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TWO MODIFICATIONS OF THE LEGGETT-WILLIAMS FIXED
POINT THEOREM AND THEIR APPLICATIONS

KYRIAKOS G. MAVRIDIS

Abstract. This article presents two modifications of the Leggett-Williams

fixed point theorem, and two applications of these results to a terminal and to
a boundary value problem for ordinary differential equations.

1. Introduction

This article presents two modifications of the fixed point theorem named after
Leggett and Williams [9], published in 1979, as well as two applications of these
results to a terminal and to a boundary value problem for ordinary differential
equations. The widely used version of the Leggett-Williams fixed point theorem
provides conditions which ensure the existence of at least three fixed points. How-
ever this version of the theorem is only an extension of the original result, presented
in the same paper by the authors, which is in turn a modification, but not a true
extension, of the well-known Krasnoselskii fixed point theorem. The original result
presents conditions which guarantee the existence of at least one fixed point, just
like the Krasnoselskii fixed point theorem does. One of the differences between
the two theorems, lies in the sets chosen to replace the order intervals, which are
present in the class of fixed point theorems based on the classical Schauder the-
orem. Namely, at the Krasnoselskii fixed point theorem that set is of the form
{x : a ≤ ‖x‖ ≤ b}, where a, b ∈ (0,+∞), whilst at the Leggett-Williams fixed point
theorem that set is of the form {x : a ≤ α(x) and ‖x‖ ≤ b}, where a, b ∈ (0,+∞)
and α is a properly chosen functional. Although the two approaches are not easily
comparable, using the functional α, which, by its definition, cannot coincide with
the norm, allows for easier calculations and more versatile results. In this context,
although the essence of the two theorems, and indeed lots of others based on them,
is more or less the same, it is preferable to use the Leggett-Williams approach.

Here, following the ideas demonstrated in [2, 4, 5, 6], see also [1, 8, 12], the set
{x : a ≤ α(x) and ‖x‖ ≤ b} is replaced by the set {x : a ≤ α(x) and β(x) ≤ b},
where β is another properly chosen functional. This modification is an extension
of the original Leggett-Williams fixed point theorem, since the functional β can
coincide with the norm. A closely related result can be found in [3]. Additionally,
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going a step further, the set {x : a ≤ α(x) and ‖x‖ ≤ b} is replaced by the set
{x : u � A(x) and B(x) � v}, where A,B are operators and u, v are functions.
Since we are not aware of any known proofs for these results, we use the fixed point
index to prove them.

A specific example regarding a terminal value problem and another one regarding
a boundary value problem, both for second order differential equations, are provided
to demonstrate the applicability of the results and to pinpoint the advantages of
their use. These problems are well-known in the literature, for example the terminal
value problem is studied in [10, 11, 13] and the boundary value problem is studied
in [7]. It is worth mentioning that, to the best of our knowledge, the results we
obtain here are new.

2. Existence Theorems

Let R be the set of real numbers. For any interval I ⊆ R and any set S ⊆ R,
by C(I, S) we denote the set of all continuous functions defined on I, which have
values in S.

Lemma 2.1 (Fixed Point Index). Let Q be a retract of a Banach space E. For
every open subset U of Q and every completely continuous map A : U → Q which
has no fixed points on ∂U (i.e. the boundary of U), there exists an integer i(A,U, Q)
satisfying the following

(i) if A : U → U is a constant map, then i(A,U, Q) = 1.
(ii) if U1 and U2 are disjoint open subsets of U such that A has no fixed points on

U\(U1∪U2), then i(A,U, Q) = i(A,U1, Q)+i(A,U2, Q), where i(A,Uk, Q) =
i(A|Uk, Uk, Q), k = 1, 2.

(iii) if I is a compact interval in R and h : I×U → Q is a continuous map with
relatively compact range such that h(λ, x) 6= x for (λ, x) ∈ I × ∂U , then
i(h(λ, ·), U,Q) is well-defined and independent of λ.

(iv) if i(A,U,Q) 6= 0, then A has at least one fixed point in U .
(v) if Q1 is a retract of Q and A(U) ⊂ Q1, then i(A,U,Q) = i(A,U ∩Q1, Q1),

where i(A,U ∩Q1, Q1) = i(A|U ∩Q1, U ∩Q1, Q1).
(vi) if V is open in U and A has no fixed points in U\V , then i(A,U, Q) =

i(A, V, Q).

