, then we have that the first eigenvalue β1 of the problem

∆2v + c∆v = βg′(x, u1)v in Ω
v = ∆v = 0 on ∂Ω,

(2.4)

satisfies β1 = 1 and is simple. It follows that n(u1) = 1, and so the claim follows
by Shifting Theorem.

We also have that Cp(F, 0) = δpmZ, provided µm < g0 < µm+1. Now, suppose
by contradiction that u1 and 0 are the unique critical points of F . Thus the Morse
Inequality reads as

(−1) = (−1) + (−1)m.

This is a contradiction. So there is at least one more nontrivial solution. �

3. The case λ1 < c < λ2

Since λ1 < c < λ2 the first eigenvalue of the problem

∆2u + c∆u = µu in Ω
u = ∆u = 0 on ∂Ω,

(3.1)

is negative. Thus,
∫
Ω
(|∆v|2 − c|∇v|2)dx is not an inner product in V . In this case,

consider the following norm: for all φ ∈ V

‖φ‖21 = α2
1

∫
Ω

(|∆ϕ1|2 + |∇ϕ1|2)dx +
∫

Ω

(|∆φ|2 − c|∇φ|2)dx

= α2
1(λ

2
1 + λ1) +

∫
Ω

(|∆φ|2 − c|∇φ|2)dx

= α2
1(λ

2
1 + λ1) + ‖φ‖20
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where φ = α1ϕ1 + φ with φ ∈ span{ϕ1}⊥ and ‖ · ‖0 was defined in the previous
section. Notice that ‖ · ‖0 is a norm in span{ϕ1}⊥.

Clearly, the norm ‖ · ‖1 is equivalent to usual norm ‖ · ‖.
Next lemma will prove that the functional (1.4) with the above conditions sat-

isfies the Palais-Smale Condition, (PS)-Condition.

Lemma 3.1. Suppose that g∞ is not eigenvalue from (3.1). Then the functional
(1.4) satisfies the (PS)-Condition.

Proof. Let (un) ⊂ V be a Palais-Smale sequence, that is, a sequence such that
F (un) → C and F ′(un) → 0. This lemma is proved with the same arguments
used in Lemma 2.2. By contradiction, suppose that limn→∞ ‖un‖1 = ∞. Up to a
subsequence we can assume that vn = un/‖un‖1 converge to v weakly in V strongly
in L2(Ω) and pointwise in Ω. Therefore

∆2v + c∆v = g∞v.

As in the proof of Lemma 2.2 we have to show that v 6= 0. In fact, let un = tn1ϕ+φn,

F (un) =
1
2

∫
Ω

(|∆un|2 − c|∇un|2)dx−
∫

Ω

G(x, un)dx

=
1
2
‖un‖21 −

1
2
(tn1 )2(λ1 + cλ1)−

∫
Ω

G(x, un)dx.

(3.2)

Since vn → v in L2(Ω) as n →∞ then
∫

vnϕ1 →
∫

vϕ1 = t1 as n →∞. Taking
limit in the expression

F (un)
‖un‖21

=
1
2
− 1

2
(tn1 )2

‖un‖21
(λ1 + cλ1)−

∫
Ω

G( un)
u2

n

v2
ndx, (3.3)

we obtain

0 =
1
2
− 1

2
(t1)2(λ1 + cλ1)−

∫
Ω

g∞v2dx, (3.4)

this implies v 6= 0. Thus, Lemma 3.1 is proved. �

In the next result we obtain the functional geometry to establish existence of
two nontrivial solutions from (1.1)).

Lemma 3.2. Suppose that µ1 < g∞ < µ2. Then
(i) F (tϕ1) → −∞, as t →∞.
(ii) There exists C1 > 0 such that F (u) ≥ −C1 for all u ∈ span{ϕ1}⊥.

Proof. (i). Hence µ1 < g∞ < µ2 there exists ε > 0 and B > 0 such that

G(x, s) ≥ µ1 + ε

2
s2 −B.

So,

F (tϕ1) ≤
1
2
t2(λ2

1 − cλ1)−
µ1 + ε

2
t2

∫
Ω

ϕ2
1dx + B|Ω| = −1

2
t2ε + B|Ω|.

this implies F (tϕ1) → −∞ as t →∞.
The proof of (ii) is analogous of (ii) of Lemma 2.3. �

The next lemma is analogous to Lemma 2.4.
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Lemma 3.3. Suppose that there are α, δ > 0 such that µk−1 ≤ g(x, t)/t ≤ α < µk,
for |t| < δ, k ≥ 2, and g′(x, t) ≥ µk−1. Moreover, assume that there exists m ≥ k+1
such that µm < g∞ < µm+1. The following statements hold:

(i) There exists r > 0 and A > 0 such that F (u) ≥ A for all u ∈ H2⊕H3 with
‖u‖1 = r.

