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EXISTENCE OF SOLUTIONS FOR A COUPLED QUASILINEAR
SYSTEM ON TIME SCALES

MOULAY RCHID SIDI AMMI, AGNIESZKA B. MALINOWSKA

Abstract. In this work we study a quasilinear system of equations on time
scales. Using the Krasnoselskii fixed-point theorem, sufficient conditions are
given for the existence of positive solutions.

1. Introduction

In this paper we consider the existence of positive solutions for the system of
dynamic equations

−
(
u∆(t)

)∆

= λf(v(t)), ∀t ∈ [0, T ]T,

−
(
v∆(t)

)∆

= λg(u(t)), ∀t ∈ [0, T ]T,

(1.1)

satisfying the boundary conditions

u∆(0)− βu∆(η) = 0, u(T )− βu(η) = 0,

v∆(0)− βv∆(η) = 0, v(T )− βv(η) = 0,
(1.2)

where η ∈ [0, T ]T, β ∈ R, such that 0 < β < 1. We are seeking for a pair (u, v) of
solutions for the system (1.1)-(1.2). Our general assumptions are:

(H1) the functions f, g belong to C([0,∞), [0,∞));
(H2) the following limits exist as real numbers:

f0 := lim
x→0+

f(x)/x, g0 := lim
x→0+

g(x)/x,

f∞ := lim
x→∞

f(x)/x, g∞ := lim
x→∞

g(x)/x, f∞g∞ 6= 0.

The theory of dynamic equations on time scales (more generally, on measure
chains) was introduced in 1988 by Stefan Hilger in his PhD thesis (see [10, 11]).
The theory presents a structure where, once a result is established for a general
time scale, then special cases can be obtained by taking the particular time scale.
If T = R, then we have the result for differential equations. Choosing T = Z we
immediately get the result for difference equations. A great deal of work has been
done since 1988, unifying and extending the theories of differential and difference
equations, and many results are now available in the general setting of time scales,
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see [1, 2, 3, 4] and references therein. In this paper we prove existence of positive
solutions to the problem (1.1)-(1.2) on a general time scale T.

The outline of this paper is as follows. In section 2, we give some preliminary
results with respect to the calculus on time scales. For more details see for example
[7, 8]. Section 3 is devoted to the existence of positive solutions using fixed-point
theory. We are concerned with determining values of λ (eigenvalues) for which there
exist positive solutions of (1.1)–(1.2). In [12], a Green function plays a fundamental
role to define an appropriate operator on a suitable cone and to prove existence of
solutions for a system of dynamic equations. Differently, here we will use the
well known Guo-Krasnoselskii fixed point theorem without introducing the Green
function.

2. Preliminary results on time scales

Now, we introduce some basic concepts of time scales, preliminaries and lemmas
that will be needed later. For a deep details, the reader can see [1, 2, 3, 4, 6, 7] and
references therein. A time scale T is an arbitrary nonempty closed subset of real
numbers R. The operators σ and ρ from T to T which are defined in [10, 11],

σ(t) = inf{τ ∈ T : τ > t} ∈ T, ρ(t) = sup{τ ∈ T : τ < t} ∈ T

are called the forward jump operator and the backward jump operator, respectively.
The point t ∈ T is left-dense, left-scattered, right-dense, right-scattered if ρ(t) =

t, ρ(t) < t, σ(t) = t, σ(t) > t, respectively. If T has a right scattered minimum m,
define Tk = T−{m}; otherwise set Tk = T. If T has a left scattered maximum M ,
define Tk = T− {M}; otherwise set Tk = T.

Let f : T → R and t ∈ Tk (assume t is not left-scattered if t = sup T), we
define f∆(t) to be the number (provided it exists) such that for all ε > 0 there is a
neighborhood U of t such that

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ |σ(t)− s|, for all s ∈ U.

We call f∆(t) the delta derivative of f at t. If T = R, then f∆ coincides with the
usual derivative f ′. If T = Z, then f∆ = ∆f := f(t + 1) − f(t) is the forward
difference.

Similarly, for t ∈ T (assume t is not right-scattered if t = inf T), the nabla
derivative of f at the point t is defined in [5] to be the number f∇(t) (provided it
exists) with the property that for all ε > 0 there is a neighborhood U of t such that

|f(ρ(t))− f(s)− f∇(t)(ρ(t)− s)| ≤ |ρ(t)− s|, for all s ∈ U.

If T = R, then f∆(t) = f∇(t) = f ′(t). If T = Z, then f∇(t) = ∇f := f(t)−f(t−1)
is the backward difference operator.