Definition 2.2. Let E be a real Banach space. A nonempty closed convex set
K ⊆ E is called a cone if it satisfies the following two conditions

(i) for every x ∈ K and λ ≥ 0 it holds that λx ∈ K,
(ii) if x ∈ K and −x ∈ K then x = 0.

Every cone induces an ordering in E given by

x ≤ y if and only if y − x ∈ K.

Definition 2.3. A map α is said to be a concave positive functional on a cone K
of a real Banach space E if α : K → [0,+∞) is continuous and

α(λx + (1− λ)y) ≥ λα(x) + (1− λ)α(y)

for all x, y ∈ K and λ ∈ [0, 1]. Similarly, we say that the map β is a convex positive
functional on a cone K of a real Banach space E if β : P → [0,+∞) is continuous
and

β(λx + (1− λ)y) ≤ λα(x) + (1− λ)α(y)
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for all x, y ∈ K and λ ∈ [0, 1].

Theorem 2.4 (Leggett-Williams [9]). Let K be a cone in a Banach space E and
define the sets

Kε1 := {x ∈ K : ‖x‖ ≤ ε1}, for ε1 > 0
and

S(β, ε2, ε3) := {x ∈ K : ε2 ≤ β(x) and ‖x‖ ≤ ε3},
for ε3 > ε2 > 0 and any concave positive functional β defined on the cone K, with
β(x) ≤ ‖x‖.

Suppose that c ≥ b > a > 0, α is a concave positive functional with α(x) ≤ ‖x‖
and A : Kc → K is a completely continuous operator, such that

(i) {x ∈ S(α, a, b) : α(x) > a} 6= ∅, and α(Ax) > a if x ∈ S(α, a, b),
(ii) Ax ∈ Kc if x ∈ S(α, a, c),
(iii) α(Ax) > a for all x ∈ S(α, a, c) with ‖Ax‖ > b.

Then A has a fixed point in S(α, a, c).

Theorem 2.5. Let I ⊆ R and E be the Banach space of all bounded functions
x ∈ C(I, R) endowed with the norm

‖x‖ := sup{|x(t)| : t ∈ I}, x ∈ C(I, R).

Suppose that
• K is a cone in E and for any ε > 0

Kε := {x ∈ K : ‖x‖ ≤ ε}
• 0 < a < b < c < d are real numbers
• T : Kd → K is completely continuous
• α is a concave positive functional and β is a convex positive functional such

that α(x) ≤ β(x), x ∈ K

and set
Kα,β(a, b) := {x ∈ K : α(x) ≥ a and β(x) ≤ b}.

If
(i) intKd

(Kα,β(a, b)∩Kc) 6= ∅ (i.e. the internal of Kα,β(a, b)∩Kc with respect
to Kd is non-empty) and for x ∈ Kα,β(a, b) ∩Kc it holds that

β(Tx) < b, α(Tx) > a

(ii) Tx ∈ Kd for x ∈ Kα,β(a, b) ∩Kd

(iii) β(Tx) < b and α(Tx) > a for x ∈ Kα,β(a, b) ∩Kd with ‖Tx‖ > c

then the operator T has at least one fixed point

y ∈ intKd
(Kα,β(a, b) ∩Kd)

i.e. α(y) > a, β(y) < b, ‖y‖ ≤ d.

Proof. Suppose that x ∈ ∂(intKd
(Kα,β(a, b) ∩Kd)) is a fixed point of operator T .

Then
α(x) = a or β(x) = b. (2.1)

Also, obviously either
x ∈ Kα,β(a, b) ∩Kc

or ‖x‖ > c.
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• If x ∈ Kα,β(a, b) ∩Kc then according to assumption (i), we have

β(x) = β(Tx) < b and α(x) = α(Tx) > a,

which contradicts (2.1).
• If ‖x‖ > c then

‖Tx‖ = ‖x‖ > c,

so according to assumption (iii), we have

β(Tx) < b and α(Tx) > a,

which contradicts (2.1).
So T has no fixed points on ∂

(
intKd

(Kα,β(a, b) ∩Kd)
)
.

