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EXISTENCE OF POSITIVE SOLUTIONS TO SOME IMPULSIVE
SECOND-ORDER INTEGRODIFFERENTIAL EQUATIONS

RAHIMA ATMANIA

Abstract. In this article, we consider an initial-value problem for second-
order nonlinear integrodifferential equations with impulses in a Banach space.

By using the monotone iterative technique in a cone together with Arzela-

Ascoli theorem and the dominated convergence theorem, we establish the ex-
istence of positive solutions of such a problem.

1. Introduction

It is well known that the theory of impulsive differential equations is an important
area of research which has been investigated in the last few years by many authors
in several directions. So, a great deal of techniques and methods have been used
in the study of the second order impulsive differential equations to obtain some
quantitative or qualitative results regarding the solutions of such new problems, see
for instance [2, 3, 5] . We recall that the impulsive differential equations can model
natural phenomena and evolving processes which are subject to abrupt changes
such as shocks, food shortenings, natural disasters and so on. Thus, we may treat
these short-term perturbations as impulses that affect later on the behavior of the
solutions. To learn more about the recent developments of the theory of impulsive
equations we refer the reader to the works of Benchohra et al [1] without forgetting
to quote the book by Lakshmikantam et al. [4], we recall that the latter is considered
as one of the basic references in this domain.

Our contribution in this paper is the investigation of positive solutions to the
following second order nonlinear integrodifferential equation

x′′(t) = F (t, x(δ1(t)), x′(δ2(t)), Tx(t), Sx(t)), t ∈ J\{tk; k = 1, 2 . . . } (1.1)

subject to the impulsive conditions

∆x = x(t+)− x(t−) = Ik(t, x, x′), t = tk; k = 1, 2 . . . ,

∆x′ = x′(t+)− x′(t−) = Îk(t, x, x′), t = tk; k = 1, 2 . . . ,
(1.2)

and the initial conditions

x(0) = x0, x′(0) = x∗0, (1.3)
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where for x ∈ X, a given Banach space, and t ∈ J = [0,+∞), the functionals T
and S are defined as follows:

Tx(t) =
∫ t

0

g(t, s, x(δ3(s)),
∫ s

0

k(s, τ, x(δ4(τ)))dτ)ds,

Sx(t) =
∫ +∞

0

h(t, s, x(δ5(s)))ds.

So, inspired by the results in [2] devoted to the existence of positive solutions to
the corresponding problem for Sx(t) = 0, Tx(t) =

∫ t

0
K(t, s)x(s)ds and δi(t) = t,

i = 1, . . . 4, we have established the existence of positive solutions for problem
(1.1)-(1.3) by using the monotone iterative technique in a cone of a Banach space
X together with Ascoli-Arzela theorem and the dominated convergence theorem on
an infinite time interval with the presence of an infinite number of impulses.

2. Preliminaries

We first set the following assumptions:
(H1) 0 < t1 < t2 · · · < tk . . . and limk→∞ tk = +∞;
(H2) x0 and x∗0 are given values in a cone P of a Banach space (X, ‖.‖) which

defines a partial ordering in X as follows: x ≤ y if and only if y − x ∈ P .
We assume that x0 is different from the null vector θ of P .

(H3) F ∈ C(J×P ×P ×P ×P, P ), g ∈ C(J×J×P ×P, P ), k ∈ C(J×J×P, P ),
h ∈ C(J × J × P, P ), Ik, Îk ∈ C(J × P × P, P ) and δi ∈ C(J, J) are given
functions such that δi(t) ≤ t, t ∈ J , such that lim

t→∞
δi(t) = ∞ for i = 1, . . . 5.

In the sequel we shall use the following spaces:
PC(J,X) = {x : J → X : x(t) is continuous at t 6= tk, left continuous at t = tk,
and x(t+k ) exists for k = 1, 2 . . . };
PC(J, P ) = {x ∈ PC(J,X) : θ ≤ x(t); t ∈ J}
PC1(J,X) = {x ∈ PC(J,X) : x′(t) is continuous at t 6= tk, left continuous at t = tk,
and x′(t+k ) exists for k = 1, 2 . . . }.