We say that a function f is left-dense continuous (i.e., ld-continuous), provided
f is continuous at each left-dense point in T and its right-sided limit exists at
each right-dense point in T. It is well-known that if f is ld-continuous and if
F∇(t) = f(t), then we can define the nabla integral by∫ b

a

f(t)∇t = F (b)− F (a)

for all a, b ∈ T. A function f : T → R is called rd-continuous if it is continuous
at right-dense points and if its left-sided limit exists at left-dense points. If f is
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rd-continuous and F∆(t) = f(t), then we define the delta integral by∫ b

a

f(t)∆t = F (b)− F (a)

for all a, b ∈ T.
From now on, T is a closed subset of R such that 0 ∈ Tk, T ∈ Tk. Let E =

Cld([0, T ], R) which is a Banach space of ld-continuous functions with the maximum
norm ‖u‖ = max[0,T ] |u(t)|.

The main tool in this paper is an application of the Guo-Krasnoselskii fixed point
theorem for operators leaving a Banach space cone invariant.

Theorem 2.1 (Krasnosel’skii [13]). Let B be a Banach space, and let P ⊂ B be a
cone in B. Assume that Ω1 and Ω2 are open subsets of B with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2,
and let

G : P ∩ (Ω2\Ω1) → P
be a completely continuous operator such that either

(i) ‖Gu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Gu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2; or
(ii) ‖Gu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Gu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2.

Then, G has a fixed point in P ∩ (Ω2\Ω1).

3. Main Results

By a positive solution of the eigenvalue problem (1.1)-(1.2), we understand a
pair of function (u(t), v(t)) which is positive on [0, T ]T, and satisfies (1.1)-(1.2).

Lemma 3.1. Assume that hypotheses (H1)–(H2) are satisfied. Then a pair of
functions (u(t), v(t)) is a solution of (1.1)-(1.2) if and only if u(t), v(t) ∈ E and
(u(t), v(t)) satisfies the system integral equations:

u(t) = u(0) +
∫ t

0

(
A1 − λ

∫ s

0

f(v(r))∆r
)
∆s, (3.1)

v(t) = v(0) +
∫ t

0

(
A2 − λ

∫ s

0

g(u(r))∆r
)
∆s, (3.2)

where

u(0) =
1

1− β

(
β

∫ η

0

h1(s)∆s−
∫ T

0

h1(s)∆s
)
,

v(0) =
1

1− β

(
β

∫ η

0

h2(s)∆s−
∫ T

0

h2(s)∆s
)
,

−h1(s) =
∫ s

0

λf(v(r))∆r −A1,

A1 = u∆(0) = − λβ

1− β

∫ η

0

f(v(r))∆r,

−h2(s) =
∫ s

0

λg(u(r))∆r −A2,

A2 = u∆(0) = − λβ

1− β

∫ η

0

g(u(r))∆r.
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Proof. Necessity. Integrating (1.1) we have

u∆(s) = u∆(0)−
∫ s

0

λf(v(r))∆r.

On the other hand, by the boundary condition (1.2) we have

u∆(0) = βu∆(η) = β
(
u∆(0)−

∫ η

0

λf(v(r))∆r
)
.

Then

A1 = u∆(0) =
−λβ

1− β

∫ η

0

f(v(r))∆r.

It follows that

u∆(s) = −λ

∫ s

0

f(v(r))∆r + A1.

Integrating the above equation we obtain

u(t) = u(0) +
∫ t

0

(
A1 − λ

∫ s

0

f(v(r))∆r
)
∆s. (3.3)

Moreover, by (3.3) and the boundary condition (1.2), we have

u(0) = u(T )−
∫ T

0

(
A1 − λ

∫ s

0

f(v(r))∆r
)
∆s

= βu(η)−
∫ T

0

(
A1 − λ

∫ s

0

f(v(r))∆r
)
∆s

= β
(
u(0) +

∫ η

0

(
A1 − λ

∫ s

0

f(v(r))∆r
)
∆s

)
−

∫ T

0

(
A1 − λ

∫ s

0

f(v(r))∆r
)
∆s.

Then

u(0) =
1

1− β

(
β

∫ η

0

(
A1 − λ

∫ s

0

f(v(r))∆r
)
∆s

−
∫ T

0

(
A1 − λ

∫ s

0

f(v(r))∆r
)
∆s

)
.

