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EXISTENCE OF MULTIPLE SOLUTIONS FOR A
p(x)-LAPLACE EQUATION

DUCHAO LIU

Abstract. This article shows the existence of at least three nontrivial solu-
tions to the quasilinear elliptic equation

−∆p(x)u + |u|p(x)−2u = f(x, u)

in a smooth bounded domain Ω ⊂ Rn, with the nonlinear boundary condition
|∇u|p(x)−2 ∂u

∂ν
= g(x, u) or the Dirichlet boundary condition u = 0 on ∂Ω. In

addition, this paper proves that one solution is positive, one is negative, and

the last one is a sign-changing solution. The method used here is based on
Nehari results, on three sub-manifolds of the space W 1,p(x)(Ω).

1. Introduction

The study of variational problems with nonstandard growth conditions is an
interesting topic. p(x)-growth conditions can be regarded as an important case
of nonstandard (p, q)-growth conditions. Many results have been obtained on this
kind of problems; see for example [1, 2, 8, 9, 12]. We refer the reader to the overview
papers [10, 15] for advances and references in this area.

In this article, we consider the non-homogeneous nonlinear Neumann boundary-
value problem

−∆p(x)u+ |u|p(x)−2u = f(x, u), x ∈ Ω,

|∇u|p(x)−2 ∂u

∂ν
= g(x, u), x ∈ ∂Ω;

(1.1)

and the problem
−∆p(x)u = f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.2)

where Ω ⊂ Rn is a bounded domain with Lipschitz boundary ∂Ω, ∂
∂ν is the outer

unit normal derivative, p(x) ∈ C(Ω), infx∈Ω p(x) > 1.
The operator −∆p(x)u := −div(|∇u|p(x)−2∇u) is called p(x)-Laplacian, which

becomes p-Laplacian when p(x) ≡ p (a constant). It possesses more complicated
nonlinearities than the p-Laplacian. For related results involving the Laplace oper-
ator, see [1, 10, 15].
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In this article, we construct three sub-manifolds of the space W 1,p(x)(Ω) based on
Naheri ideas. And under some assumptions, there exist three different, nontrivial
solutions of (1.1) or eqrefePprime on sub-manifold respectively. Moreover these
solutions are, one positive, one negative and the other one has non-constant sign.
This result extends the conclusions of [14], and in [3], the author also do some
research with the similar method.

Throughout this paper, by (weak) solutions of (1.1) or (1.2) we understand
critical points of the associated energy functional Φ or Ψ acting on the Sobolev
space W 1,p(x)(Ω):

Φ(v) =
∫

Ω

1
p(x)

(|∇v|p(x) + |v|p(x)) dx−
∫

Ω

F (x, v) dx−
∫

∂Ω

G(x, v)dS;

Ψ(v) =
∫

Ω

1
p(x)

|∇v|p(x) dx−
∫

Ω

F (x, v) dx,

where F (x, u) =
∫ u

0
f(x, z)dz, G(x, u) =

∫ u

0
g(x, z)dz and dS is the surface measure.

We also denote F(v) =
∫
Ω
F (x, v) dx and G(v) =

∫
∂Ω
G(x, v)dS.

For a reflexive manifold M , TuM denotes the tangential space at a point u ∈M ,
T ∗uM denotes the co-tangential space.

In this paper span{v1, . . . , vk} denotes the vector space generated by the vectors
v1, . . . , vk.

2. The space W 1,p(x)(Ω)

To discuss problem (1.1) or (1.2), we need some results on the space W 1,p(x)(Ω)
which we call variable exponent Sobolev space. Firstly, we state some basic proper-
ties of the space W 1,p(x)(Ω) which will be used later (for more details, see [5, 6, 7]).

Let Ω be a bounded domain of Rn, denote:

C+(Ω) = {h ∈ C(Ω);h(x) > 1∀x ∈ Ω},
h+ = max

x∈Ω
h(x), h− = minx∈Ωh(x), h ∈ C(Ω),

Lp(x)(Ω) = {u : u is a measurable real-valued function,
∫

Ω

|u|p(x) dx <∞}.