Since intKd
(Kα,β(a, b) ∩ Kc) 6= ∅, we choose x0 ∈ intKd

(Kα,β(a, b) ∩ Kc) and
define the map

h : [0, 1]× intKd
(Kα,β(a, b) ∩Kd) → Kd

by h(t, x) = (1− t)Tx + tx0. It is easy to see that h is continuous and

h
(
[0, 1]× intKd

(Kα,β(a, b) ∩Kd)
)

is relatively compact.
Suppose there exists

(t, x) ∈ [0, 1]× ∂
(
intKd

(Kα,β(a, b) ∩Kd)
)

such that h(t, x) = x. Then

α(x) = a or β(x) = b.

• If ‖Tx‖ > c then by assumption (iii) we have

β(Tx) < b and α(Tx) > a,

so
– if α(x) = a then

α(x) = α(h(t, x)) = α((1− t)Tx + tx0)

≥ (1− t)α(Tx) + tα(x0) > (1− t)a + ta

= a

which contradicts α(x) = a.
– if β(x) = b then

β(x) = β(h(t, x)) = β((1− t)Tx + tx0)

≤ (1− t)β(Tx) + tβ(x0) < (1− t)b + tb

= b

which contradicts β(x) = b.
• If ‖Tx‖ ≤ c then

‖x‖ = ‖h(t, x)‖ = ‖(1− t)Tx + tx0‖
≤ (1− t)‖Tx‖+ t‖x0‖ < (1− t)c + tc

= c,

therefore by assumption (i) we have

β(Tx) < b and α(Tx) > a,

so
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– if α(x) = a then

α(x) = α(h(t, x)) = α((1− t)Tx + tx0)

≥ (1− t)α(Tx) + tα(x0) > (1− t)a + ta

= a

which contradicts α(x) = a.
– if β(x) = b then

β(x) = β(h(t, x)) = β((1− t)Tx + tx0)

≤ (1− t)β(Tx) + tβ(x0) < (1− t)b + tb

= b

which contradicts β(x) = b.
Consequently, for each

(t, x) ∈ [0, 1]× ∂ (intKd
(Kα,β(a, b) ∩Kd))

it holds that h(t, x) 6= x. So, by Lemma 2.1, we have

i (T, intKd
(Kα,β(a, b) ∩Kd),Kd) = i (x0, intKd

(Kα,β(a, b) ∩Kd),Kd) = 1.

Hence, operator T has at least one fixed point y ∈ intKd
(Kα,β(a, b) ∩Kd), i.e.

α(y) > a, β(y) < b, ‖y‖ ≤ d.

�

Definition 2.6. Let I ⊆ R be bounded and f, g ∈ C(I, R). We define the relation
� by

f � g if and only if f(t) ≤ g(t), ∀t ∈ I

and the relation ≺ by

f ≺ g if and only if f(t) < g(t), ∀t ∈ I.

Definition 2.7. Let I ⊆ R be bounded and A ∈ C(C(I, R), C(I, R)). We say that
operator A satisfies

• property P1 if and only if

(1− t)A(x) + tA(y) � A((1− t)x + ty), ∀x, y ∈ C(I, R), ∀t ∈ [0, 1].

• property P2 if and only if

A((1− t)x + ty) � (1− t)A(x) + tA(y), ∀x, y ∈ C(I, R), ∀t ∈ [0, 1].

• property P3 if and only if

Ax(t) ≥ 0, ∀x ∈ C(I, R), ∀t ∈ [0, 1].

Theorem 2.8. Let I ⊆ R be bounded and E be the Banach space of all bounded
functions x ∈ C(I, R) endowed with the norm

‖x‖ := sup{|x(t)| : t ∈ I}, x ∈ C(I, R).

Suppose that
• K is a cone in E and for any ε > 0

Kε := {x ∈ K : ‖x‖ ≤ ε}
• 0 < c < d are real numbers
• T : Kd → K is completely continuous
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• A is an operator satisfying properties P1 and P3, and B is an operator
satisfying properties P2 and P3, such that A(x) � B(x), x ∈ K

• u, v ∈ C(I, [0,+∞)) with u ≺ v

and set
KA,B(u, v) := {x ∈ K : u � A(x) and B(x) � v}.