Then we have (3.1). Similar arguments need to be done to prove (3.2).
Sufficiency. Simple calculations by taking the delta derivative of u(t) and v(t)

lead to the result. �

Lemma 3.2. Suppose that (H1)–(H2) hold, then a solution (u, v) of (1.1)-(1.2)
satisfies u(t) ≥ 0 and v(t) ≥ 0, for t ∈ [0, T ]T.

Proof. Since 0 < β < 1, we have

u(0)

=
β

1− β

∫ η

0

(
A1 − λ

∫ s

0

f(v(r))∆r
)
∆s− 1

1− β

∫ T

0

(
A1 − λ

∫ s

0

f(v(r))∆r
)
∆s

≥ β

1− β

{∫ η

0

(
A1 − λ

∫ s

0

f(v(r))∆r
)
∆s−

∫ T

0

(
A1 − λ

∫ s

0

f(v(r))∆r
)
∆s

}
≥ 0,
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and

u(T ) = u(0) +
∫ T

0

h1(s)∆s

=
β

1− β

∫ η

0

h1(s)∆s− 1
1− β

∫ T

0

h1(s)∆s +
∫ T

0

h1(s)∆s

≥ β

1− β

∫ η

0

h1(s)∆s− β

1− β

∫ T

0

h1(s)∆s

≥ β

1− β

( ∫ η

0

h1(s)∆s−
∫ T

0

h1(s)∆s
)

≥ −β

1− β

∫ T

η

h1(s)∆s

≥ β

1− β

∫ T

η

(−h1(s))∆s ≥ 0.

If t ∈ [0, T ]T, then

u(t) = u(0) +
∫ t

0

(
A1 − λ

∫ s

0

f(v(r))∆r
)
∆s

≥ u(0) +
∫ T

0

(
A1 − λ

∫ s

0

f(v(r))∆r
)
∆s

= u(T ) ≥ 0 .

Arguing exactly as above, we have v(t) ≥ 0. The proof is now complete. �

Lemma 3.3. Suppose that (H1)-(H2) are satisfied, then

u(T ) = inf
t∈T

u(t) ≥ ρu(0) = ρ‖u‖,

where 1 ≥ ρ = β T−η
T−βη ≥ 0.

Proof. Since u∆(0) ≤ 0 we have u∆(s) = u∆(0)−λ
∫ s

0
f(v(r))∆r ≤ 0, then u∆ ≤ 0,

which implies that u is a non-increasing function on [0, T ]T. Moreover, we have
‖u‖ = u(0), inft∈(0,T )T u(t) = u(T ). Hence, from the concavity of u(t) that each
point on chord between (0, u(0)) and (T, u(T )) is below the graph of u(t), we have

u(T ) ≥ u(0) + T
u(T )− u(η)

T − η
.

On other terms
Tu(η)− ηu(T ) ≥ (T − η)u(0).

Using the boundary condition (1.2), it follows

(
T

β
− η)u(T ) ≥ (T − η)u(0).

Then

u(T ) ≥ β
T − η

T − βη
u(0).

�
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For our construction of an operator G, define a cone K ⊂ E by

K =
{
u ∈ E : u(t) ≥ 0 on T and u(t) ≥ ρ‖u‖, for t ∈ T

}
. (3.4)

Also define the positive numbers

λ1 = max
((β(T − η)η

(1− β)

√
ρ(f∞ − ε)(g∞ − ε)

)−1

,
( β

1− β
(g∞ − ε)η

)−1)
,

λ2 = min
(( 2

√
2T 2

(1− β)2
√

(f0 + ε)(g0 + ε)
)−1

,
( 2T 2

(1− β)2
(g0 + ε)

)−1)
.

Theorem 3.4. Assume that conditions (h1)–(H2) are satisfied. Then, for each λ
satisfying λ1 < λ < λ2, there exists a pair (u, v) satisfying (1.1)-(1.2) such that
u(t) ≥ 0 and v(t) ≥ 0 on [0, T ]T.

Proof. The main idea of the proof is to use Theorem 2.1. First observe that we
seek suitable fixed points in the cone K 3.2 of the integral operator

Gu(t) = u(0) +
∫ t

0

(
A1 − λ

∫ s

0

f(v(r))∆r
)
∆s, (3.5)

where v is a function of u given by (3.2).

Lemma 3.5. Let G defined by (3.5), then

(i) G(K) ⊆ K.
(ii) G : K → K is completely continuous.

Notice that by Lemma 3.2 and Lemma 3.3, (i) is satisfied. On the other hand
standard arguments show that G is completely continuous.

