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MULTIPLICITY OF SOLUTIONS FOR GRADIENT SYSTEMS

EDCARLOS D. DA SILVA

Abstract. We establish the existence of nontrivial solutions for an elliptic

system which is resonant both at the origin and at infinity. The resonance is
given by an eigenvalue problem with indefinite weight, and the nonlinear term

is permitted to be unbounded. Also, we consider the case where the resonance

at infinity and at the origin can occur with different weights. Our main tool
is the computation of critical groups.

1. Introduction

In this article, we present results on the existence and multiplicity of solutions
for the system

−∆u = f(x, u, v) in Ω

−∆v = g(x, u, v) in Ω
u = v = 0 on ∂Ω,

(1.1)

where Ω ⊆ RN is bounded smooth domain in RN , N ≥ 3 and f, g ∈ C1(Ω×R2, R).
We assume that there is a function F ∈ C2(Ω × R2, R) such that ∇F = (f, g). In
this paper, ∇F denotes the gradient in the variables u and v. In this case, (1.1) has
a variational structure. More precisely, we have a system of gradient type studied
by many authors; see [1, 7, 11] and references therein.

The main goal of this paper is to find nontrivial solutions for (1.1) under reso-
nance conditions at infinity and at the origin using Morse theory. More specifically,
we assume resonance conditions at infinity and the origin using an eigenvalue prob-
lem with weights. Resonant problems have been the subject of a vast amount of
research since the appearance of the pioneering paper by Landesman and Lazer
[14]. For gradient system with weights see [1, 3, 5, 11], and for problems with a
single equation where there is resonance at infinity and the origin see [2, 18, 26, 27].

From a variational stand point, finding weak solutions of (1.1) in H = H1
0 (Ω)×

H1
0 (Ω) is equivalent to finding critical points of the C2 functional

J(z) =
1
2

∫
Ω

|∇u|2 + |∇v|2dx−
∫

Ω

F (x, u, v)dx, z = (u, v) in H. (1.2)

Throughout this paper we assume that

∇F (x, 0, 0) = 0, x ∈ Ω.
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Then (1.1) admits the trivial solution (u, v) = 0. In this case, the key point is to
ensure the existence of nontrivial solutions for (1.1). The existence of nontrivial
solutions for (1.1) depends on the behavior of F near the origin and at infinity.

There is an extensive bibliography on the study of variational elliptic systems,
both of the gradient type and the Hamiltonian, see [1, 3, 6, 11, 22, 29, 30] and
references therein. In two recent articles [29, 30] the problem (1.1) has been studied
under resonant conditions at infinity and at the origin. We complement the results
in [30] by considering resonant conditions using an eigenvalue problem for some
continuous functions. Furthermore, these functions are not necessary positive, see
Section 2.

We also recall that elliptic problems for a single semilinear equation at resonance
have been studied in the recent years. We refer the reader to [15, 16, 24, 25, 26]
where several problems were studied under different conditions on the nonlinear
term. More specifically, those works used the well known angle conditions at zero
and infinity. introduced by Bartsch-Li [2]. In this paper we will find an extension
for these angle conditions for our gradient systems (1.1).

We note that (1.1) represents a steady state case of reaction-diffusion systems
of interest in biology, chemistry, physics and ecology. Mathematically, reaction-
diffusion systems take the form of nonlinear parabolic partial differential equations
which have been intensively studied during recent years; see [23, 21] where many
references can be found.

On the other hand, resonant problems have a great interest due to the additional
difficulty coming from the fact that the associated functional may not satisfy the
classical Palais-Smale condition. In order to obtain nontrivial solutions of (1.1),
overcoming this difficulty, we will impose some conditions in the behavior of F at
infinity and at the origin.

Let us denote by M2(Ω) the set of all continuous, cooperative and symmetric
functions A ∈ C(Ω,M2×2(R)). More precisely, if A ∈M2(Ω) then it has the form

A(x) =
(

a(x) b(x)
b(x) c(x)

)
,

where the functions a, b, c ∈ C(Ω, R) satisfy the hypotheses:

(M1) A is cooperative; that is, b(x) ≥ 0 for all x ∈ Ω.
(M2) maxx∈Ω max{a, c} > 0.

Here, M2×2(R) denotes the set of all real matrices of order 2. In this case, given
A ∈M2(Ω), we consider the weighted eigenvalue problem

−∆
(

u
v

)
= λA(x)

(
u
v

)
in Ω,

u = v = 0 on ∂Ω.