We introduce a norm on Lp(x)(Ω):

|u|p(x) = inf
{
λ > 0 :

∫
Ω

∣∣u(x)
λ

∣∣p(x)
dx ≤ 1

}
.

Then (Lp(x)(Ω), | · |p(x)) becomes a Banach space, we call it a generalized Lebesgue
space.

Proposition 2.1 ([8, 9]).
(1) The space (Lp(x)(Ω), |·|p(x)) is a separable, uniformly convex Banach space,

and has conjugate space Lq(x)(Ω), where 1/q(x) + 1/p(x) = 1. For u ∈
Lp(x)(Ω) and v ∈ Lq(x)(Ω), we have∣∣ ∫

Ω

uv dx
∣∣ ≤ (

1
p−

+
1
q−

)|u|p(x)|v|q(x);

(2) If p1, p2 ∈ C+(Ω), p1(x) ≤ p2(x), for any x ∈ Ω, then Lp2(x)(Ω) ↪→
Lp1(x)(Ω), and the imbedding is continuous.
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Proposition 2.2 ([8, 18]). If f : Ω × R → R is a Caratheodory function and
satisfies

|f(x, s)| ≤ a(x) + b|s|
p1(x)
p2(x) , for any x ∈ Ω, s ∈ R,

where p1(x), p2(x) ∈ C+(Ω), a(x) ∈ Lp2(x)(Ω), a(x) ≥ 0, and b ≥ 0 is a constant,
then the Nemytsky operator from Lp1(x)(Ω) to Lp2(x)(Ω) defined by (Nf (u))(x) =
f(x, u(x)) is a continuous and bounded operator.

Proposition 2.3 ([8, 19]). Denote

ρ(u) =
∫

Ω

|u|p(x) dx, ∀u ∈ Lp(x)(Ω).

Then
(1) |u(x)|p(x) < 1(= 1;> 1) if and only if ρ(u) < 1(= 1;> 1);

(2) |u(x)|p(x) > 1 implies |u|p
−

p(x) ≤ ρ(u) ≤ |u|p
+

p(x); |u(x)|p(x) < 1 implies

|u|p
−

p(x) ≥ ρ(u) ≥ |u|p
+

p(x);
(3) |u(x)|p(x) → 0 if and only if ρ(u) → 0; |u(x)|p(x) → ∞ if and only if

ρ(u) →∞.

Proposition 2.4 ([8, 19]). If u, un ∈ Lp(x)(Ω), n = 1, 2, . . . , then the following
statements are equivalent:

(1) limk→∞ |uk − u|p(x) = 0;
(2) limk→∞ ρ(uk − u) = 0;
(3) uk → u in measure in Ω and limk→∞ ρ(uk) = ρ(u).

Let us define the space

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)},

equipped with the norm

‖u‖ = |u|p(x) + |∇u|p(x), ∀u ∈W 1,p(x)(Ω).

LetW 1,p(x)
0 (Ω) be the closure of C∞0 (Ω) inW 1,p(x)(Ω) and p∗(x) = np(x)/(n−p(x)),

p∗∂(x) = (n− 1)p(x)/(n− p(x)), when p(x) < n.

Proposition 2.5 ([4, 8]). (1) W 1,p(x)
(0) (Ω) is separable reflexive Banach space;

(2) If q ∈ C+(Ω) and q(x) < p∗(x) for any x ∈ Ω, then the imbedding from
W 1,p(x)(Ω) to Lq(x)(Ω) is compact and continuous;

(3) If q ∈ C+(Ω) and q(x) < p∗∂(x) for any x ∈ Ω, then the trace imbedding
from W 1,p(x)(Ω) to Lq(x)(∂Ω) is compact and continuous;

(4) (Poincaré) There is a constant C > 0, such that

|u|p(x) ≤ C|∇u|p(x) ∀u ∈W 1,p(x)
0 (Ω).