Moreover, we introduce the Banach spaces

SPC(J,X) = {x ∈ PC(J,X) : sup
t∈J

‖x(t)‖
t + 1

< ∞},

with the norm ‖x‖S = sup
t∈J

‖x(t)‖
t+1 , and

SPC1(J,X) = {x ∈ PC1(J,X) : sup
t∈J

‖x(t)‖
t + 1

< ∞ and sup
t∈J

‖x′(t)‖ < ∞}

with the norm ‖x‖D = max(‖x‖S , ‖x′‖C), where ‖x′‖C = sup
t∈J

‖x′(t)‖. We note

that
SPC(J, P ) = {x ∈ SPC(J,X) : θ ≤ x(t); t ∈ J}

is a cone in SPC(J,X), and

SPC1(J, P ) = {x ∈ SPC1(J,X) : θ ≤ x(t) and θ ≤ x′(t); t ∈ J}
is a cone in SPC1(J,X).

We recall that a cone is said to be normal if there exists a constant N > 0 such
that θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖, and a cone is said to be regular (resp. fully
regular) if x1 ≤ · · · ≤ xn ≤ · · · ≤ y for some y ∈ X (resp. ‖x1‖ ≤ · · · ≤ ‖xn‖ ≤
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· · · ≤ supn ‖xn‖ < ∞) implies that there is xn ∈ X, such that ‖xn − x‖ → 0 as
n →∞.

Of course, the full regularity of a cone implies its regularity which in turn implies
its normality.

By a positive solution to the problem (1.1)-(1.3), we mean a function

x ∈ C2(J \ {tk}k≥1, X) ∩ SPC1(J, P )

satisfying (1.1)-(1.3) and x(t) ∈ P\{θ}, for every t ∈ J . We need the following
lemma whose proof can be handled without any difficulty.

Lemma 2.1. A function x ∈ C2(J \ {tk}k≥1, X) ∩ SPC1(J, P ) is a solution to
the problem (1.1)-(1.3) if and only if x ∈ PC(J, P ) satisfies the impulsive integral
equation

x(t) = x0 + tx
∗

0 +
∫ t

0

(t− s)F (s, x(δ1(s)), x′(δ2(s)), Tx(s), Sx(s))ds

+
∑

0<tk<t

[
Ik(tk, x(tk), x′(tk)) + (t− tk)Îk(tk, x(tk), x′(tk))

]
.

(2.1)

Now we are in position to state and prove our main results.

3. Main results

Besides the mentioned hypotheses (H1) to (H3), we add the following:
(H4) ‖g(t, s, x, y)‖ ≤ m1(t, s)‖x‖ + m2(s)‖y‖; ‖k(t, s, x)‖ ≤ m3(t, s)‖x‖ and

‖h(t, s, x)‖ ≤ m4(t, s)‖x‖, for every t, s ∈ J and x, y ∈ P , where the func-
tions m1, m3, m4 and m2 satisfy

sup
t∈J

∫ t

0

m1(t, s)ds = m∗
1 < ∞, sup

t∈J

∫ +∞

0

m4(t, s)ds = m∗
4 < ∞,

sup
t∈J

∫ t

0

m2(s)
∫ s

0

m3(s, τ)dτ ds = m∗
2 < ∞.

(H5) ‖F (t, x, y, z, w)‖ ≤ p1(t)‖x‖ + p2(t)‖y‖ + p3(t)‖z‖ + p4(t)‖w‖ + q(t), for
every t ∈ J and x, y, z, w ∈ P . The functions pi, i = 1, . . . , 4, and q satisfy∫ +∞

0

(s + 1)p(s)ds = p∗ < ∞,

∫ +∞

0

q(s)ds = q∗ < ∞

with p(t) = max
i=1,2,3,4

pi(t).

(H6) ‖Ik(t, x, y)‖ ≤ ak‖x‖ + bk‖y‖ + ck, ‖Îk(t, x, y)‖ ≤ dk‖x‖ + ek‖y‖ + fk, for
every t ∈ J and x, y ∈ P ; ak, bk, ck, dk, ek, fk; k = 1, 2, . . . , being positive
constants such that

∞∑
k=1

(tk + 1)ak = a < ∞;
∞∑

k=1

bk = b < ∞;
∞∑

k=1

ck = c < ∞;

∞∑
k=1

(tk + 1)dk = d < ∞;
∞∑

k=1

ek = e < ∞;
∞∑

k=1

fk = f < ∞ .

(H7) For each t ∈ J and x1, x2, y1, y2, z1, z2, w1 and w2 ∈ P such that

x1 ≤ x2, y1 ≤ y2, z1 ≤ z2 and w1 ≤ w2
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we have Ik(t, x1, y1) ≤ Ik(t, x2, y2); Îk(t, x1, y1) ≤ Îk(t, x2, y2); k = 1, 2, . . .
and F (t, x1, y1, z1, w1) ≤ F (t, x2, y2, z2, w2).