(1.3)

Using conditions (M1) and (M2) above, we apply the spectral theory for compact
operators [9] and some results in [3]. We obtain a sequence of distinct eigenvalues

0 < λ1(A) < λ2(A) < λ3(A) < . . .

such that λk(A) → +∞ as k → ∞; see [3, 11] for more details. To state the
behavior of F at infinity and at the origin we introduce the following hypotheses:
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(MI) There exist A∞ ∈M2(Ω) and a function G∞ such that

G∞(x, z) = F (x, z)− 1
2
〈A∞(x)z, z〉 ∀ (x, z) ∈ Ω× R2; (1.4)

(M0) There is A0 ∈M2(Ω) and a function G0 such that

G0(x, z) = F (x, z)− 1
2
〈A0(x)z, z〉, ∀ (x, z) ∈ Ω× R2, (1.5)

where ∇G∞ and ∇G0 satisfy the following growth conditions:
(BI) There exist α ∈ (0, 1) such that

|∇G∞(x, z)| ≤ C(1 + |z|α) for a.e. x ∈ Ω, ∀ z ∈ R2;

(B0) There exist β ∈ (1, 2∗ − 1) and δ > 0 such that

|∇G0(x, z)| ≤ C|z|β for a.e.x ∈ Ω,∀ |z| < δ.

Under these hypotheses, system (1.1) is called asymptotically quadratic both at
infinity and at the origin. Moreover, when λk(A∞) = λm(A0) = 1 with k,m ≥ 2,
problem (1.1) becomes resonant at infinity and at the origin. In addition, the
resonance phenomena occurs at higher eigenvalues.

To avoid the resonance, we make the following assumptions on the behavior of
∇G∞ and ∇G0 near infinity and near the origin, respectively:

(CI) There exist F1, F2 ∈ C(Ω, R) such that

F1(x) ≤ lim inf
|z|→∞

∇G∞(x, z) · z
|z|1+α

≤ lim sup
|z|→∞

∇G∞(x, z) · z
|z|1+α

≤ F2(x) (1.6)

with
∫

Fj 6= 0 for j=1,2.
(C0) There exist f1, f2 ∈ C(Ω, R) such that

f1(x) ≤ lim inf
|z|→0

∇G0(x, z) · z
|z|1+β

≤ lim sup
|z|→0

∇G0(x, z) · z
|z|1+β

≤ f2(x) (1.7)

with
∫

fj 6= 0 for j=1,2.
In what follows we assume λk(A∞) = λm(A0) = 1 where k, m ≥ 1. In this way, we
shall prove the following results.

Theorem 1.1. Assume (MI), (M0), (BI), (B0), (CI), (C0). In addition, suppose
that either one of the following two conditions holds:

(a) F2(x) ≤ 0, f1(x) ≥ 0 in Ω and m 6= k − 1.
(b) F1(x) ≥ 0, f2(x) ≤ 0 in Ω and k 6= m− 1.

Then (1.1) has at least one nontrivial solution z? 6= 0.

Theorem 1.2. Assume (MI), (M0), (BI), (B0), (CI), (C0). In addition, suppose
that either one of the following two conditions holds:

(a) F1(x) ≥ 0, f1(x) ≥ 0 in Ω and k 6= m.
(b) F2(x) ≤ 0, f2(x) ≤ 0 in Ω and k 6= m.

Then (1.1) has at least one nontrivial solution z? 6= 0.

Remark 1.3. In Theorems 1.1 and 1.2 we have resonance both at infinity and
at the origin given by the weights A∞, A0 ∈ M2(Ω) respectively. Moreover, these
functions can be different; i. e., we allow the resonance with two distinct weights. In
addition when A∞ = A0, Theorem 1.1 is similar to first result in [30] with constant
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functions in M2(Ω). But, the conditions in Theorem 1.2-a and Theorem 1.2-b are
new.

Again, under the hypotheses of Theorem 1.1 or Theorem 1.2, problem (1.1) has
one nontrivial solution. Now, an interesting question is: Are there more nontrivial
solutions?

For the next result, we will add further hypotheses on F and we find another
nontrivial solution. Firstly, we have the following definition.

Definition 1.4. Let A,B ∈ M2(Ω). We define A ≤ B if 〈A(x)z, z〉 ≤ 〈B(x)z, z〉,
for all z ∈ R2, and all x ∈ Ω. Moreover, we define A � B if A ≤ B and B − A is
positive definite on Ω̃ ⊆ Ω where |Ω̃| > 0. Here | · | denotes the Lebesgue measure.

Remark 1.5. Let F ∈ C2 and A,B ∈M2(Ω). Then the inequalities A ≤ F ′′ ≤ B
mean 〈A(x)z, z〉 ≤ 〈F ′′(x)z, z〉 ≤ 〈B(x)z, z〉 for all (x, z) ∈ Ω×R2. Here F ′′ denotes
the Hessian matrix of F in the variables u and v.

The second and third result of this paper can be stated as follows.

Theorem 1.6. Assume (MI), (M0), (BI), (B0), (CI), (C0). In addition, suppose
that either one of the following two cases holds:

(a) F2(x) ≤ 0 and f1(x) ≥ 0 in Ω, with F ′′ ≥ β � λk−1A∞ and m > k − 1,
(b) F1(x) ≥ 0 and f2(x) ≤ 0 in Ω, with F ′′ ≤ β � λk+1A∞ and k > m− 1,

where β is a function in M2(Ω). Then (1.1) has at least two nontrivial solutions.