3. Assumptions and statement of main result

The assumptions on the source terms f and g are as follows:
(F1) f : Ω× R → R is a measurable function with respect to the first argument

and continuous differentiable with respect to the second argument for a.e.
x ∈ Ω. Moreover, f(x, 0) = 0 for every x ∈ Ω.
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(F2) There exist q(x), s(x), t(x), such that p(x) ≤ p+ < q− ≤ q(x) < p∗(x),
s(x) > p∗(x)/(p∗(x)− q(x)),

t(x) = s(x)q(x)/(2 + (q(x)− 2)s(x)) > p∗(x)/(p∗(x)− 2)

and there exist functions a(x) ∈ Ls(x)(Ω), b(x) ∈ Lt(x)(Ω), such that for
x ∈ Ω, u ∈ R,

|fu(x, u)| ≤ a(x)|u|q(x)−2 + b(x).

(F3) There exist constants c1 ∈ (0, 1/(p+ − 1)), c2 > p+, 0 < c3 < c4, such that
for any u ∈ Lq(x)(Ω),

c3

∫
Ω

|u|q(x) dx ≤ c2

∫
Ω

F (x, u) dx ≤
∫

Ω

f(x, u)u dx

≤ c1

∫
Ω

fu(x, u)u2 dx ≤ c4

∫
Ω

|u|q(x) dx.

(G1) g : ∂Ω×R → R is a measurable function with respect to the first argument
and continuous differentiable with respect to the second argument for a.e.
x ∈ ∂Ω. Moreover, g(x, 0) = 0 for every x ∈ ∂Ω.

(G2) There exist functions r(x), σ(x), τ(x), such that p(x) ≤ p+ < r− ≤ r(x) <
p∗∂(x), σ(x) > p∗∂(x)/(p∗∂(x)− r(x)), τ(x) = σ(x)r(x)/(2+(r(x)−2)σ(x)) >
p∗∂(x)/(p∗∂(x)− 2) and there exist functions α(x) ∈ Lσ(x)(∂Ω), β(x) ∈
Lτ(x)(∂Ω), such that for x ∈ ∂Ω, u ∈ R,

|gu(x, u)| ≤ α(x)|u|r(x)−2 + β(x).

(G3) There exist constants k1 ∈ (0, 1/(p+− 1)), k2 > p+, 0 < k3 < k4, such that
for any u ∈ Lr(x)(∂Ω) satisfies

k3

∫
Ω

|u|r(x) dx ≤ k2

∫
∂Ω

G(x, u)dS ≤
∫

∂Ω

g(x, u)udS

≤ k1

∫
∂Ω

gu(x, u)u2dS ≤ k4

∫
Ω

|u|r(x) dx.

We remark that by assumptions (F1), (F2) there exists π(x) < p∗(x) such that
the operators u → f(u) is bounded and Lipschitz continuous from Lπ(x)(Ω) →
(W 1,p(x)(Ω))−1. Moreover, by the compactness of the embedding W 1,p(x)(Ω) ↪→
Lπ(x)(Ω) the operator is compact if viewed as acting on W 1,p(x)(Ω). Hence the
expression

ψ(u, ·) = 〈∇Φ(u), ·〉

is well defined and Lipschitz continuously differentiable in W 1,p(x)(Ω), where 〈·, ·〉
is the duality pairing between (W 1,p(x)(Ω))−1 and W 1,p(x)(Ω).

The main result of the paper reads as follows:

Theorem 3.1. Under assumptions (F1)-(F3), (G1)-(G3), there exist three differ-
ent, non trivial solutions of (1.1) and (1.2). Moreover these solutions are, one
positive, one negative and the other one has non-constant sign.
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4. The proof for the Neumann problem

The proof uses the similar approach as in [14]. That is, we will construct three
disjoint sets Ki 6= ∅ not containing 0 such that Φ has a critical point in Ki. These
sets will be subsets of smooth manifolds Ni ∈ W 1,p(x)(Ω) which we will obtain by
imposing a sign condition and a normalization condition on admissible functions.
Let

N1 = {u ∈W 1,p(x)(Ω) :
∫

Ω

u+ dx > 0, 〈∇Φ(u), u+〉 = 0},

N2 = {u ∈W 1,p(x)(Ω) :
∫

Ω

u− dx > 0, 〈∇Φ(u), u−〉 = 0},

N3 = N1 ∩N2,

where u+ = max{u, 0}, u− = max{−u, 0} are the positive and negative parts of u.
In fact, following Nehari [13], conditions in Ni, (i = 1, 2, 3), are norming condi-

tions for the positive and negative parts of u.
Also we define

K1 = {u ∈ N1|u ≥ 0}, K2 = {u ∈ N2|u ≤ 0},K3 = N3.