Since β < 1 we have

Gu(t) ≤ u(0) =
1

1− β

(
− β

∫ η

0

h1(s)∆s +
∫ T

0

h1(s)∆s
)

≤ 2
1− β

∫ T

0

|h1(s)|∆s.

(3.6)

Now, from the definitions of f0 and g0, there exists H1 > 0 such that

f(x) ≤ (f0 + ε)x, g(x) ≤ (g0 + ε)x, for all x such 0 < x ≤ H1. (3.7)

Let u ∈ K with ‖u‖ = H1. We have

|v(r)| =
∣∣v(0) +

∫ r

0

h2(s)∆s
∣∣

≤ |v(0)|+
∫ r

0

|h2(s)|∆s

≤ |v(0)|+
∫ η

0

|h2(s)|∆s.

(3.8)
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Furthermore,

|h2(s)| =
∣∣A2 − λ

∫ s

0

g(u(r))∆r
∣∣

≤ |A2|+ λ

∫ s

0

|g(u(r))|∆r

≤ |A2|+ λ(g0 + ε)|s|‖u‖

≤ λβ

1− β

∫ η

0

|g(u(r))|∆r + λ(g0 + ε)|s|‖u‖

≤ λβ

1− β
(g0 + ε)η‖u‖+ λ(g0 + ε)|s|‖u‖

≤ λT

1− β
(g0 + ε)‖u‖.

(3.9)

Then ∫ T

0

|h2(s)|∆s ≤ λT 2

1− β
(g0 + ε)‖u‖. (3.10)

Then using (3.10), we have

|v(0)| = | β

1− β

∫ η

0

h2(s)∆s− 1
1− β

∫ T

0

h2(s)∆s|

≤ β

1− β

∫ η

0

|h2(s)|∆s +
1

1− β

∫ T

0

|h2(s)|∆s

≤ 1 + β

1− β

∫ T

0

|h2(s)|∆s

≤ λT 2 1 + β

(1− β)2
(g0 + ε)‖u‖.

(3.11)

Then from (3.8)-(3.11), we obtain

|v(r)| ≤ λT 2 1 + β

(1− β)2
(g0 + ε)‖u‖+

λT 2

(1− β)
(g0 + ε)‖u‖

≤ 2λT 2

(1− β)2
(g0 + ε)‖u‖.

(3.12)

The choice of λ2 it yields

‖v‖ ≤ 2λT 2

(1− β)2
(g0 + ε)‖u‖ ≤ 2λ2T

2

(1− β)2
(g0 + ε)‖u‖ ≤ ‖u‖ = H1. (3.13)

Then by using (3.7) and (3.13) we obtain

|A1| ≤
λβ

1− β

∫ η

0

|f(v(r))|∆r ≤ λβ

1− β
(f0 + ε)

∫ η

0

|v(r)|∆r. (3.14)

It follows from (3.12)-(3.14) that

|A1| ≤
λβ

1− β
(f0 + ε)η

2λT 2

(1− β)2
(g0 + ε)‖u‖

=
2λ2βT 2η

(1− β)3
(f0 + ε)(g0 + ε)‖u‖.

(3.15)
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Since h1(s) = A1 − λ
∫ s

0
f(v(r))∆r, it follows that

|h1(s)| ≤ |A1|+ λ

∫ s

0

|f(v(r))|∆r.

We obtain from (3.7) and (3.12), that∫ s

0

|f(v(r))|∆r ≤
∫ s

0

(f0 + ε)‖v‖∆r ≤ T (f0 + ε)‖v‖

≤ 2λT 3

(1− β)2
(f0 + ε)(g0 + ε)‖u‖.

(3.16)

It follows from (3.15)-(3.16) that

|h1(s)| ≤
(2λ2βT 2η

(1− β)3
(f0 + ε)(g0 + ε)‖u‖+

2λ2T 3

(1− β)2
(f0 + ε)(g0 + ε)‖u‖

)
≤ 4λ2T 3

(1− β)3
(f0 + ε)(g0 + ε)‖u‖.

(3.17)

Combining inequalities (3.12)-(3.16), we have, from (3.6) and the choice of λ2,

‖Gu‖ ≤ 2
1− β

∫ T

0

|h1(s)|∆s

≤ 8λ2T 4

(1− β)4
(f0 + ε)(g0 + ε)‖u‖

≤ λ2
2

8T 4

(1− β)4
(f0 + ε)(g0 + ε)‖u‖ = ‖u‖.

So ‖Gu‖ ≤ ‖u‖. If we set Ω1 = {u ∈ E : ‖u‖ < H1}, then

‖Gu‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω1.