(ii) F (u) → −∞, as ‖u‖1 →∞ for all u ∈ H1 ⊕H2.
(iii) F (u) ≤ 0 for all u ∈ H1.

Proof. The proof of (i) is analogous to proof of (i), Lemma 2.4.
Proof of (ii). Let u ∈ H1 ⊕H2. Then u = tϕ1 + w, where w ∈ span{ϕ1}⊥. By

µm < g∞ there exists ε, C > 0 such that G(x, s) ≥ ((µm + ε)/2)s2 − C. Thus,

F (u) =
1
2

∫
Ω

(|∆u|2 − c|∇u|2)dx−
∫

Ω

G(x, u)dx

≤ 1
2
‖w‖20 +

1
2
t2λ1(λ1 − c)− µm + ε

2

∫
Ω

(t2ϕ2
1 + w2)dx + C|Ω|

≤ 1
2
‖w‖20

(
1− µm + ε

µm

)
+

1
2
t2(λ2

1 − cλ1)− t2
µm + ε

2
+ C|Ω|

this implies F (u) → −∞ as ‖u‖1 →∞.
Proof of (iii). Since g′(x, s) ≥ µ1 we obtain G(x, s) ≥ µ1t

2/2 and

F (tϕ1) =
1
2
t2

∫
Ω

(|∆ϕ1|2 − c|∇ϕ1|2)dx−
∫

Ω

G(x, tϕ1)dx

≤ t2

2
(µ1 −

∫
Ω

µ1ϕ
2
1dx) = 0.

The proof is complete. �

From Lemmas 3.2 and 3.3, we find analogous geometries as in Lemmas 2.3 and 2.4
for functional (1.4). Furthermore, we have the Palais-Smale Condition by Lemma
3.1. Thus, with the same proofs of Theorems 2.1, 2.5 and 2.6, we obtain the
following results.

Theorem 3.4. Assume that g′(x, t) ≥ g(x, t)/t for all x ∈ Ω and t ∈ R. Suppose
that there exists k ≥ 2, m ≥ k + 1 such that µk−1 ≤ g0 < µk and µm < g∞ < µm+1

and µk−1 < g(x, t)/t. Then (1.1) has at least two nontrivial solutions.

Theorem 3.5. Assume that µk−1 ≤ g′(x, t) < µm+1 for all x ∈ Ω and t ∈ R.
Suppose that there exists k ≥ 2, m ≥ k + 1 such that µk−1 ≤ g0 < µk and µm <
g∞ < µm+1. Then (1.1) has at least two nontrivial solutions.

Theorem 3.6. Assume that µ1 < g∞ < µ2. Suppose there exists m ≥ 2 such that
µm < g0 < µm+1. Then (1.1) has at least two nontrivial solutions.

4. The case λν < c < λν+1, ν ≥ 2

In this section we consider λν < c < λν+1. Thus, the problem

∆2u + c∆u = µu in Ω
u = ∆u = 0 on ∂Ω,

(4.1)
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has ν first negative eigenvalues. Therefore, we will define the following norm in V :

‖φ‖2ν =
ν∑

i=1

α2
i

∫
Ω

(|∆ϕi|2 + |∇ϕi|2)dx +
∫

Ω

(|∆φ|2 − c|∇φ|2)dx

=
ν∑

i=1

α2
i (λ

2
i + λi) +

∫
Ω

(|∆φ|2 − c|∇φ|2)dx

=
ν∑

i=1

α2
i (λ

2
i + λi) + ‖φ‖20, for all φ ∈ V,

where φ = α1ϕ1 + · · ·+ ανϕν + φ with φ ∈ span{ϕ1, . . . , ϕν}⊥.
In this section, results will be obtained with the same arguments used in previous

section. The Palais-Smale Condition is proved as Lemma 3.1 with equation (3.2)
changed by

F (un) =
1
2

∫
Ω

(|∆un|2 − c|∇un|2)dx−
∫

Ω

G(x, un)dx

=
1
2
‖un‖2ν −

ν∑
i=1

1
2
(tni )2(λi + cλi)−

∫
Ω

G(x, un)dx.

and the equation (3.4) changed by

0 =
1
2
− 1

2

ν∑
i=1

(ti)2(λi + cλi)−
∫

Ω

g∞v2dx.