If
(i) intKd

(KA,B(u, v)∩Kc) 6= ∅ (i.e. the internal of KA,B(u, v)∩Kc with respect
to Kd is non-empty) and for x ∈ KA,B(u, v) ∩Kc it holds that

B(Tx) ≺ v and u ≺ A(Tx)

(i) Tx ∈ Kd for x ∈ KA,B(u, v) ∩Kd

(i) B(Tx) ≺ v and u ≺ A(Tx) for x ∈ KA,B(u, v) ∩Kd with ‖Tx‖ > c

then the operator T has at least one fixed point

y ∈ intKd
(KA,B(u, v) ∩Kd)

i.e.
u ≺ A(y), B(y) ≺ v, ‖y‖ ≤ d.

Proof. Suppose that x ∈ ∂ (intKd
(KA,B(u, v) ∩Kd)) is a fixed point of operator T .

Then
Ax(t0) = u(t0) or Bx(t0) = v(t0), for some t0 ∈ I. (2.2)

Also, obviously either
x ∈ KA,B(u, v) ∩Kc

or ‖x‖ > c.
• If x ∈ KA,B(u, v) ∩Kc then according to assumption (i), we have

B(x) = B(Tx) ≺ v and u ≺ A(Tx) = A(x),

which contradicts (2.2).
• If ‖x‖ > c then

‖Tx‖ = ‖x‖ > c,

so according to assumption (iii), we have

B(Tx) ≺ v and u ≺ A(Tx),

which contradicts (2.2).
So T has no fixed points on ∂ (intKd

(KA,B(u, v) ∩Kd)).
Since intKd

(KA,B(u, v) ∩Kc) 6= ∅, we choose x0 ∈ intKd
(KA,B(u, v) ∩Kc) and

define the map
h : [0, 1]× intKd

(KA,B(u, v) ∩Kd) → Kd

by
h(t, x) = (1− t)Tx + tx0.

It is easy to see that h is continuous and

h
(
[0, 1]× intKd

(KA,B(u, v) ∩Kd)
)

is relatively compact.
Suppose there exists

(t, x) ∈ [0, 1]× ∂ (intKd
(KA,B(u, v) ∩Kd))
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such that h(t, x) = x. Then

Ax(t0) = u(t0) or Bx(t0) = v(t0), for some t0 ∈ I.

• If ‖Tx‖ > c then by assumption (iii) we have

B(Tx) ≺ v and u ≺ A(Tx),

so
– if Ax(t0) = u(t0) then

A(x) = A(h(t, x)) = A((1− t)Tx + tx0)

� (1− t)A(Tx) + tA(x0) � (1− t)u + tu

= u

which contradicts Ax(t0) = u(t0).
– if Bx(t0) = v(t0) then

B(x) = B(h(t, x)) = B((1− t)Tx + tx0)

� (1− t)B(Tx) + tB(x0) ≺ (1− t)v + tv

= v

which contradicts Bx(t0) = v(t0).
• If ‖Tx‖ ≤ c then

‖x‖ = ‖h(t, x)‖ = ‖(1− t)Tx + tx0‖
≤ (1− t)‖Tx‖+ t‖x0‖ < (1− t)c + tc

= c,

therefore by assumption (i) we have

B(Tx) ≺ v and u ≺ A(Tx),

so
– if Ax(t0) = u(t0) then

A(x) = A(h(t, x)) = A((1− t)Tx + tx0)

� (1− t)A(Tx) + tA(x0) � (1− t)u + tu

= u

which contradicts Ax(t0) = u(t0).
– if Bx(t0) = v(t0) then

B(x) = B(h(t, x)) = B((1− t)Tx + tx0)

� (1− t)B(Tx) + tB(x0) ≺ (1− t)v + tv

= v

which contradicts Bx(t0) = v(t0).
Consequently, for each

(t, x) ∈ [0, 1]× ∂ (intKd
(KA,B(u, v) ∩Kd))

it holds that h(t, x) 6= x. So, by Lemma 2.1, we have

i (T, intKd
(KA,B(u, v) ∩Kd),Kd) = i (x0, intKd

(KA,B(u, v) ∩Kd),Kd) = 1.