Now, from the definitions of f∞ and g∞, there exists H2 > 0 such that

f(x) ≥ (f∞ − ε)x, g(x) ≥ (g∞ − ε)x, for x ≥ H2 > 0. (3.18)

Let H2 = max{2H1,
H2
ρ }. Let u ∈ K with ‖u‖ = H2,minu(t) ≥ ρ‖u‖ ≥ H2.

On the other hand,

Gu(t) = u(0) +
∫ t

0

h1(s)∆s

=
β

1− β

∫ η

0

h1(s)∆s− 1
1− β

∫ T

0

h1(s)∆s +
∫ t

0

h1(s)∆s

≥ β

1− β

∫ η

0

h1(s)∆s− β

1− β

∫ T

0

h1(s)∆s

≥ β

1− β

( ∫ η

0

h1(s)∆s−
∫ T

0

h1(s)∆s
)

≥ −β

1− β

∫ T

η

h1(s)∆s

≥ β

1− β

∫ T

η

(−h1(s))∆s.

(3.19)
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Furthermore, from (3.2) and as in (3.19) we have

v(t) ≥ β

1− β

∫ T

η

(−h2(s))∆s.

Since A2 ≤ 0, we have from (3.18)

−h2(s) ≥ λ

∫ s

0

g(u(r))∆r −A2

≥ λ

∫ s

0

g(u(r))∆r

≥ λ(g∞ − ε)
∫ s

0

u(r)∆r

≥ λ(g∞ − ε)
∫ s

0

ρ‖u‖∆r

≥ λ(g∞ − ε)ρ‖u‖s.

Then by the choice of λ1,

v(t) ≥ λβ

1− β
(g∞ − ε)ρ‖u‖

∫ T

η

s∆s

≥ λ
β

1− β
(g∞ − ε)ρ‖u‖η

≥ λ1
β

1− β
(g∞ − ε)ρη‖u‖

≥ ρ‖u‖ ≥ H2.

(3.20)

Since A1 ≤ 0, then by (3.20) we have

−h1(s) = λ

∫ s

0

f(v(r))∆r −A1 ≥ λ

∫ s

0

f(v(r))∆r ≥ λ(f∞ − ε)
∫ η

0

v(r)∆r.

We also have

v(r) = v(0) +
∫ s

0

h2(s)∆s ≥ β

1− β

∫ T

η

(−h2(s))∆s.

Applying Lemma 3.3, we have

−h2(s) = λ

∫ s

0

g(u(r))∆r −A2

≥ λ

∫ s

0

g(u(r))∆r

≥ λ

∫ η

0

g(u(r))∆r

≥ λ(g∞ − ε)
∫ η

0

u(r)∆r

≥ λ(g∞ − ε)ρη‖u‖.

Consequently,

v(r) ≥ λ
β

1− β
(T − η)(g∞ − ε)ρη‖u‖.
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Then

−h1(s) ≥ λ2(T − η)
βρη2

1− β
(f∞ − ε)(g∞ − ε)‖u‖.

Finally, for λ ≥ λ1, we obtain

Gu(t) =
β

1− β

∫ T

η

(−h1(s))∆s

≥ λ2 β2η2(T − η)2

(1− β)2
ρ(f∞ − ε)(g∞ − ε)‖u‖

≥ λ2
1

β2η2(T − η)2

(1− β)2
ρ(f∞ − ε)(g∞ − ε)‖u‖

≥ ‖u‖ = H2.

Hence, ‖Gu‖ ≥ ‖u‖. So, if we set Ω2 =
{
u ∈ E : ‖u‖ < H2

}
, then

‖Gu‖ ≥ ‖u‖, for u ∈ K
⋂

∂Ω2.

Applying Theorem 2.1, we obtain that G has a fixed point u ∈ K
⋂

(Ω2/Ω1). With
v being defined by

v(t) = v(0) +
∫ t

0

(
A2 − λ

∫ s

0

g(u(r))∆r
)
∆s,

the pair (u, v) is a solution of (1.1)-(1.2) for the given λ. The proof is now complete.
�

We point out that, under technical calculus, results of this paper can be extended
to the following p-Laplacian case with 2 ≤ p ≤ +∞:

−
(
φp(u∆(t))

)∆

= λf(v(t)), ∀t ∈ [0, T ]T,

−
(
φp(v∆(t))

)∆

= λg(u(t)), ∀t ∈ [0, T ]T,

(3.21)

where φp(ξ) = |ξ|p−2ξ. If p = 2 we obtain problem (1.1).
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