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POSITIVE SOLUTIONS FOR A SECOND-ORDER SYSTEM
WITH INTEGRAL BOUNDARY CONDITIONS

WENJING SONG, WENJIE GAO

Abstract. This article concerns the existence of positive solutions to a second-
order system with integral boundary conditions. By applying Krasnoselskii
fixed point theorem, we show the existence of solutions under certain condi-
tions.

1. Introduction

In this article, we investigate the existence of positive solutions to the follow-
ing system of second order ordinary differential equations with integral boundary
conditions:

x′′(t) = −f(t, x(t), y(t)), (t, x, y) ∈ (0, 1)× [0,+∞)× [0,+∞),

y′′(t) = −g(t, x(t), y(t)), (t, x, y) ∈ (0, 1)× [0,+∞)× [0,+∞),

x(0)− ax′(0) =
∫ 1

0

ϕ0(s)y(s)ds, x(1) + bx′(1) =
∫ 1

0

ϕ1(s)y(s)ds,

y(0)− ay′(0) =
∫ 1

0

ψ0(s)x(s)ds, y(1) + by′(1) =
∫ 1

0

ψ1(s)x(s)ds,

(1.1)

where f, g ∈ C([0, 1]×[0,+∞)×[0,+∞), [0,+∞)), ϕ0, ϕ1, ψ0, ψ1 ∈ C([0, 1], [0,+∞)),
a and b are positive real parameters.

Boundary value problems with positive solutions describe many phenomena in
the applied sciences found in the theory of nonlinear diffusion generated by nonlin-
ear sources, thermal ignition of gases, and concentration in chemical or biological
problems. Readers may refer to [3, 4, 7] for details. In the past few years, much
effort has been devoted to the study of the existence of positive solutions to ordi-
nary differential equations or systems with different kinds of boundary conditions,
see [1, 10, 11, 12, 13].

On the other hand, problems with integral boundary conditions arise naturally
in thermal conduction problems [5], semiconductor problems [9] and hydrodynamic
problems [6]. Many authors have investigated scalar problems with integral bound-
ary conditions; see for instance [2, 8, 15, 16]. Particularly, in [2], Boucherif discussed
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the following boundary value problem with integral boundary condition:

y′′(t) = f(t, y(t)), 0 < t < 1,

y(0)− ay′(0) =
∫ 1

0

g0(s)y(s)ds,

y(1)− by′(1) =
∫ 1

0

g1(s)y(s)ds.

(1.2)

He obtained the existence of positive solutions of Problem (1.2) by applying Kras-
noselskii fixed point theorem in a cone.

However, to the best of our knowledge, there seem to be quite few works on
ordinary differential systems of second order with integral boundary conditions. In
2005, Yang [14] studied the following system with integral boundary condition:

−u′′(t) = f(t, u, v), −v′′(t) = g(t, u, v),

u(1) = H1(
∫ 1

0

u(τ)dα(τ)), v(1) = H2(
∫ 1

0

v(τ)dβ(τ)),

u(0) = v(0) = 0,

(1.3)

where α and β are increasing nonconstant functions defined on [0, 1] with α(0) =
0 = β(0); f ∈ C([0, 1]×R+ ×R+, R+) and g ∈ C([0, 1]×R+ ×R+, R+); and Hi ∈
C(R+, R+)(i = 1, 2). Here

∫ 1

0
u(τ)dα(τ) and

∫ 1

0
v(τ)dβ(τ) denote the Riemann-

Stieltjes integrals. By using the fixed point index theory in a cone and a priori
estimates as the main tools in the proofs, he proved the existence of positive solu-
tions to (1.3).

Motivated by the works mentioned above, we intend to study the existence of
positive solutions of Problem (1.1). Compared with the scalar case (1.2) and Prob-
lem (1.3), the characteristic of (1.1) is that the two exponents x and y are coupled
not only in the equations, but also on the boundary conditions, which make the
resolvent kernel R(t, s) in our system much more complicated. This in turn brings
substantial difficulties in proving the complete continuity of the operator T (see
Section 2 for its definition). Therefore our results cannot be routinely deduced
from the ones of (1.2) and (1.3) in the above literature. The outline of this paper
is as follows. We present some preliminaries in Section 2 and the main results are
proved in Section 3. In Section 4 we will give two examples to illustrate our results.