Now define the operator B as follows

Bx(t) = x0 + tx
∗

0 +
∫ t

0

(t− s)F (s, x(δ1(s)), x′(δ2(s)), Tx(s), Sx(s))ds

+
∑

0<tk<t

[Ik(tk, x(tk), x′(tk)) + (t− tk)Îk(tk, x(tk), x′(tk))], t ∈ J.
(3.1)

Lemma 3.1. Assume that (H1)-(H4) hold. Then T and S are bounded operators
from SPC(J,X) into SPC(J,X) and ‖T‖ ≤ T ∗; ‖S‖ ≤ S∗, where T ∗ = m∗

1 + m∗
2

and S∗ = m∗
4. Furthermore, T and S map SPC(J, P ) into itself.

Proof. First, we note that if x ∈ SPC(J,X), then Tx ∈ C(J,X) and Sx ∈ C(J,X).
On the other hand, from (H4), we have the estimates

‖Tx(t)‖
1 + t

≤
∫ t

0

m1(t, s)
1 + δ3(s)

1 + t

‖x(δ3(s))‖
1 + δ3(s)

ds

+
∫ t

0

m2(s)
∫ s

0

m3(s, τ)
1 + δ4(τ)

1 + t

‖x(δ4(τ))‖
1 + δ4(τ)

dτds

≤ ‖x‖S

[ ∫ t

0

m1(t, s)ds +
∫ t

0

m2(s)
∫ s

0

m3(s, τ)dτds
]
,

so that

‖Tx‖S ≤ T ∗‖x‖S , t ∈ J,

and

‖Sx(t)‖
1 + t

≤
∫ +∞

0

m4(t, s)
1 + δ5(s)

1 + t

‖x(δ5(s))‖
1 + δ5(s)

ds ≤ ‖x‖S

∫ +∞

0

m4(t, s)ds,

yielding

‖Sx‖S ≤ S∗‖x‖S .

Hence Tx and Sx ∈ SPC(J,X) from which we get ‖T‖ ≤ T ∗ and ‖S‖ ≤ S∗. Finally,
it is clear that T : SPC(J, P ) → SPC(J, P ) and S : SPC(J, P ) → SPC(J, P ), and
so, the lemma is proved. �

Lemma 3.2. If the hypotheses (H1)-(H6) are satisfied, then the operator B maps
SPC1(J, P ) into itself and

‖Bx‖D ≤ α‖x‖D + β, x ∈ SPC1(J, P ), (3.2)

where

α = (p∗(2 + T ∗ + S∗) + a + b + d + e), β = 2max(‖x0‖, ‖x∗0‖) + q∗ + c + f.

Proof. From (H5), (H6) we have, for each x ∈ SPC1(J, P ),∫ +∞

0

‖F (s, x(δ1(s)), x′(δ2(s)), Tx(s), Sx(s))‖ds ≤ p∗(2+T ∗+S∗)‖x‖D +q∗ (3.3)
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and
∞∑

k=1

‖Ik(tk, x(tk), x′(tk))‖ ≤ (a + b)‖x‖D + c, (3.4)

∞∑
k=1

‖Îk(tk, x(tk), x′(tk))‖ ≤ (d + e)‖x‖D + f. (3.5)

Next, for each x ∈ SPC1(J, P ), we have by virtue of (3.1), lemma 3.1 and (3.3)-
(3.5),

‖Bx(t)‖
1 + t

≤ 1
1 + t

‖x0‖+
t

1 + t
‖x∗0‖

+
∫ t

0

t− s

1 + t
‖F (s, x(δ1(s)), x′(δ2(s)), Tx(s), Sx(s))‖ds

+
∑

0<tk<t

1
1 + t

‖Ik(tk, x(tk), x′(tk))‖

+
∑

0<tk<t

t− tk
1 + t

‖Îk(tk, x(tk), x′(tk))‖

≤ (p∗(2 + T ∗ + S∗) + a + b + d + e)‖x‖D

+ (2 max(‖x0‖, ‖x∗0‖) + q∗ + c + f).

Thus,
‖Bx‖S ≤ α‖x‖D + β, x ∈ SPC1(J, P ). (3.6)

On the other hand, differentiating (3.1) we get for each t ∈ J ,

(Bx)′(t) = x
∗

0 +
∫ t

0

F (s, x(δ1(s)), x′(δ2(s)), Tx(s), Sx(s))ds

+
∑

0<tk<t

Îk(tk, x(tk), x′(tk)).