Theorem 1.7. Assume (MI), (M0), (BI), (B0), (CI), (C0). In addition, suppose
that either one of the following two cases holds:

(a) F1(x) ≥ 0 and f1(x) ≥ 0 in Ω, with F ′′ ≤ β ≺ λk+1A∞ and m < k,
(b) F2(x) ≤ 0 and f2(x) ≤ 0 in Ω, with F ′′ ≥ β � λk−1A∞ and m > k, where

β is a function in M2(Ω).
Then problem (1.1) has at least two nontrivial solutions.

Remark 1.8. Theorems 1.6 and 1.7 improve the second result in [30]. Again,
we allow the resonance at infinity and the origin with distinct functions A∞, A0 ∈
M2(Ω).

Ours main results are compared to those of [30] when A∞, A0 ∈M2(Ω) are the
same and constant. However, in Theorem 1.1-a and Theorem 1.1-b we have a new
result where the resonance in the same matrix with distinct or same eigenvalues
was allowed.

On the other hand, in Theorem 1.6 and Theorem 1.7, we have new multiplicity
results without restriction in the nullity at the origin. More specifically, these
theorems given us multiplicity of solutions for (1.1) controlling the second derivative
of F . Hence, our approach permits to extend of [30] for elliptic systems using the
eigenvalue problem (1.3) for any functions in M2(Ω).

We point out that the main idea for finding the second nontrivial solution in
Theorems 1.6 and 1.7 was first used in Li-Willem [17] on elliptic problems for a
single equation.

In the proof of ours results, we study (1.1) using some results related to the
critical groups at an isolated critical point, see [2, 4, 18, 20]. So, we compute the
critical groups at infinity and the origin.
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This paper is organized as follows: In Section 2, we recall the abstract framework
of Problem (1.1) and highlight the properties for the eigenvalue problem (1.3). In
Section 3 we determine the critical groups at infinity and the origin. Section 4 is
devoted to the proofs of Theorems 1.6 and 1.7.

2. Abstract framework and eigenvalue problem for (1.1)

Firstly, we denote by H = H1
0 (Ω)×H1

0 (Ω) the Hilbert space endowed with the
norm

‖z‖2 =
∫

Ω

|∇u|2 + |∇v|2dx, z = (u, v) ∈ H.

We denote by 〈·, ·〉 the scalar product in H.
Now, we recall the properties of the eigenvalue problem

−∆
(

u
v

)
= λA(x)

(
u
v

)
in Ω

u = v = 0 on ∂Ω.

(2.1)

Let A ∈ M2(Ω), then there is a compact self-adjoint linear operator TA : H → H
such that

〈TAz, w〉 =
∫

Ω

〈A(x)z, w〉dx, ∀z, w ∈ H.

This operator has the propriety that λ is eigenvalue of (2.1) if and only if TAz = 1
λz,

for some z ∈ H. Thus, for each A ∈ M2(Ω) there exist a sequence of eigenvalues
for system (2.1) and a Hilbertian basis for H formed by eigenfunctions of (2.1).
Moreover, denoting by λk(A) the eigenvalues of (2.1) and Φk(A) the associated
eigenfunctions, then 0 < λ1(A) < λ2(A) ≤ . . . λk(A) →∞ as k →∞, and we have

1
λk(A)

= sup{〈TAz, z〉, ‖z‖ = 1, z ∈ V ⊥
k−1},

where V ⊥
k−1 = span{Φ1(A), . . . ,Φk−1(A)}. Thus, we get H = Vk ⊕ V ⊥

k for k ≥ 1,
and the following variational inequalities hold

‖z‖2 ≤ λk(A)〈TAz, z〉, ∀z ∈ Vk, k ≥ 2, (2.2)

‖z‖2 ≥ λk+1(A)〈TAz, z〉, ∀z ∈ V ⊥
k , k ≥ 1. (2.3)

The variational inequalities will be used in the next section, for more properties to
the problem (2.1) see [3, 5, 9, 11].

3. The computations of critical groups

In this section we present some lemmas for the computations of critical groups
at infinity and at the origin. As stated in the Introduction, we will look for the
critical points of the C2 functional J : H → R given by equation (1.2).

We divide this section into two parts. The first part is devoted to find the critical
groups at the origin. To do that, we will use a result proved in [30]. Namely, we
will consider the following lemma.

Lemma 3.1 ([30]). Suppose (M0), (B0), (C0) hold. Let H = V0 ⊕ W0 where
V0 = ker(I − TA0),W0 = V ⊥

0 . Let (zn)n∈N ∈ H, zn = z0
n + wn, z0

n ∈ V0, wn ∈ W0

such that ‖zn‖ → 0, wn

‖zn‖ → 0 as n → ∞. Then we have the following two
alternatives:
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(a) If f1(x) ≥ 0 a.e. x ∈ Ω then

lim inf
n→∞

∫
Ω

∇G0(x, zn) · zn

‖zn‖1+β
> 0

(b) If f2(x) ≤ 0 a.e. x ∈ Ω then

lim sup
n→∞

∫
Ω

∇G0(x, zn) · zn

‖zn‖1+β
< 0.

Using the previous result we have the following characterization for critical
groups at the origin.