2. Preliminaries

In this section, we present some propositions and lemmas that will be used in
the proof of our main results.

We shall denote by C[0, 1] the Banach Space consisting of all continuous functions
on [0, 1] equipped with the standard norm

‖u‖ = max
0≤t≤1

|u(t)|,

and equip the Banach space C[0, 1]× C[0, 1] with the standard norm

‖(u, v)‖ = ‖u‖+ ‖v‖ = max
0≤t≤1

|u(t)|+ max
0≤t≤1

|v(t)|.

We will use the following assumptions:
((H0) f, g ∈ C([0, 1] × [0,+∞) × [0,+∞), [0,+∞)), ϕi, ψi ∈ C([0, 1], [0,+∞)),

i = 1, 2, a and b are positive real parameters.
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(H1) ϕ0, ϕ1 are continuous, positive and the auxiliary function

Φ(t, s) =
1

1 + a+ b
[(1 + b− t)ϕ0(s) + (a+ t)ϕ1(s)], t, s ∈ [0, 1],

satisfies

0 ≤ mΦ := min{Φ(t, s) : t, s ∈ [0, 1]} ≤MΦ := max{Φ(t, s) : t, s ∈ [0, 1]} < 1.

(H2) ψ0, ψ1 are continuous, positive functions on [0, 1] and the auxiliary function

Ψ(t, s) =
1

1 + a+ b
[(1 + b− t)ψ0(s) + (a+ t)ψ1(s)], t, s ∈ [0, 1],

satisfies

0 ≤ mΨ := min{Ψ(t, s) : t, s ∈ [0, 1]} ≤MΨ := max{Ψ(t, s) : t, s ∈ [0, 1]} < 1.

Evidently, (x, y) ∈ C2(0, 1)× C2(0, 1) is a solution of Problem (1.1) if and only
if (x, y) ∈ C[0, 1]× C[0, 1] is a solution to the system of integral equations

x(t) =
∫ 1

0

G(t, s)f(s, x(s), y(s))ds+
1 + b− t

1 + a+ b

∫ 1

0

ϕ0(s)y(s)ds

+
a+ t

1 + a+ b

∫ 1

0

ϕ1(s)y(s)ds, t ∈ [0, 1],

y(t) =
∫ 1

0

G(t, s)g(s, x(s), y(s))ds+
1 + b− t

1 + a+ b

∫ 1

0

ψ0(s)x(s)ds

+
a+ t

1 + a+ b

∫ 1

0

ψ1(s)x(s)ds, t ∈ [0, 1],

(2.1)

where for (t, s) ∈ [0, 1]× [0, 1],

G(t, s) =

{
k1(t)k2(s), 0 ≤ t ≤ s,

k1(s)k2(t), 0 ≤ s ≤ t ,

where

k1(t) = a+ t, k2(t) =
1 + b− t

1 + a+ b
.

It is clear that k1(t) > 0 and k2(t) > 0 for all t ∈ [0, 1], and G(t, s) > 0 for all
(t, s) ∈ [0, 1]× [0, 1]. Moreover, we have the following propositions:

Proposition 2.1. There exists a positive continuous function γ : [0, 1] → R such
that G(t, s) ≥ γ(t)G(s, s) for all t, s ∈ [0, 1]. Moreover, γ0 := min{γ(t) : t ∈
[0, 1]} > 0.

The proof of the above proposition is similar to [2, Lemma 2], and we omit it
here.

Proposition 2.2. Under assumption (H0), for all t, s ∈ [0, 1], we have G(t, s) ≤
G(s, s).

The of the above proposition follows standard argument, it is omitted here.
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Let us denote two operators A,B := C[0, 1]× C[0, 1] → C[0, 1] as follows:

A(x, y)(t) =
∫ 1

0

G(t, s)f(s, x(s), y(s))ds+
∫ 1

0

Φ(t, s)y(s)ds,

B(x, y)(t) =
∫ 1

0

G(t, s)g(s, x(s), y(s))ds+
∫ 1

0

Ψ(t, s)x(s)ds.