To prove that the sets Ni,Ki possess the properties stated at the beginning of the
paragraph we establish the following estimate:

Lemma 4.1. There exist constants cj > 0, j = 1, 2, such that for any u ∈ Ki,

c1 min{‖u‖p− , ‖u‖p+
} ≤

∫
Ω

(|∇u|p(x) + |u|p(x)) dx

≤
∫

Ω

f(x, u)u dx+
∫

∂Ω

g(x, u)udS

≤ c2Φ(u).

Proof. Since u ∈ Ki, we have∫
Ω

(|∇u|p(x) + |u|p(x)) dx =
∫

Ω

f(x, u)u dx+
∫

∂Ω

g(x, u)udS.

This proves the second inequality. Now, by (F3) and (G3)∫
Ω

F (x, u) dx ≤ 1
c2

∫
Ω

f(x, u)u dx,∫
∂Ω

G(x, u)dS ≤ 1
k2

∫
∂Ω

g(x, u)udS.

So for c = max{1/c2, 1/k2} < 1/p+,

Φ(u) ≥ (
1
p+

− c)
∫

Ω

|∇u|p(x) + |u|p(x) dx.

This proves the third inequality. The first inequality is easily obtained by proposi-
tion 2.3. �
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Lemma 4.2. There exists c > 0 such that∫
Ω

(|∇u|p(x) + |u|p(x)) dx ≥ c for u ∈ K1,∫
Ω

(|∇u|p(x) + |u|p(x)) dx ≥ c for u ∈ K2,∫
Ω

(|∇u±|p(x) + |u±|p(x)) dx ≥ c for u ∈ K3.

Proof. By the definitions of Ki, conditions (F3), (G3) and proposition 2.3,∫
Ω

(|∇u±|p(x) + |u±|p(x)) dx

=
∫

Ω

f(x, u±)u± dx+
∫

∂Ω

g(x, u±)u±dS

≤ c(
∫

Ω

|u±|q(x) dx+
∫

Ω

|u±|r(x) dx)

≤ c(‖u±‖q± + ‖u±‖r±)

≤ c(|∇u±|q
±

p(x) + |u±|q
±

p(x) + |∇u±|r
±

p(x) + |u±|r
±

p(x))

≤ c[(
∫

Ω

|∇u±|p(x) + |u±|p(x) dx)
q±
p± + (

∫
Ω

|∇u±|p(x) + |u±|p(x) dx)
r±
p± ].

Here by Up± we mean max{Up+
, Up−}. Then obviously the conclusion holds since

p+ < q−, r−. �

Lemma 4.3. There exists c > 0 such that Φ(u) ≥ c
∫
Ω
(|∇u|p(x) + |u|p(x)) dx for

every u ∈W 1,p(x)(Ω) s.t. ‖u‖ ≤ c.

Proof. By (F3), (G3) and the Sobolev inequalities in proposition 2.5 we have

Φ(u) =
∫

Ω

1
p(x)

(|∇u|p(x) + |u|p(x)) dx−F(u)− G(u)

≥
∫

Ω

1
p(x)

(|∇u|p(x) + |u|p(x)) dx− c(
∫

Ω

|u|q(x) dx+
∫

Ω

|u|r(x) dx)

≥ 1
p+

∫
Ω

(|∇u|p(x) + |u|p(x)) dx− c(
∫

Ω

|u|q(x) dx+
∫

Ω

|u|r(x) dx)

≥ c

∫
Ω

(|∇u|p(x) + |u|p(x)) dx,

if ‖u‖ is sufficiently small, since p+ < q−, r− ,for all x ∈ Ω, and the embedding
from W 1,p(x)(Ω) to Lq(x)(Ω). �

Lemma 4.4. Put P+(u) = u+, P−(u) = u−, then the mapping P+ and P−:
W 1,p(x)(Ω) →W 1,p(x)(Ω) is continuous.