Lemma 3.2. Suppose (M0), (B0), (C0) hold. Then we have
(a) If f1(x) ≥ 0, then Cq(J, 0) = δq,µ0+ν0G, q ∈ N.
(b) If f2(x) ≤ 0, then Cq(J, 0) = δq,µ0G, q ∈ N.

Here, G is an Abelian group and µ0 and ν0 denote the index of Morse and the nullity
at the origin, respectively.

Proof. Case (a). We will divide the proof of this case into two steps.
Step 1. We claim that there are ρ > 0 and ε ∈ (0, 1) such that

〈J ′(z), z0 + z−〉 ≤ 0, ∀ z ∈ C(ρ, ε), (3.1)

where

C(ρ, ε) =
{
z = z0 + z+ + z− ∈ H = V0 ⊕W ; ‖z‖ ≤ ρ and ‖z+ + z−‖ ≤ ε‖z‖

}
with W = W+

0 ⊕W−
0 . More precisely, we chose the sets

V0 = ker(I − TA0), W+
0 = ⊕∞j=m+1 ker(Iλ−1

j (A0)− TA0),

W−
0 = ⊕m−1

j=1 ker(Iλ−1
j (A0)− TA0).

In this way, if statement (3.1) is false, we have for each ρ = ε = 1
n a point zn ∈

H; zn = z0
n + z+

n + z−n satisfying the inequalities

‖zn‖ ≤
1
n

, ‖z+
n + z−n ‖ ≤

1
n
‖zn‖, 〈J ′(zn), z0

n + z−n 〉 > 0.

Therefore, ‖zn‖ → 0,
z±n
‖zn‖ → 0 as n →∞.

On the other hand, there is a linear operator TA0 : H → H which is self-adjoint
and compact. Thus, using the variational inequality (2.2) for TA0 , we obtain

0 < 〈J ′(zn), z0
n + z−n 〉

= 〈(I − TA0)zn, z0
n + z−n 〉 −

∫
Ω

∇G0(x, zn)(z0
n + z−n )dx

= 〈(I − TA0)z
−
n , z−n 〉+ 〈(I − TA0)z

0
n, z0

n〉 −
∫

Ω

∇G0(x, zn)(z0
n + z−n )dx

= 〈(I − TA0)z
−
n , z−n 〉 −

∫
Ω

∇G0(x, zn)(z0
n + z−n )dx

≤ −
∫

Ω

∇G0(x, zn)(z0
n + z−n )dx.

It follows that

lim sup
n→∞

∫
Ω

∇G0(x, zn)(z0
n + z−n )

‖zn‖1+β
dx ≤ 0. (3.2)
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Now, using the Hölder’s inequality and Sobolev Embedding Theorem we have∣∣ ∫
Ω

∇G0(x, zn)z+
n

‖zn‖1+β
dx

∣∣ ≤ C

∫
Ω

|zn|β |z+
n |

‖zn‖1+β
dx = C

‖zn‖β‖z+
n ‖

‖zn‖1+β
= C

‖z+
n ‖

‖zn‖
→ 0,

as n →∞. Therefore,

lim sup
n→∞

∫
Ω

∇G0(x, zn) · zn

‖zn‖1+β
dx = lim sup

n→∞

∫
Ω

∇G0(x, zn)(z0
n + z−n )

‖zn‖1+β
dx ≤ 0. (3.3)

By Lemma 3.1, we have

lim inf
n→∞

∫
Ω

∇G0(x, zn) · zn

‖zn‖1+β
dx > 0.

which contradicts the preceding estimate (3.3). Therefore, there are δ > 0, ε ∈ (0, 1)
satisfying (3.1). So we finish the proof of this claim.

Step 2. Let t ∈ [0, 1]. We consider the following homotopy Jt : H → R given by

Jt(z) = J(z)− 1
2
t‖z0‖2, z ∈ H

where z = z0 + z+ + z− ∈ H = V0 ⊕W−
0 ⊕W+

0 . Clearly, J1 possesses z = 0 as a
nondegenerate critical point with the Morse index µ0 + ν0.

We claim that there exists a ρ > 0 small enough such that

J ′t(z) 6= 0, ∀ z ∈ Bρ\{0}, t ∈ [0, 1],

where Bρ is the open ball in H centered at the origin with radius ρ. Using this
fact, by the characterization of critical groups of a nondegenerate critical point see
[4], the homotopy Jt is admissible. So, we obtain

Cq(J, 0) = Cq(J0, 0) = Cq(J1, 0) = δq,µ0+ν0G, ∀ q ∈ N.

Now we prove the claim just above. By Step 1 for each z ∈ C(ρ, ε)\{0} we obtain
z0 6= 0,z0 + z− 6= 0 and

〈J ′t(z), z0 + z−〉 = 〈J ′(z), z0 + z−〉 − t〈z0, z0〉 ≤ −t‖z0‖2 < 0.