Hence, operator T has at least one fixed point y ∈ intKd
(KA,B(u, v) ∩Kd), i.e.

u ≺ A(y), B(y) ≺ v, ‖y‖ ≤ d.
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�

3. An Application of Theorem 2.5 to a Terminal Value Problem

For any interval I ⊆ R and any set S ⊆ R, by C2(I, S) we denote the set of
all twice continuously differentiable functions defined on I, which have values in S.
Let J be an unbounded interval in R+. It is easy to see that the set

BC2(J, R+) := {x ∈ C2(J, R+) : x is bounded }
endowed with the norm

‖x‖ := sup
t∈J

|x(t)|, x ∈ BC2(J, R+),

is a Banach space. We are looking for functions x ∈ BC2(J, R+) which satisfy the
second order differential equation

x′′(t) + f(t, x(t)) = 0, t ∈ J (3.1)

as well as the terminal condition

lim
t→+∞

x(t) = ξ, (3.2)

where ξ ∈ R+, f : J × R+ → R+ is continuous and∫ +∞

t

∫ +∞

s

f(σ, y(σ)) dσ ds ≤ ξ, for every t ∈ J and every y ∈ BC2(J, R+).

Define the following set K, which is a cone in BC2(J, R+)

K := {x ∈ BC2(J, R+) : x(t) ≥ 0, x′(t) ≥ 0 and x′′(t) ≤ 0, for all t ∈ J}.

Lemma 3.1. Let ε > 0. A function x ∈ Kε is a solution of the terminal value
problem (3.1)–(3.2) if and only if x is a fixed point of the operator T : Kd →
C(J, R+) defined by the formula

Ty(t) := ξ −
∫ +∞

t

∫ +∞

s

f(σ, y(σ)) dσ ds, t ∈ J.

Definition 3.2. A set U of real valued functions defined on the interval J is called
equiconvergent at ∞ if all functions in U are convergent in R at the point ∞ and,
in addition, for each ε > 0, there exists T ≡ T (ε) > 0 such that, for all functions
u ∈ U , it holds

|u(t)− lim
s→∞

u(s)| < ε, for every t ≥ T.

Lemma 3.3. Let U be an equicontinuous and uniformly bounded subset of the
Banach space BC2(J, R). If U is equiconvergent at ∞, it is also relatively compact.

Lemma 3.4. Let ε > 0. Operator T is completely continuous and maps Kε into
K.

Theorem 3.5. Let r1, r2 ∈ J , with r1 < r2, and 0 < a < b < c < d, with d ≥ ξ.
Also, define the functionals α(x) = x′(r2), x ∈ K, and β(x) = x′(r1), x ∈ K.
Suppose that for any x ∈ Kα,β(a, b) ∩ Kc as well as for any x ∈ Kα,β(a, b) ∩ Kd

with ‖Tx‖ > c, it holds that∫ +∞

r1

f(s, x(s))ds < b and

∫ +∞

r2

f(s, x(s))ds > a.
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Then the terminal value problem (3.1)–(3.2) has at least one solution y such that

y′(r2) > a, y′(r1) < b, ‖y‖ ≤ d.

Proof. Obviously α is a concave positive functional and β is a convex positive
functional such that

α(x) ≤ β(x), x ∈ K.

It is easy to see that any function x ∈ K with

x(t) = λt, t ∈ [r1, r2],

where λ ∈ (a, b), and such that ‖x‖ < c, belongs to intKd
(Kα,β(a, b) ∩Kc). Also,

since d ≥ ξ, it is obvious that

Tx ∈ Kd, ∀x ∈ Kα,β(a, b) ∩Kd.

The rest of the proof is easy. �

Corollary 3.6. The terminal value problem

x′′(t) +
1

t3 + x(t)
= 0, t ∈ [1,+∞), (3.3)

lim
t→+∞

x(t) = 2. (3.4)

has at least one non-negative solution y such that

y′(3) >
1
20

, y′(2) <
1
6
, sup

t∈[1,+∞)

|y(t)| ≤ 2.