Proof. Here we prove only that the projection P+ : W 1,p(x)(Ω) → W 1,p(x)(Ω) is
continuous. Let un → u in W 1,p(x)(Ω), we prove (un)+ → u+ in W 1,p(x)(Ω). It is
obvious the following inequality holds:

|(un)+(x)− u+(x)| ≤ |un(x)− u(x)|, for a.e. x ∈ Ω,
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which implies

|(un)+(x)− u+(x)|p(x) ≤ |un(x)− u(x)|p(x), for a.e. x ∈ Ω.

So
∫
Ω
|un(x) − u(x)|p(x) dx → 0 implies

∫
Ω
|(un)+(x) − u+(x)|p(x) dx → 0. Then

(un)+ → u+ in Lp(x)(Ω).
Next we prove |∇(un)+ −∇u+|p(x) → 0. Define g : R → R by

g(t) =

{
1, t > 0,
0, t ≤ 0,

then

|∇(un)+(x)−∇u+(x)|
= |g(un(x))∇un(x)− g(u(x))∇u(x)|
≤ |g(un(x))(∇un(x)−∇u(x))|+ |(g(un(x))− g(u(x)))∇u(x)|
≤ |∇un(x)−∇u(x)|+ |(g(un(x))− g(u(x)))∇u(x)|,

so

|∇(un)+(x)−∇u+(x)|p(x) ≤ |∇un −∇u|p(x) + |(g(un)− g(u))∇u|p(x).

We already know that |∇un − ∇u|p(x) → 0. And by |(g(un) − g(u))∇u| → 0
and the Lebesgue Dominated Convergence Theorem, we conclude that

∫
Ω
|(g(un)−

g(u))∇u|p(x) dx→ 0. That is |(g(un)−g(u))∇u|p(x) → 0. So (|∇un)+−∇u+|p(x) →
0, which ends the proof. �

Remark. By the above Lemma, for any c > 0, the set {u ∈W 1,p(x)(Ω) : ‖u±‖ < c}
is open in W 1,p(x)(Ω), and the set {u ∈ W 1,p(x)(Ω) : ‖u±‖ ≤ c} is closed in
W 1,p(x)(Ω).

The regularity properties of the sets Ni are stated in the following Lemma.

Lemma 4.5. (1) Ni is a C1,1 sub-manifold of W 1,p(x)(Ω) of co-dimension
1(i = 1, 2), 2(i = 3) respectively;

(2) The sets Ki are complete;
(3) For any u ∈ Ni, we have the direct decomposition

TuW
1,p(x)(Ω) = TuN1 ⊕ span{u+},

TuW
1,p(x)(Ω) = TuN2 ⊕ span{u−},

TuW
1,p(x)(Ω) = TuN3 ⊕ span{u+, u−},

where TuNi is the tangent space at u of the Banach manifold Ni. Finally,
the projection onto the first component in this decomposition is uniformly
continuous on bounded sets of Ni.

Proof. (1) Denote

N ′
1 = {u ∈W 1,p(x)(Ω)|

∫
Ω

u+ dx > 0},

N ′
2 = {u ∈W 1,p(x)(Ω)|

∫
Ω

u− dx > 0},

N ′
3 = N ′

1 ∩N ′
1.
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By the continuous embedding of W 1,p(x)(Ω) → L1(Ω), the set N ′
i is open in

W 1,p(x)(Ω). Therefore it suffices to show that Ni is a smooth sub-manifold of
N ′

i . By the implicit function theorem, part (1) of the lemma will be followed from
a representation of Ni as the inverse image of a regular value of a C1,1-function
ψi : N ′

i → Rm with m = 1(i = 1, 2),m = 2(i = 3) respectively. In fact we define:
for u ∈ N ′

1

ψ1(u) =
∫

Ω

(|∇u+|p(x) + |u+|p(x)) dx− 〈F ′(u), u+〉 − 〈G′(u), u+〉;

for u ∈ N ′
2

ψ2(u) =
∫

Ω

(|∇u−|p(x) + |u−|p(x)) dx− 〈F ′(u), u−〉 − 〈G′(u), u−〉;

For u ∈ N ′
3

ψ3(u) = (ψ1(u), ψ2(u)).