Then we define an operator T : C[0, 1]× C[0, 1] → C[0, 1]× C[0, 1] as

Tz(t) =
∫ 1

0

H(t, s)F (s, x(s), y(s))ds+
∫ 1

0

K(t, s)z(s)ds =
(
A(x, y)(t)
B(x, y)(t)

)
, (2.2)

where

z(t) =
(
x(t)
y(t)

)
, (x, y) ∈ C[0, 1]× C[0, 1], H(t, s) =

(
G(t, s) 0

0 G(t, s)

)
,

F (s, x(s), y(s)) =
(
f(s, x(s), y(s))
g(s, x(s), y(s))

)
K(t, s) =

(
0 Φ(t, s)

Ψ(t, s) 0

)
.

It is clear that the existence of a positive solution for (2.1) is equivalent to the
existence of a nontrivial fixed point of T in C[0, 1] × C[0, 1]. To obtain a positive
solution of (1.1), we need the following lemma.

Lemma 2.3. Assume (H0)–(H2) hold. Then T : C[0, 1]×C[0, 1] → C[0, 1]×C[0, 1]
is a completely continuous operator.

Proof. Firstly, we prove that T is a compact operator. That is, for any bounded
subset D ⊂ C[0, 1]× C[0, 1], we show that T (D) is relatively compact in C[0, 1]×
C[0, 1]. Since D ⊂ C[0, 1] × C[0, 1] is a bounded subset, there exists a constant
M > 0 such that ‖z‖ = ‖x‖+ ‖y‖ ≤M for any z ∈ D.

By applying (H0), (H1) and Proposition 2.2, we obtain

‖A(x, y)‖ = max
0≤t≤1

∣∣ ∫ 1

0

G(t, s)f(s, x(s), y(s))ds+
∫ 1

0

Φ(t, s)y(s)ds
∣∣

≤ L

∫ 1

0

|G(s, s)|ds+MΦM < +∞.

Here L = max{f(t, x, y) : 0 ≤ t ≤ 1, |x| ≤ M, |y| ≤ M} + max{g(t, x, y) : 0 ≤ t ≤
1, |x| ≤M, |y| ≤M}. Similarly, we can obtain

‖B(x, y)‖ ≤ L

∫ 1

0

|G(s, s)|ds+MΨM < +∞.

Then from the definition of the norm of the product space C[0, 1]×C[0, 1], we have

‖T (z)‖ = ‖A(x, y)‖+ ‖B(x, y)‖

≤ 2L
∫ 1

0

|G(s, s)|ds+ (MΦ +MΨ)M < +∞.
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Therefore, T (D) is uniformly bounded with the norm of C[0, 1]×C[0, 1]. Moreover,
for any t ∈ (0, 1), we have

| d
dt
A(x, y)(t)|

=
∣∣∣( ∫ t

0

G(t, s)f(s, x(s), y(s))ds+
∫ 1

t

G(t, s)f(s, x(s), y(s))ds
)′

− 1
1 + a+ b

∫ 1

0

ϕ0(s)y(s)ds+
1

1 + a+ b

∫ 1

0

ϕ1(s)y(s)ds
∣∣∣

=
∣∣∣ 1
1 + a+ b

[
−

∫ 1

0

sf(s, x(s), y(s))ds− a

∫ t

0

f(s, x(s), y(s))ds

+ (b+ 1)
∫ 1

t

f(s, x(s), y(s))ds−
∫ 1

0

ϕ0(s)y(s)ds+
∫ 1

0

ϕ1(s)y(s)ds
]∣∣∣

≤ 1
1 + a+ b

[(2 + a+ b)L+ 2KM ] < +∞,

where

K = max{ϕ0(t) : 0 ≤ t ≤ 1}+ max{ϕ1(t) : 0 ≤ t ≤ 1}
+ max{ψ0(t) : 0 ≤ t ≤ 1}+ max{ψ1(t) : 0 ≤ t ≤ 1}.

Thus, it is easy to prove that A(D) is equicontinuous. This together with the
Arzelá-Ascoli theorem guarantees that A(D) is relatively compact in C[0, 1].

Similarly, we can prove that B(D) is relatively compact in C[0, 1]. Therefore,
T (D) is relatively compact in C[0, 1] × C[0, 1]. On the other hand, according to
the definition of T , it is easily seen that T is continuous. We obtain that T is
completely continuous. The proof is complete. �

We shall discuss the existence of a positive solution of (1.1) by using the following
fixed point theorem of cone expansion and compression.