Suppose V as before and µm < g∞ < µm+1. We can split V = H ⊕ W where
H = span{ϕ1, . . . , ϕm} and W = H⊥.

Next lemma is analogous to Lemma 3.2.

Lemma 4.1. Assume that µm < g∞ < µm+1 and ν ≤ m. Then
(i) F (u) → −∞, as ‖u‖ν →∞, for u ∈ H.
(ii) There exists C1 > 0 such that F (w) ≥ −C1 for all w ∈ W .

Proof. The proof of (ii) is similar to the proof of Lemma 3.2, (ii).
The proof of (i) follows from g∞ > µm. In fact, let u ∈ H. Since ν ≤ m, we

have u =
∑ν

i=1 tiϕi + w. Thus, we have two cases to consider:
Case 1: ν < m. Then there exists ε, B > 0 such that

F (u) =
1
2

∫
Ω

(|∆u|2 − c|∇u|2)dx−
∫

Ω

G(x, u)dx

≤ 1
2
‖w‖20 +

1
2

ν∑
i=1

t2i (λ
2
i − cλi)−

µm + ε

2

( ν∑
i=1

t2i +
∫

Ω

|w|2dx
)

+ B|Ω|

≤ 1
2
‖w‖20(1−

µm + ε

µm
) +

1
2

ν∑
i=1

t2i (λ
2
i − cλi − (µm + ε)) + B|Ω|.

Case 2: ν = m. Then

F (u) =
1
2

∫
Ω

(|∆u|2 − c|∇u|2)dx−
∫

Ω

G(x, u)dx

≤ 1
2

ν∑
i=1

t2i (λ
2
i − cλi − (µν + ε)) + B|Ω|.
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In both cases F (u) → −∞ as ‖u‖ν →∞, which completes the proof. �

From the Palais-Smale Condition and Lemma 4.1, we obtain the following result.

Theorem 4.2. Assume that µm < g∞ < µm+1 and ν ≤ m. Suppose, there exists
s ≥ m+1 such that µs < g0 < µs+1. Then (1.1) has at least one nontrivial solution.

To study multiplicity of solutions we have an analogous lemma to Lemma 3.3.

Lemma 4.3. Assume that ν ≤ k. Suppose that there are α, δ > 0 such that
µk−1 ≤ g(x, t)/t ≤ α < µk, for |t| < δ, k ≥ 2, and g′(x, t) ≥ µk−1. Moreover,
assume that there exists m ≥ k + 1 such that µm < g∞ < µm+1. The following
statements hold:

(i) There exists r > 0 and A > 0 such that F (u) ≥ A for all u ∈ H2⊕H3 with
‖u‖ν = r.

(ii) F (u) → −∞, as ‖u‖ν →∞ for u ∈ H1 ⊕H2.
(iii) F (u) ≤ 0 for all u ∈ H1.

Thus we obtain the main theorem of this section.

Theorem 4.4. Suppose there exist k ∈ N, m ≥ k + 1 such that µk−1 < g0 < µk,
µm < g∞ < µm+1 and ν ≤ m. Assume that µk−1 ≤ g′(x, t) ≤ µm+1, for all x ∈ Ω
and t ∈ R. If ν ≤ k problem 1.1 has at least two nontrivial solutions; If k + 1 ≤ ν
problem 1.1 has at least one nontrivial solution.

Proof. Since ν ≤ k + 1 then, by Lemma 4.1 and the Palais-Smale Condition, we
conclude that functional F has the geometry of Saddle Point Theorem. Then there
exists u1, a critical point of F , such that

Cm(F, u1) 6= 0. (4.2)

On the other hand, from Lemma 4.3 there exists u2 a critical point of F , such that

Ck(F, u2) 6= 0. (4.3)

The proof is completed with the same arguments as Theorem 2.5.
If k ≤ ν is immediate from Lemma 4.1 and µk−1 ≤ g0 < µk that there exists

nontrivial solution u1. �

To finish, with the same arguments as in Theorem 2.1 we obtain the following
result.

Theorem 4.5. Suppose there exist k ∈ N, m ≥ k + 1 such that µk−1 ≤ g0 < µk,
µm < g∞ < µm+1 and ν ≤ m. Assume that g′(x, t) ≥ g(x, t)/t for all x ∈ Ω
and t ∈ R; and µk−1 ≤ g′(x, t). Then: if ν ≤ k + 1 problem 1.1 has at least two
nontrivial solutions; if k ≤ ν problem 1.1 has at least one nontrivial solution.
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