Then Ni = ψ−1
i (0) and that 0 is a regular value of ψi may be seen from the

estimates:

〈∇ψ1(u), u+〉 =
∫

Ω

p(x)(|u+|p(x) + |∇u+|p(x)) dx−
∫

Ω

fu(x, u)u2
+

+ f(x, u)u+ dx−
∫

∂Ω

gu(x, u)u2
+ + g(x, u)u+dS

≤ (p+ − 1)
∫

Ω

f(x, u)u+ dx−
∫

Ω

fu(x, u)u2
+ dx

+ (p+ − 1)
∫

∂Ω

g(x, u)u+dS −
∫

∂Ω

gu(x, u)u2
+dS.

By (F3), (G3) the last term is bounded by

(p+ − 1− c−1
1 )

∫
Ω

f(x, u)u+ dx+ (p+ − 1− k−1
1 )

∫
∂Ω

g(x, u)u+dS.

Recall that c1, k1 < 1/(p+ − 1), and by Lemma 4.1 the above formula is bounded
by

−c
∫

Ω

(|∇u+|p(x) + |u+|p(x)) dx,

which is strictly negative by Lemma 4.2. Therefore, N1 is a smooth sub-manifold
of W 1,p(x). The exact same argument applies to N2. Since, trivially,

〈∇ψ1(u), u−〉 = 〈∇ψ2(u), u+〉 = 0

for u ∈ N3, the same argument holds for N3.
(2) Let {uj} be a Cauchy sequence in Ki. Then uj → u ∈ W 1,p(x)(Ω) and also

uj± → u± ∈W 1,p(x)(Ω). By Lemma 4.2, u ∈ {u ∈W 1,p(x)(Ω)|u ≥ 0, u 6= 0}. Since
continuity of ψi that u ∈ Ki.

(3) By (1), we have the direct decomposition TuW
1,p(x)(Ω) = TuN1⊕ span{u+},

TuW
1,p(x)(Ω) = TuN2 ⊕ span{u−}, TuW

1,p(x)(Ω) = TuN3 ⊕ span{u+, u−}. Let
v ∈ TuW

1,p(x)(Ω) be a unit tangential vector. Then v = v′ + v′′ where v′, v′′ are
given by

v′′ = (〈∇ψ1(u)
∣∣
span{u+}

, ·〉)−1〈∇ψ1(u), v〉 ∈ span{u+}, v′ = v − v′′ ∈ TuN1.
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Obviously the mapping ∇ψ1 is uniformly bounded on bounded subsets of K1 and
the uniform boundedness of (〈∇ψ1(u)

∣∣
span{u+}

, ·〉)−1 on such sets is a consequence
of the estimate proved in part (1) of this proof. So we have the conclusion of the
lemma. The similar results hold for i = 2, 3. �

Lemma 4.6. The function Φ
∣∣
Ni

satisfies the Palais-Smale condition.

Proof. Let {uk} ∈ N1 be a Palais-Smale sequence, that is Φ(uk) is uniformly
bounded and ∇Φ

∣∣
N1

(uk) → 0 strongly. We need to show that there exists a sub-
sequence uki

, that converges strongly.
In fact, the assumptions imply that∇Φ(uk) → 0. To see this let vj ∈ TujW

1,p(x)(Ω)
be a unit tangential vector such that

〈∇Φ(uj), vj〉 = ‖∇Φ(uj)‖(W 1,p(x)(Ω))−1 .

By Lemma 4.5 (3), vj = v′j+v
′′
j ∈ Tuj

N1+span{(uj)+}, since Φ((uj)+) ≤ Φ(uj) ≤ c
and by Lemma 4.1, then the sequence {(uj)+} is uniformly bounded. Hence ‖vj‖ ≥
‖v′j‖ − ‖v′′j ‖ implies v′j is uniformly bounded in W 1,p(x)(Ω). (〈∇Φ

∣∣
span{(uj)+}

(uj),
(uj)+〉 = ψ1(uj) = 0.) Hence

‖∇Φ(uj)‖(W 1,p(x)(Ω))−1 = 〈∇Φ(uj), vj〉 = 〈∇Φ
∣∣
N1

(uj), v′j〉 → 0.