Lemma 2.4 ([2, Theorem 4]). Let E be a Banach space and K ⊂ E be a cone.
Suppose Ω1 and Ω2 are two bounded open sets in Banach space E such that θ ∈ Ω1,
Ω1 ⊂ Ω2 and suppose that the operator T : K ∩ (Ω2 \ Ω1) → K is completely
continuous such that

(A1) ‖Tx‖ ≤ ‖x‖ for all x ∈ K ∩ ∂Ω1 and ‖Tx‖ ≥ ‖x‖ for all x ∈ K ∩ ∂Ω2 or
(A2) ‖Tx‖ ≥ ‖x‖ for all x ∈ K ∩ ∂Ω1 and ‖Tx‖ ≤ ‖x‖ for all x ∈ K ∩ ∂Ω2.

Then T has a fixed point in K ∩ (Ω2 \ Ω1).

To use Lemma 2.4, let E = C[0, 1]× C[0, 1],

P = {u ∈ C[0, 1], u(t) ≥ 0, t ∈ [0, 1]},
and

P0 = {(u, v) ∈ P × P, min
0≤t≤1

((u, v)) = min
0≤t≤1

(u(t) + v(t)) ≥ 1−M

1−m
γ0‖(u, v)‖},

where
M = max{MΦ,MΨ}, m = min{mΦ,mΨ}.

It is easy to see that P0 is a cone in E.

Lemma 2.5. Under Assumptions (H0)–(H2), the operator T : P0 → P0 is a com-
pletely continuous.
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Proof. By Lemma 2.3, we only need to prove that T (P0) ⊂ P0. Define an operator
N : C[0, 1] × C[0, 1] → C[0, 1] × C[0, 1] by N(z)(t) =

∫ 1

0
K(t, s)z(s)ds. Then

N(P × P ) ⊂ P × P . Noting that

‖Nz(t)‖ = max
0≤t≤1

|
∫ 1

0

Φ(t, s)y(s)ds|+ max
0≤t≤1

|
∫ 1

0

Ψ(t, s)x(s)ds|

≤ max{MΦ,MΨ}‖z‖,
one has ‖N‖ ≤ max{MΦ,MΨ} < 1. Then I − N is invertible. Similarly to [2,
Lemma 3], we have

Tz(t) =
∫ 1

0

H(t, s)F (s, x(s), y(s))ds+
∫ 1

0

R(t, s)
∫ 1

0

H(s, τ)F (τ, x(τ), y(τ))dτds,

where R(t, s) is the resolvent kernel by R(t, s) =
∑∞

j=1Kj(t, s) and Kj(t, s) =∫ 1

0
K(t, τ)Kj−1(τ, s)dτ , j = 2, 3, . . . , and K1(t, s) = K(t, s). Let

R(t, s) =
(
R1(t, s) R2(t, s)
R3(t, s) R4(t, s)

)
.

It can be easily verified that

m2

1−m2
≤ R1(t, s), R4(t, s) ≤

M2

1−M2
,

m

1−m2
≤ R2(t, s), R3(t, s) ≤

M

1−M2
.

From Propositions 2.1, 2.2 and (H1), we find that

‖Tz(t)‖ ≤ 1
1−M

[
∫ 1

0

G(τ, τ)f(τ, x(τ), y(τ))dτ

+
∫ 1

0

G(τ, τ)g(τ, x(τ), y(τ))dτ ],
(2.3)

min
0≤t≤1

Tz(t) ≥ γ0

1−m
[
∫ 1

0

G(τ, τ)f(τ, x(τ), y(τ))dτ

+
∫ 1

0

G(τ, τ)g(τ, x(τ), y(τ))dτ ].
(2.4)

By (2.3) and (2.4), we have

min
0≤t≤1

Tz(t) ≥ 1−M

1−m
γ0‖Tz(t)‖.

Therefore, T (P0) ⊂ P0. �

3. Main results

In this section, we show the existence of positive solutions to (1.1). Firstly, we
introduce some notation.

fβ = lim inf
|x|+|y|→β

min
0≤t≤1

f(t, x, y)
|x|+ |y|

, fβ = lim sup
|x|+|y|→β

max
0≤t≤1

f(t, x, y)
|x|+ |y|

,

gβ = lim inf
|x|+|y|→β

min
0≤t≤1

g(t, x, y)
|x|+ |y|

, gβ = lim sup
|x|+|y|→β

max
0≤t≤1

g(t, x, y)
|x|+ |y|

,

where β = 0 or ∞.
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Theorem 3.1. Assume that (H0)–(H2) hold. If

f0, g0 <
1−M

2
∫ 1

0
G(s, s)ds

and f∞, g∞ >
(1−m)2

2γ2
0(1−M)

∫ 1

0
G(s, s)ds

,

then Problem (1.1) has at least one positive solution.