On the other hand, if z ∈ Bρ\C(ρ, ε) with ρ small, we have the following inequalities

〈J ′t(z), z+ − z−〉

= 〈(I − TA0)z, z+〉 − 〈(I − TA0)z, z−〉 −
∫

Ω

∇G0(x, z)(z+ − z−)dx

≥ ‖z+‖2 − 〈TA0z
+, z+〉 −

(
‖z−‖2 − 〈TA0z

−, z−〉
)

−
∫

Ω

∇G0(x, z)(z+ − z−)dx

≥
(
1− 1

λm+1(A0)

)
‖z+‖2 −

(
1− 1

λm−1(A0)

)
‖z−‖2 −

∫
Ω

∇G0(x, z)(z+ − z−)dx

≥ δ‖z+ + z−‖2 −
∫

Ω

∇G0(x, z)(z+ − z−)dx

≥ ‖z+ + z−‖2
[
δ − 1

‖z‖2

∫
Ω

∇G0(x, z)(z+ − z−)dx
]

≥ ‖z+ + z−‖2
[
δ − 1

‖z‖2

∫
Ω

C|z|β |z+ − z−|dx
]
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≥ ‖z+ + z−‖2
[
δ − C

‖z‖2
‖z‖β‖z+ − z−‖

]
> 0

for all ‖z‖ ≤ ρ and uniformly on t ∈ [0, 1]. Where we used the hypothesis (B0) and
the variational inequalities (2.2) and (2.3). Clearly, we take δ > 0 such that

δ ≤ min
{
1− 1

λm+1(A0)
,−1 +

1
λm−1(A0)

}
.

Therefore, there exists a neighborhood Bρ ⊂ H = H1
0 (Ω)2 of 0 such that

J ′t(z) 6= 0, ∀z ∈ Bρ with t ∈ [0, 1].

So the claim above follows and the proof of this lemma for the case (a) is now
complete.

Case (b) In this case we consider the homotopy

Jt(z) = J(z) +
1
2
t‖z0‖2, z ∈ H = V0 ⊕W+

0 ⊕W−
0 , z ∈ H, t ∈ [0, 1].

Again, the homotopy Jt is admissible; i.e, there exists an open ball Bρ ⊂ H =
H1

0 (Ω)2 such that

J ′t(z) 6= 0, ∀z ∈ Bρ for each t ∈ [0, 1].

Actually, is sufficient to prove that there exist ρ > 0 and ε ∈ (0, 1) small such that

〈J ′t(z), z0 − z−〉 ≥ 0, ∀ z ∈ C(ρ, ε) for each t ∈ [0, 1].

The proof of this inequality follows the same ideas discussed in case (a). So, we
will omit it. �

In the second part we will show that the functional J satisfies the Cerami con-
dition at any level c ∈ R. So, using a result given by [2], we compute the critical
groups at infinity. In order to do that, we have the following lemmas.

Lemma 3.3 ([30]). Assume (MI), (BI), (CI). Let H = V∞ ⊕ W∞, where V∞ =
ker(I − TA∞), W∞ = V ⊥

∞ . Suppose also that there is a sequence zn = z0
n + wn ∈ H

with z0
n ∈ V∞, wn ∈ W∞ where ‖zn‖ → ∞ and wn

‖zn‖ → 0 as n → ∞. So we have
the following alternatives:

(a) If F1(x) ≥ 0 a.e. x ∈ Ω then lim infn→∞
∫
Ω
∇G∞(x,zn)·zn

‖zn‖1+α > 0,

(b) If F2(x) ≤ 0 a.e. x ∈ Ω then lim supn→∞
∫
Ω
∇G∞(x,zn)·zn

‖zn‖1+α < 0.

Lemma 3.4. Assume (MI), (BI), (CI). Let R > 0, ε ∈ (0, 1) and consider the set

C(R, ε) =
{
z = z0 + z−+ z+ ∈ H = V∞⊕W−

∞⊕W+
∞, ‖z‖ ≥ R, ‖z+ + z−‖ ≤ ε‖z‖

}
.

Then we have the following alternatives:

(a) F1(x) ≥ 0 implies that there exist R > 0, ε ∈ (0, 1), and δ > 0 such that

〈J ′(z), z0〉 ≤ −δ; ∀ z ∈ C(R, ε).

(b) F2(x) ≤ 0 implies that there exist R > 0, ε ∈ (0, 1), and δ > 0 such that

〈J ′(z), z0〉 ≥ δ; ∀ z ∈ C(R, ε).
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Proof. Case (a). Let us assume, by contradiction, that for ε = δ = 1
n , there is a

sequence zn = z0
n + z−n + z+

n ∈ H = V∞ ⊕W−
∞ ⊕W+

∞ satisfying the inequalities

‖zn‖ ≥ n, ‖z−n + z+
n ‖ ≤

1
n
‖zn‖, 〈J(zn), z0

n〉 > − 1
n

.

Here we put V∞ = ker(I − TA∞), W∞ = W−
∞ ⊕W+

∞ where

W+
∞ = ⊕∞j=k+1 ker(Iλ−1

j (A∞)− TA∞),W−
∞ = ⊕k−1

j=1 ker(Iλ−1
j (A∞)− TA∞).