As uj is bounded in W 1,p(x)(Ω), there exists u ∈ W 1,p(x)(Ω) such that uj ⇀ u,
weakly in W 1,p(x)(Ω). By condition (F2) and (G2), it is well known that the unre-
stricted functional Φ satisfies the Palais-Smale condition, the lemma then follows.
Similaly when i = 2, 3 the lemma also holds. �

From the proof of lemma 4.6, we immediately obtain the following result.

Lemma 4.7 (Nehari result). Let u ∈ Ni be a critical point of the restricted func-
tional Φ

∣∣
Ni

. Then u is also a critical point of the unrestricted functional Φ.

Lemma 4.8. There exists a critical point of the energy functional Φ in Ki.

Proof. From Lemma 4.3 we know that there exists a sufficient small constant τ > 0,
such that

Φ(u) ≥ τ

∫
Ω

|∇u|p(x) + |u|p(x) dx ≥ τ‖u‖p+ , (4.1)

when ‖u‖ ≤ τ . Let
U = {u ∈ N1 : ‖u−‖ < τ},

then U is an open set in N1 which contains K1, and U is complete. As Φ is bounded
from below, we denote c = infu∈U Φ(u). Let {un} be the sequence minimizing Φ
to c; i.e.m un ∈ U , such that Φ(un) → c as n → ∞. From Lemma 4.3 we know
that Φ((un)+) ≤ Φ(un), so {(un)+} is also the minimizing sequence tending Φ to
c. (In fact, (un)+ ∈ K1.) Now we have Φ((un)+) < c + εn, in which τp++1 > εn

for ∀n ∈ N+. Put δn =
√
εn, from Ekeland’s variational principle we know there

exists a sequence {vn} ⊂ U such that the following holds,

‖(un)+ − vn‖ ≤ δn, Φ(vn) ≤ Φ((un)+) < c+ εn,

Φ(vn) < Φ(w) +
εn

δn
‖vn − w‖, ∀w ∈ U, w 6= vn.

(4.2)

We assert that
vn ∈ U, i.e., ‖(vn)−‖ < τ. (4.3)
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In fact, if the above assertion doesn’t hold, i.e. ‖(vn)−‖ = τ , then from (4.1) we
have

Φ((vn)−) ≥ τ‖(vn)−‖p+ = τp++1 > εn.

Observe that (vn)+ ∈ K1 ⊂ U , we have

Φ(vn) = Φ((vn)+) + Φ((vn)−) ≥ c+ εn,

which contradicts Φ(vn) < c+ εn. So assertion (4.3) holds.
Since vn ∈ U and (4.2) imply ∇Φ

∣∣
N1

(vn) → 0 as n → ∞. By Lemma 4.6,
{vn} contains a convergence subsequence, which we also denote as {vn}, and vn →
v0 ∈ W 1,p(x)(Ω) as n → ∞. From ‖(un)+ − vn‖ → 0, we have (un)+ → v0 in
W 1,p(x)(Ω). And from the completeness of K1 we get v0 ∈ K1. At the same time
∇Φ

∣∣
N1

(v0) = 0. Then from Lemma 4.7, ∇Φ(v0) = 0. Similarly, we can prove the
lemma when i = 2, 3. �

Finally since the sets Ki are disjoint and 0 /∈ Ki the proof of Theorem 3.1 is
complete.
Remark For the Dirichlet problem (1.2), let

N1 = {u ∈W 1,p(x)
0 (Ω) :

∫
Ω

u+ dx > 0, 〈∇Ψ(u), u+〉 = 0},

N2 = {u ∈W 1,p(x)
0 (Ω) :

∫
Ω

u− dx > 0, 〈∇Ψ(u), u−〉 = 0},

N3 = N1 ∩N2, K1 = {u ≥ 0 : u ∈ N1},
K2 = {u ≤ 0 : u ∈ N2}, K3 = N3,

with a similar approach, we can prove that (1.2) has three nontrivial solutions.
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