Proof. Since f0, g0 < 1−M
2

R 1
0 G(s,s)ds

, there exists an r > 0, such that f(t, x, y) ≤
(f0 + ε1)(|x| + |y|), and g(t, x, y) ≤ (g0 + ε1)(|x| + |y|) for t ∈ [0, 1], |x| + |y| ≤ r,
where ε1 satisfies f0 + ε1 ≤ 1−M

2
R 1
0 G(s,s)ds

and g0 + ε1 ≤ 1−M
2

R 1
0 G(s,s)ds

.

Let Ω1 = {z = (x, y) ∈ P ×P, ‖z‖ < r}. For any z = (x, y) ∈ ∂Ω1 ∩P0, we have

‖Tz‖ ≤ 1
1−M

∫ 1

0

G(s, s)ds · (f0 + ε1 + g0 + ε1) · ‖(x, y)‖

≤ ‖z‖.
(3.1)

On the other hand, since f∞, g∞ > (1−m)2

2γ2
0(1−M)

R 1
0 G(s,s)ds

, there exists an R > r > 0,

such that f(t, x, y) ≥ (f∞ − ε2)(|x| + |y|) and g(t, x, y) ≥ (g∞ − ε2)(|x| + |y|) for
t ∈ [0, 1], |x| + |y| ≥ R, where ε2 satisfies f∞ − ε2 ≥ (1−m)2

2γ2
0(1−M)

R 1
0 G(s,s)ds

and

g∞ − ε2 ≥ (1−m)2

2γ2
0(1−M)

R 1
0 G(s,s)ds

.

Let Ω2 = {z = (x, y) ∈ P × P, ‖z‖ < R1}, where R1 = 1−m
(1−M)γ0

R. For any
z = (x, y) ∈ ∂Ω2 ∩ P0, we have

‖Tz(t)‖ ≥ min
0≤t≤1

Tz(t) ≥ γ2
0(1−M)
(1−m)2

∫ 1

0

G(s, s)ds · (f∞ − ε2 + g∞ − ε2) · ‖z‖

≥ ‖z‖.
(3.2)

Applying Lemma 2.4 to (3.1) and (3.2) yields that T has a fixed point z∗ ∈ P0 ∩
(Ω2\Ω1) and hence z∗ is a positive solution of (1.1). �

From the proof of Theorem 3.1, we can also obtain the following result.

Theorem 3.2. Assume that (H0)–(H2) hold. If f∞, g∞ < 1−M
2

R 1
0 G(s,s)ds

and f0, g0 >
(1−m)2

2γ2
0(1−M)

R 1
0 G(s,s)ds

, then (1.1) has at least one positive solution.

Next we discuss the multiplicity of positive solutions for Problem (1.1). We
obtain the following results.

Theorem 3.3. Assume that (H0)–(H2) hold, and

(i) f0 >
(1−m)2

γ2
0(1−M)

R 1
0 G(s,s)ds

and g∞ > (1−m)2

γ2
0(1−M)

R 1
0 G(s,s)ds

;

(ii) There exists an l > 0 such that max0≤t≤1,(x,y)∈∂Ω1 f(t, x, y) < 1−M
2

R 1
0 G(s,s)ds

l

and max0≤t≤1,(x,y)∈∂Ω1 g(t, x, y) <
1−M

2
R 1
0 G(s,s)ds

l, where Ω1 := {z = (x, y) ∈
P × P, ‖z‖ < l}.

Then Problem (1.1) has at least two positive solutions.