Therefore, we have the following estimates
−1
n

< 〈J ′(zn), z0
n〉 = 〈(I − TA∞)zn, z0

n〉 −
∫

Ω

∇G∞(x, zn)z0
ndx

≤ −
∫

Ω

∇G∞(x, zn)z0
ndx.

This implies

lim sup
n→∞

∫
Ω

∇G∞(x, zn)z0
n

‖zn‖1+α
dx ≤ 0. (3.4)

On the other hand, using the Holder’s inequality and Sobolev embedding, we obtain∣∣ ∫
Ω

∇G∞(x, zn)(z+
n + z−n )

‖zn‖1+α
dx

∣∣ ≤ ∫
Ω

∣∣∇G∞(x, zn)(z+
n + z−n )

‖zn‖1+α

∣∣dx

≤
∫

Ω

C
(1 + |zn|α)||z+

n + z−n |
‖zn‖1+α

dx

≤ C
‖zn‖α‖z+

n + z−n ‖
‖zn‖1+α

|+ C
‖z+

n + z−n ‖
‖zn‖1+α

→ 0

as n →∞. Therefore,

lim inf
n→∞

∫
Ω

∇G∞(x, zn)z0
n

‖zn‖1+α
dx = lim inf

n→∞

∫
Ω

∇G∞(x, zn)zn

‖zn‖1+α
dx ≤ 0.

This is a contradiction with the estimate (a) of Lemma 3.3. Thus, there are R > 0
large enough and ε ∈ (0, 1) such that 〈J ′(z), z0〉 ≤ −δ for all z ∈ C(R, ε) for some
δ > 0. So we completed the proof of case (a). The proof of case (b) is similar to
the previous case, therefore we omit it. �

Now we prove the compactness condition required for the proof of Theorem 1.1.
First, we recall that J : H → R is said to satisfy Palais-Smale condition at the level
c ∈ R ((PS)c in short), if any sequence (zn) ⊆ H such that

J(zn) → c and J ′(zn) → 0

as n →∞, possesses a convergent subsequence in H.
Moreover, we say that J : H → R satisfies the Cerami condition at the level

c ∈ R ((Ce)c in short), if any sequence (zn) ⊆ H such that

J(zn) → c and (1 + ‖zn‖)‖J ′(zn)‖ → 0

as n →∞, possesses a convergent subsequence in H.

Lemma 3.5. Assume (MI), (BI), (CI). If F2(x) ≤ 0 or F1(x) ≥ 0 for a.e. x ∈ Ω
then the functional J : H → R satisfies the compactness condition (Ce)c for all
c ∈ R.
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Proof. First, we suppose F1(x) ≥ 0 a.e. x ∈ Ω, we shall show that all Cerami
sequences (zn)n∈N ∈ H are bounded. Assume, by contraction, that (zn)n∈N in
H is unbounded. Therefore, up to a subsequence, we have ‖zn‖ → ∞. Letting
zn = z+

n + z−n + z0
n, z+

n ∈ V +
∞ , z−n ∈ V −

∞ , and z0
n ∈ V 0

∞. Let TA∞ : H → H be a
linear operator given by eigenvalue problem (2.1), see Section 2. Then we have the
following estimates

〈J ′(zn), z+
n − z−n 〉

= 〈(I − TA∞)zn, z+
n − z−n 〉 −

∫
Ω

∇G∞(x, zn)(z+
n − z−n )dx

= 〈(I − TA∞)z+
n , z+

n 〉 − 〈(I − TA∞)z−n , z−n 〉 −
∫

Ω

∇G∞(x, zn)(z+
n − z−n )dx

≥ δ‖z+
n − z−n ‖2 − C

∫
Ω

(1 + |zn|α)|z+
n − z−n |dx

≥ δ‖z+
n − z−n ‖2 − C‖z+

n − z−n ‖ − C‖zn‖α‖z+
n − z−n ‖

≥ δ‖z+
n − z−n ‖2 − C‖z+

n − z−n ‖ − Cε2‖z+
n − z−n ‖2 −

C

ε2
‖zn‖2α

≥ δε‖z+
n − z−n ‖2 − C‖z+

n − z−n ‖ −
C

ε2
‖zn‖2α.

where we used Hölder’s inequality, Sobolev embedding and Young’s inequality with
ε > 0. For small ε > 0, we have δε > 0 which shows that

δε‖z+
n − z−n ‖2

‖zn‖2
≤ 〈J ′(zn),

z+
n − z−n
‖zn‖2

〉+ C
‖z+

n − z−n ‖
‖zn‖2

+ Cε
‖zn‖2α

‖zn‖2

≤ C‖J ′(zn)‖
‖zn‖

+ C
‖z+

n − z−n ‖
‖zn‖2

+ Cε
‖zn‖2α

‖zn‖2
.

(3.5)

From the above inequality, it follows that

z±n
‖zn‖

→ 0 as n →∞.

Moreover, by Lemma 3.4 and for n large, we conclude that zn ∈ C(R, ε) and

〈J ′(zn), z0
n〉 ≤ −δ < 0.