Thanks to (3.3)-(3.5), we have

‖(Bx)′(t)‖ ≤ ‖x
∗

0‖+ p∗(2 + T ∗ + S∗)‖x‖D + q∗ + (d + e)‖x‖D + f.

It follows that

‖(Bx)′‖C ≤ (p∗(2 + T ∗ + S∗) + d + e)‖x‖D + ‖x
∗

0‖+ q∗ + f

≤ α‖x‖D + β, x ∈ SPC1(J, P ),
(3.7)

Hence, (3.6) and (3.7) give (3.2); therefore Bx ∈ SPC1(J, P ). �

Theorem 3.3. Assume that P is a fully regular cone and hypotheses (H1)-(H7)
are satisfied. If α < 1, then problem (1.1)-(1.3) has at least one positive solution x.
In addition, it satisfies

‖x‖D ≤ β

1− α
. (3.8)

Proof. First, we need to prove that the impulsive integral equation has at least one
positive solution. Define the sequence (xn(t))n≥1 as follows

x0(t) = x0, xn(t) = Bxn−1(t); n = 1, 2, . . . (3.9)
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where B is defined by (3.1) and satisfies (3.2). Then xn ∈ SPC1(J, P ) and

‖x0‖D ≤ β, ‖xn‖D ≤ α‖xn−1‖D + β; n = 1, 2, . . . .

We obtain by induction

‖xn‖D ≤ αnβ + αn−1β + · · ·+ αβ + β =
(1− αn+1)

(1− α)
β ≤ β

1− α
. (3.10)

On the other hand, the sequence (x′n(t))n≥1 defined by

x′n(t) = x
∗

0 +
∫ t

0

F (s, xn(δ1(s)), x′n(δ2(s)), Txn(s), Sxn(s))ds

+
∑

0<tk<t

Îk(tk, xn(tk), x′n(tk)).

satisfies the estimate
‖x′n‖C ≤ β

1− α
. (3.11)

We infer from (H7) that (xn(t))n≥1 and (x′n(t))n≥1, for t ∈ J , satisfy

θ ≤ xn(t) ≤ xn+1(t); n = 1, 2, . . . ,

θ ≤ x′n(t) ≤ x′n+1(t); n = 1, 2, . . . ,

As P is a fully regular cone, it follows from (3.10) and (3.11) that

lim
n→∞

xn(t) = x(t); t ∈ J, lim
n→∞

x′n(t) = y(t); t ∈ J. (3.12)

Now, since xn(t) is an equicontinuous function on each closed interval Jk; k =
1, 2, . . . such that J0 = [0, t1], Jk =]tk, tk+1]; k = 1, 2, . . . , then by using Ascoli-
Arzela theorem we deduce the existence of a subsequence (xni

(t)) ⊂ (xn(t)) such
that xni

(t) converges uniformly to x(t) on each Jk; k = 1, 2, . . . , and so, as the
cone is normal, the sequence (xn(t)) converges uniformly to x(t) on each Jk; k =
1, 2, . . . . Therefore, x ∈ PC(J, P ), and taking into account (3.10), x ∈ SPC(J, P )
and ‖x‖S ≤ β/(1− α).

Next, by a double differentiation of xn(t); n = 1, 2, . . . , we obtain

‖x′′n(t)‖ ≤ p(t)(1 + t)[2 + T ∗ + S∗]‖xn−1‖D + q(t); t 6= tk, k = 1, 2, . . . ,

≤ p(t)(1 + t)[2 + T ∗ + S∗]
β

1− α
+ q(t) = f(t).

(3.13)

We note that the function f(t) is bounded on any finite interval. We observe
from (3.13) that x′n(t), n ≥ 1 are equicontinuous functions on each Jk; k = 1, 2, . . . .
We conclude that the sequence (x′n(t)) converges uniformly on each Jk; k = 1, 2, . . . ,
to y(t). Hence, x′(t) exists and x′(t) = y(t) on each Jk; k = 1, 2, . . . , x′ ∈ PC(J, P )
and ‖x′‖C ≤ β/(1−α). Consequently, x ∈ SPC1(J, P ) and ‖x‖D ≤ β/(1−α). On
the other hand, since

‖k(s, τ, xn−1(δ4(τ)))− k(s, τ, x(δ4(τ)))‖ ≤ 2m3(t, s)
β

1− α
,

by applying the dominated convergence theorem we obtain

lim
n→∞

∫ s

0

k(s, τ, xn−1(δ4(τ)))dτ =
∫ s

0

k(s, τ, x(δ4(τ)))dτ, s ∈ J.