Proof. Since f0 >
(1−m)2

γ2
0(1−M)

R 1
0 G(s,s)ds

, we can choose ε3 > 0 such that f0 − ε3 ≥
(1−m)2

γ2
0(1−M)

R 1
0 G(s,s)ds

, and also there exists an 0 < l1 < l, such that f(t, x, y) ≥ (f0 −
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ε3)(|x|+ |y|) for t ∈ [0, 1], |x|+ |y| ≤ l1. Let Ωl1 := {z = (x, y) ∈ P × P, ‖z‖ < l1},
For any z = (x, y) ∈ ∂Ωl1 ∩ P0, we have

‖Tz‖ ≥ γ0

1−m

∫ 1

0

G(s, s)ds · (f0 − ε3)(
1−M

1−m
γ0‖z‖)

≥ ‖z‖.
(3.3)

Again, by using g∞ ≥ (1−m)2

γ2
0(1−M)

R 1
0 G(s,s)ds

, we can choose ε4 > 0, such that

g∞ − ε4 ≥ (1−m)2

γ2
0(1−M)

R 1
0 G(s,s)ds

, and also there exists an l2 > l, such that g(t, x, y) ≥
(g∞−ε4)(|x|+ |y|) for t ∈ [0, 1], |x|+ |y| ≥ l2. Let Ωel2 := {z = (x, y) ∈ P ×P, ‖z‖ <
l̃2}, where l̃2 = 1−m

(1−M)γ0
l2. For any z = (x, y) ∈ ∂Ωel2 ∩ P0, we have

‖Tz‖ ≥ γ0

1−m

∫ 1

0

G(s, s)ds · (g∞ − ε4)(
1−M

1−m
γ0‖z‖)

≥ ‖z‖.
(3.4)

By (ii), for z = (x, y) ∈ ∂Ω1 ∩ P0, we have

‖Tz(t)‖ ≤ 1
1−M

[
∫ 1

0

G(τ, τ)f(τ, x(τ), y(τ))dτ +
∫ 1

0

G(τ, τ)g(τ, x(τ), y(τ))dτ ]

<
1

1−M

∫ 1

0

G(s, s)ds · 1−M∫ 1

0
G(s, s)ds

l = l.

(3.5)

Therefore, from (3.3), (3.5) and Lemma 2.4, it follows that (1.1) has at least one
positive solution z1 ∈ P0 with l1 ≤ ‖z1‖ < l. Similarly, from (3.4), (3.5) and
Lemma 2.4, it follows that (1.1) has at least one positive solution z2 ∈ P0 with
l < ‖z2‖ ≤ l̃2. Therefore, (1.1) has at least two positive solutions. The proof is
complete. �

Similarly, we have the following results.

Theorem 3.4. Assume (H0)–(H2), and

(i) f0, f∞ > (1−m)2

γ2
0(1−M)

R 1
0 G(s,s)ds

or g0, f∞ > (1−m)2

γ2
0(1−M)

R 1
0 G(s,s)ds

or g0, g∞ >

(1−m)2

γ2
0(1−M)

R 1
0 G(s,s)ds

;

(ii) There exists an l > 0 such that max0≤t≤1,(x,y)∈∂Ω1 f(t, x, y) < 1−M
2

R 1
0 G(s,s)ds

l

and max0≤t≤1,(x,y)∈∂Ω1 g(t, x, y) <
1−M

2
R 1
0 G(s,s)ds

l, where Ω1 := {z = (x, y) ∈
P × P, ‖z‖ < l}.

Then Problem (1.1) has at least two positive solutions.

4. Examples

Example 4.1. Set f(t, x, y) =
√

1+t
8 (x2+y2), g(t, x, y) =

√
1− t

4 [(x2+y2)2+(x2+

y2)e−(x2+y2)], a = 1, b = 1, ϕi = ψi = 1/3, i = 0, 1. Then
∫ 1

0
G(s, s)ds = 13/6,

γ0 = 1/6, M = m = 1/3,

1−M

2
∫ 1

0
G(s, s)ds

=
2
13
,

(1−m)2

2γ2
0(1−M)

∫ 1

0
G(s, s)ds

=
72
13
.
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Then conditions of Theorem 3.1 are satisfied. We obtain that Problem (1.1) has at
least one positive solution.

Example 4.2. Set f(t, x, y) =
√

1+t
32 · 3

√
x2 + y2, g(t, x, y) = 2−t

208 (x2 + y2)(1 +

e−(x2+y2)), a = 1, b = 1, l = 6, ϕi = ψi = 1/3, i = 0, 1. Then
∫ 1

0
G(s, s)ds = 13/6,

γ0 = 1/6, M = m = 1/3,

1−M

2
∫ 1

0
G(s, s)ds

=
2
13
,

(1−m)2

γ2
0(1−M)

∫ 1

0
G(s, s)ds

=
144
13

.

Then the conditions of Theorem 3.3 are satisfied. We obtain that Problem (1.1)
has at least two positive solution.
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