However, by Cerami condition, we recall that

‖J ′(zn)‖(1 + ‖zn‖) → 0 as n →∞,

which is a contradiction. Consequently, all (Ce)c sequences (zn)n∈N are bounded.
Using standard arguments, we can conclude that zn → z ∈ H up to a subsequence.
Also, the proof of the case where F2(x) ≤ 0 is similar. Thus we will omit it. �

Now we will find all critical groups at infinity using a result given in [2].

Proposition 3.6 ([2]). Let J : H → R be a functional given by J(z) = 1
2 〈Az, z〉+

G(z), where A : H → H is a bounded self-adjoint linear operator, such that 0 is an
isolated point in the spectrum of A. Assume also that J ∈ C1(H, R) and G is of
class C2 in a neighborhood of infinity such that

‖G′(z)‖
‖z‖

→ 0 as ‖z‖ → ∞.
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In addition, suppose that the all critical values of J are bounded below and it satisfies
(PS)c condition or (Ce)c condition for c < 0. Setting V∞ = kerA, V ⊥

∞ = W−
∞⊕W+

∞
with W+

∞ and W−
∞ invariant under A,A |W+

∞
is positive definite, A

∣∣
W−
∞

negative
definite. Let µ∞ = dim W−

∞ and ν∞ = dim V∞ the Morse index and the nullity of
J at infinity, respectively. Then, we have the following alternatives:

(a) (AC)+∞ If there exist R > 0 and ε ∈ (0, 1) such that 〈J ′(z), z0〉 ≥ 0 for
z = z0 + z− + z+ ∈ V∞ ⊕W+

∞ ⊕W−
∞ with ‖z‖ > R and ‖z+ + z−‖ ≤ ε‖z‖

then
Cq(J,∞) = δq,µ∞G,∀q ∈ N.

(b) (AC)−∞ If there exist R > 0 and ε ∈ (0, 1) such that 〈J ′(z), z0〉 ≤ 0 for
z = z0 + z− + z+ ∈ V∞ ⊕W+

∞ ⊕W−
∞ with ‖z‖ > R and ‖z+ + z−‖ ≤ ε‖z‖

then
Cq(J,∞) = δq,µ∞+ν∞G,∀q ∈ N.

The conditions (AC)+∞ and (AC)−∞ are well known as the angle conditions at
infinity. We will use the previous result in order to compute the critical groups
Cq(J,∞) under hypotheses (MI), (BI), and (CI).

Remark 3.7. In [2, Proposition 3.10], Bartsch-Li supposed the condition

G′′(z) → 0, as ‖z‖ → ∞. (3.6)

However, we mention that there is a modified condition which was considered by
Jiabao Su [25]. More precisely, in this work was used the assumption

‖G′(z)‖
‖z‖

→ 0 as ‖z‖ → ∞ (3.7)

which is sufficient for the proof of [2, Proposition 3.10]. This modified condition
was recently used in [27]. In this case, the proof could be done by using a result of
Wang [28].

Evidently, the later assumption is slight weaker than the preceding hypothesis.
Moreover, it is not a slightly modification, since the condition (3.6) can be not
verified in many applications. But the condition (3.7) where the function G belongs
to C1 is easily verified and it is enough in applications.

Lemma 3.8. Assume (MI), (BI), (CI)). Then we have the following alternatives:
(a) If F1(x) ≥ 0 a.e. in Ω then Cq(J,∞) = δq,µ∞+ν∞G, for all q ∈ N.
(b) If F2(x) ≤ 0 a.e. in Ω then Cq(J,∞) = δq,µ∞G, for all q ∈ N.

Here we define µ∞ = dim⊕k−1
j=1 ker(Iλ−1

j −TA∞) and ν∞ = dim ker(I−TA∞) where
TA∞ : H → H is a compact self-adjoint linear operator, see Section 2.

Proof. We recall that

J(z) =
1
2
〈(I − TA∞)z, z〉+ G(z), G(z) = −

∫
Ω

G∞(x, z)dx.

In this case (BI) implies G′(z)/‖z‖ → 0 as ‖z‖ → ∞. Thus, for the proof of
case (a), we have the (AC)−∞ condition, which was provided by Lemma 3.4- a and
Proposition 3.6-b.

Moreover, for the proof of case (b), we have the (AC)+∞ condition, which was
showed by Lemma 3.4-b and Proposition 3.6-a. This completes the proof. �
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In the next result we will use an interesting result proved by [8] for a single
equation. This result has a similar version adapted for gradient systems. However,
to the best our knowledge, this result is not well known for gradient systems. In
the proof of this result we use the Strong Unique Continuation Property, in short
(SUCP), for the eigenfunctions of problem (2.1). For the proof of this property we
refer the reader to [10, 13, 19]. So we can prove the following result

Proposition 3.9. Let β, α ∈M2(Ω). Then we have
(a) If F ′′ ≤ β(x) � λk+1A∞(x), a.e. x ∈ Ω then there exist δ > 0 such that

‖z‖2 −
∫

Ω

〈β(x)z, z〉dx ≥ δ‖z‖2, ∀z ∈ W+
∞ = ⊕∞j=k+1 ker

(
Iλ−1

j (A∞)− TA∞

)
.