By the same reasoning for g and h we obtain

lim
n→∞

Txn−1(t) = Tx(t), lim
n→∞

Sxn−1(t) = Sx(t), t ∈ J
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and once again, for F ,

lim
n→∞

∫ t

0

F (s, xn−1(δ1(s)), x′n−1(δ2(s)), Txn−1(s), Sxn−1(s))

=
∫ t

0

F (s, x(δ1(s)), x′(δ2(s)), Tx(s), Sx(s)), t ∈ J.

(3.14)

Likewise, Ik and Îk , k = 1, 2, . . . satisfy the inequalities

‖Ik(tk, xn(tk), x′n(tk))− Ik(tk, x(tk), x′(tk))‖ ≤ 2(ak + bk)
β

1− α
+ 2ck

‖Îk(tk, xn(tk), x′n(tk))− Îk(tk, x(tk), x′(tk))‖ ≤ 2(dk + ek)
β

1− α
+ 2fk;

which give at once the limits

lim
n→∞

Ik(tk, xn(tk), x′n(tk)) = Ik(tk, x(tk), x′(tk))

lim
n→∞

Îk(tk, xn(tk), x′n(tk)) = Îk(tk, x(tk), x′(tk)).

Now, since the series
∑

0<tk<t
Ik and

∑
0<tk<t

Îk converge, we obtain

lim
n→∞

∑
0<tk<t

[Ik(tk, xn(tk), x′n(tk)) + (t− tk)Îk(tk, xn(tk), x′n(tk))]

=
∑

0<tk<t

[Ik(tk, x(tk), x′(tk)) + (t− tk)Îk(tk, x(tk), x′(tk))].
(3.15)

Taking the limit of xn(t) = Bxn−1(t), when n →∞, we get from (3.14) and (3.15),
that x(t) is a solution of (2.1). Consequently, x(t) is a solution of (1.1)-(1.3).
Finally, as x0 ∈ P\{θ}, then x(t) is positive, which completes the proof. �

Example 3.4. Let us consider the initial-value problem

x′′(t) =
1

(t + 1)102
(
e−t(t + 1)102 + x(t) +

x′(t)
2

+ Tx(t) + Sx(t)
)
, t 6= k; k ≥ 1,

∆x = Ik(k, x, x′) =
1

1000k

(
x(k) +

√
x′(k) + cos k

)
, k = 1, 2 . . . ,

∆x′ = Îk(k, x, x′) =
1

1000k

(√
x(k) + x′(k) + cos k

)
, k = 1, 2 . . . ,

x(0) =
1
2
; x′(0) =

1
2
,

(3.16)
where

Tx(t) =
∫ t

0

( 1
(t + 1 + s)3/2

x(s) +
e−s

√
s

∫ s

0

1
(s + τ)1/2

dτ
)
ds,

Sx(t) =
∫ +∞

0

t− s

t + 1
e−s

√
x(s)ds.

It is easy to check that all the hypotheses cited in the preliminaries and lemmas are
satisfied. Hence Theorem 3.3 ensures the existence of at least one positive solution
to (3.16) whenever

α = (p∗(2 + T ∗ + S∗) + a + b + d + e) < 1.
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This solution satisfies the impulsive integral equation (2.1) with ‖x‖D ≤ β
1−α ; where

β = 1+q∗+c+f . According to the above notations a straightforward computation
gives the following:

p∗ =
∫ +∞

0

(s + 1)
(s + 1)102

ds =
1

100
; q∗ =

∫ +∞

0

e−sds = 1

T ∗ = m∗
1 + m∗

2, m∗
1 = sup

t∈J

∫ t

0

1
(t + 1 + s)3/2

ds < 2,

m∗
2 = sup

t∈J

∫ t

0

e−s

√
s

∫ s

0

1
(s + τ)1/2

dτds = 2(
√

2− 1),

S∗ = m∗
4 = sup

t∈J

∫ +∞

0

t− s

t + 1
e−sds = 1,

a = d =
∞∑

k=1

(k + 1)
1

1000k
<

1
999

+
1

1000
,

b = e = c = f =
∞∑

k=1

1
1000k

=
1

999
.

Therefore, α = 1
100 (2

√
2 + m∗

1 + 2) + 2
999 + 2a < 1 and β = 2(1 + 1

999 ).
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