Proof. The result follows from Theorem 3.5, for r1 = 2, r2 = 3, a = 1
20 , b = 1

6 ,
c = 1, d = 2 and ξ = 2. We notice that, for any t ∈ [1,+∞) and x ∈ Kd, it holds∫ +∞

t

∫ +∞

s

1
σ3 + x(σ)

dσ ds ≤
∫ +∞

t

∫ +∞

s

1
σ3

dσ ds =
1
2t
≤ 2 = ξ,

and, for any x ∈ Kd, we have∫ +∞

2

1
s3 + x(s)

ds ≤
∫ +∞

2

1
s3

ds <
1
6

and ∫ +∞

3

1
s3 + x(s)

ds ≥
∫ +∞

3

1
s3 + 2

ds >
1
20

.

�

4. An Application of Theorem 2.8 to a Boundary Value Problem

Consider the second order boundary value problem

x′′(t)− f(t, x(t)) = 0, t ∈ [0, 1], (4.1)

x(0) = 0, x′(1) = ax′(0) (4.2)

where f : [0, 1] × R+ → R+ is continuous and a > 1. Define the following set K,
which is a cone in C([0, 1], R+),

K := {x ∈ C([0, 1], R+) : x(t) ≥ 0, ∀t ∈ [0, 1] and x′(t) ≥ 0, ∀t ∈ [0, 1]}.
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Lemma 4.1. Let ε > 0. A function x ∈ Kε is a solution of the boundary value
problem (4.1)–(4.2) if and only if x is a fixed point of the operator T : Kε →
C([0, 1], R+) defined by the formula

Ty(t) :=
t

a− 1

∫ 1

0

f(s, y(s))ds +
∫ t

0

∫ s

0

f(σ, y(σ)) dσ ds, t ∈ [0, 1].

Lemma 4.2. Let ε > 0. Operator T is completely continuous and maps Kε into
K.

Theorem 4.3. Let u, v ∈ C([0, 1], R+) with u ≺ v, u′(t) ≥ 0, ∀t ∈ [0, 1], and
v′(t) ≥ 0, ∀t ∈ [0, 1]. Also, define the operators A,B by

A(x) = B(x) = x′, x ∈ K.

and let 0 < c < d, with

sup
t∈[0,1]

Tx(t) < d, ∀x ∈ KA,B(u, v) ∩Kd.

Suppose that for any x ∈ KA,B(u, v) ∩Kc as well as for any x ∈ KA,B(u, v) ∩Kd

with ‖Tx‖ > c, it holds that

u(t) <
1

a− 1

∫ 1

0

f(s, x(s))ds +
∫ t

0

f(s, x(s))ds < v(t), t ∈ [0, 1].

Then the boundary value problem (4.1)–(4.2) has at least one solution y such that

u ≺ y′, y′ ≺ v and ‖y‖ ≤ d.

Proof. It is easy to see that intKd
(KA,B(u, v) ∩Kc) 6= ∅ and

Tx ∈ Kd, ∀x ∈ KA,B(u, v) ∩Kd.

The rest of the proof is easy. �

Corollary 4.4. The boundary value problem

x′′(t)− (1 + sin2(x(t))) = 0, t ∈ [0, 1], (4.3)

x(0) = 0, x′(1) = 2x′(0). (4.4)

has at least one non-negative solution y such that

t < y(t) < t2 + 2t, ∀t ∈ [0, 1], and sup
t∈[0,1]

|y(t)| ≤ 3.

Proof. The result follows from Theorem 4.3, for c = 1, d = 3, u(t) = 1, t ∈ [0, 1],
and v(t) = 2(t + 1), t ∈ [0, 1]. We notice that, for any t ∈ [0, 1], it holds

1 <

∫ 1

0

(1 + sin2(x(s)))ds +
∫ t

0

(1 + sin2(x(s)))ds

and ∫ 1

0

(1 + sin2(x(s)))ds +
∫ t

0

(1 + sin2(x(s)))ds < 2(t + 1).

Also, for any x ∈ Kd, we have∫ t

0

∫ s

0

(1 + sin2(x(σ))) dσ ds ≤ 2
∫ t

0

∫ s

0

dσ ds = t2 ≤ 1, ∀t ∈ [0, 1],
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and
t

2

∫ 1

0

(
1 + sin2(x(s))

)
ds ≤ t

∫ 1

0

ds = t ≤ 1, ∀t ∈ [0, 1],

so
sup

t∈[0,1]

Tx(t) ≤ 2 < d.

�
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