(b) If λk−1A∞(x) ≺ α(x) ≤ F ′′, a.e. x ∈ Ω, then there exist δ > 0 such that

‖z‖2 −
∫

Ω

〈α(x)z, z〉dx ≤ −δ‖z‖2, ∀w ∈ W−
∞ = ⊕k−1

j=1 ker
(
Iλ−1

j (A∞)− TA∞

)
.

The proof of the above proposition is similar to the proof of [8, Proposition 2].
Thus, we omit it.

4. Proof of our main results

4.1. Proof of Theorem 1.1. Firstly, suppose the case (a), i.e, when F2(x) ≤ 0
a.e. x ∈ Ω and f1(x) ≥ 0 a.e. x ∈ Ω holds. Then by Lemmas 3.2 and 3.8 we
conclude that

Cq(J,∞) = δq,µ∞G, Cq(J, 0) = δk,µ0+ν0G, ∀ q ∈ N.

Thus, we get Cµ∞(J,∞) 6= Cµ∞(J, 0) for m 6= k − 1. This information ensures the
existence of a critical point z? ∈ H such that Cµ∞(J, z?) 6= 0. Therefore, z? is a
nontrivial solution for the system (1.1).

For the proof of case (b); i.e., F1(x) ≥ 0 a.e. x ∈ Ω and f2(x) ≤ 0 a.e. in Ω we
use Lemmas 3.2 and 3.8 which imply

Cq(J,∞) = δq,µ∞+ν∞G, Cq(J, 0) = δq,µ0G, ∀ q ∈ N.

In this case we obtain Cµ∞+ν∞(J,∞) 6= Cµ∞+ν∞(J, 0) where k 6= m−1. Therefore,
we have at least one critical point z? ∈ H such that Cµ∞(J, z?) 6= 0. Thus z? is
a nontrivial solution for problem the (1.1) and the proof of this theorem is now
complete.

4.2. Proof of Theorem 1.2. In this case, the proof of the cases (a) and (b) are
analogues to the previous cases. Thus we omit it.

4.3. Proof of Theorem 1.6. Firstly, we will prove the case (b). In this case
Theorem 1.1 ensures that

Cq(J,∞) = δq,µ∞+ν∞G, Cq(J, 0) = δq,µ0G, ∀ q ∈ N,

Cµ∞+ν∞(J, z?) 6= 0,

where z? is a nontrivial solution. In addition, by Growoll-Meyer’s Lemma [12], we
get µ∞ + ν∞ ∈ [m(z?),m(z?) + n(z?)] where m(z?) is the index Morse for J at z?

and n(z?) is the nullity in the same point.
On the other hand, we have

J ′′(z?)(w,w) = ‖w‖2 −
∫

Ω

F ′′(x, z?)(w,w)dx
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≥ ‖w‖2 −
∫

Ω

〈β(x)w,w〉dx

≥ δ‖w‖2 > 0, ∀w ∈ W+
∞\{0},

where we used Proposition 3.9. Therefore, we conclude that

m(z?) + n(z?) ≤ dim⊕k
j=1 ker

(
Iλ−1

j (A∞)− TA∞

)
= dim(W−

∞ ⊕ V )
= µ∞ + ν∞.

The previous inequality provides the identity

m(z?) + n(z?) = µ∞ + µ∞.

In that case, by [20], we obtain Cq(J, z?) = δq,µ∞+ν∞G, for all q ∈ N.
Finally, if 0, z? are the unique critical points for J the Morse’s identity implies

that
(−1)µ0 + (−1)µ∞+ν∞ = (−1)µ∞+ν∞

which is a contradiction. Therefore, the problem (1.1) has at least two nontrivial
solutions, which completes the proof of case (b).

In the proof of case (a) we have the following critical groups

Cq(J,∞) = δq,µ∞G, Cq(J, 0) = δq,µ0+ν0G, ∀ q ∈ N,

Cµ∞(J, z?) 6= 0.

Again, we have µ∞ ∈ [m(z?),m(z?) + n(z?)]. In addition, we obtain

J ′′(z?)(w,w) = ‖w‖2 −
∫

Ω

F ′′(x, z?)(w,w)dx

≤ ‖w‖2 −
∫

Ω

〈β(x)w,w〉dx

≤ −δ‖w‖2 < 0, ∀w ∈ W−
∞\{0},

where we used Proposition 3.9. This inequality yields

µ∞ ≥ m(z?) ≥ dim W−
∞ = µ∞.

Hence µ∞ = m(z∗). As a consequence, by [20], we conclude that

Cq(J, z?) = δq,µ∞+ν∞G, ∀q ∈ N.

In conclusion, if 0, z? are the unique critical points of J the Morse’s identity implies

(−1)µ0+ν0 + (−1)µ∞ = (−1)µ∞ .

Clearly, we have a contradiction and problem (1.1) admits at least two nontrivial
solutions in the case (a). So we completed the proof.

4.4. Proof of Theorem 1.7. The proof of the cases (a) and (b) are similar to the
proof of Theorem 1.6; therefore, we omit them.
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