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EXISTENCE OF MULTIPLE SOLUTIONS FOR A
p(z)-LAPLACE EQUATION

DUCHAO LIU

ABSTRACT. This article shows the existence of at least three nontrivial solu-
tions to the quasilinear elliptic equation
—Ap(ayu+ [ufPP P = f(z, )

in a smooth bounded domain 2 C R", with the nonlinear boundary condition
|VU|P(Z)*22—Z = g(x,u) or the Dirichlet boundary condition u = 0 on 99Q. In
addition, this paper proves that one solution is positive, one is negative, and
the last one is a sign-changing solution. The method used here is based on
Nehari results, on three sub-manifolds of the space W1P(*) ().

1. INTRODUCTION

The study of variational problems with nonstandard growth conditions is an
interesting topic. p(z)-growth conditions can be regarded as an important case
of nonstandard (p, ¢)-growth conditions. Many results have been obtained on this
kind of problems; see for example [11 2,8, [9] [12]. We refer the reader to the overview
papers [10] [15] for advances and references in this area.

In this article, we consider the non-homogeneous nonlinear Neumann boundary-
value problem

—Apyu + [ulP® =2y = f(z,u), =€,
1.1
Va2 gaw), e 00 -
and the problem
—Apyu = f(z,u), e,
u=0, x€d,
where 2 C R™ is a bounded domain with Lipschitz boundary 0f2, a% is the outer
unit normal derivative, p(z) € C(Q), infyeq p(z) > 1.

The operator —A,yu = —div(|Vu[P®~2Vu) is called p(z)-Laplacian, which

becomes p-Laplacian when p(xz) = p (a constant). It possesses more complicated

nonlinearities than the p-Laplacian. For related results involving the Laplace oper-
ator, see [T, 10} [15].

(1.2)
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In this article, we construct three sub-manifolds of the space W) (Q) based on
Naheri ideas. And under some assumptions, there exist three different, nontrivial
solutions of or eqrefePprime on sub-manifold respectively. Moreover these
solutions are, one positive, one negative and the other one has non-constant sign.
This result extends the conclusions of [I4], and in [3], the author also do some
research with the similar method.

Throughout this paper, by (weak) solutions of or we understand
critical points of the associated energy functional ® or ¥ acting on the Sobolev
space WP (Q):

(b(v):/ L(|Vv\p(’c)—|—|v|”(9”))dsc—/F(gc,v)dac— G(z,v)dS;
a p(x) Q oQ

v) = va(x)m— r,v)dr
W)= [ SV e~ [ Fao)ds,

where F(x,u) fo (z,2) dz G(z,u) = [, g(z, 2)dz and dS is the surface measure.
We also denote F(v fQ z,v)dr and G(v) = [, G(z,v)dS.

For a reflexive mamfold M, T, M denoteb the tangential space at a point u € M,
Ty M denotes the co—tangential space.

In this paper span{vs, ..., v} denotes the vector space generated by the vectors
Viyeooy Uk

2. THE space WP (Q)

To discuss problem or , we need some results on the space Wl’p(r)(Q)
which we call variable exponent Sobolev space. Firstly, we state some basic proper-
ties of the space W1P(®)(Q) which will be used later (for more details, see [5} 6, [7]).

Let © be a bounded domain of R™, denote:

C+(Q) ={h e C(Q);h(z) > 1Vx € Q},

ht =maxh(z), h~ =min, gh(z), heC(Q),
z€Q

LP@)(Q) = {u : u is a measurable real-valued function, / [ulP@® da < oo}
Q

We introduce a norm on LP(*)(€):
[l (o) = inf {A>0: / M) @ g, < 1),
o A
Then (LP®)(Q), |- |,(x)) becomes a Banach space, we call it a generalized Lebesgue

space.

Proposition 2.1 ([8, Q]).
(1) The space (LP*) (1), |Ip(z)) is a separable, uniformly convex Banach space,

and has conjugate space LY@ (Q), where 1/q(z) + 1/p(z) = 1. For u €
LP®)(Q) and v € LI®)(Q), we have

1 1
wwdr| < (— + —)|u|p) V] g(a);
\/Q | (= + 2@ vl

(2) If pri,p2 € C1(Q), pi(z) < pa(x), for any x € Q, then LP*P)(Q) —
LPY®)(Q), and the imbedding is continuous.
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Proposition 2.2 ([8 [I8]). If f : @ x R — R is a Caratheodory function and
satisfies

r1(x)
|f(z,s)| <a(z)+ b|s|P;<I>7 for any x € ,s € R,

where p1(z), p2(x) € C4(Q), a(x) € LP>®)(Q), a(x) >0, and b > 0 is a constant,
then the Nemytsky operator from LP*®)(Q) to LP2(*)(Q) defined by (N (u))(z) =
f(z,u(x)) is a continuous and bounded operator.

Proposition 2.3 ([8, [19]). Denote
p(u) = / [u[P™ dz,  Yu e LPO(Q).
Q

Then
(1) @)ty < 1= 15> 1) 4 and only f pa) < 1(= 15> 1)
(2) |u(x )|p(r) > 1 implies |u|§(m) < pu) < |u|z(z), |u(z)|pzy < 1 implies

[ull ) > p(u) > Jull,

p(I) p(z)
(3) u(®)|p@y — 0 if and only if p(u) — 0; |u(x)|py — oo if and only if
p(u) — oco.

Proposition 2.4 ([8, 19)). If u,u, € LP®)(Q), n = 1,2,..., then the following
statements are equivalent:

(1) limg oo [ur — ulp@) = 0;

(2) limg— oo p(ug —u) =0;

(3) up — u in measure in Q and limy_, o p(ug) = p(u).

Let us define the space
WP (Q) = {u € LPP(Q) : |Vu| € LP@(Q)},
equipped with the norm
[ul| = [ulp@) + [Vulp), Yue WHPE(Q).

Let Wol’p(x)(Q) be the closure of C§°(Q) in W) (Q) and p*(z) = np(z)/(n—p(x)),
pp(x) = (n = p(x)/(n — p(x)), when p(z) < n.
Proposition 2.5 ([4 [§]). (1) W(lo’f(w)(ﬂ) is separable reflexive Banach space;
(2) If ¢ € CL(Q) and q(z) < p*(z) for any x € Q, then the imbedding from
WhrE)(Q) to LI (Q) is compact and continuous;
(3) If ¢ € C(Q) and q(x) < pj(z) for any x € Q, then the trace imbedding
from WP (Q) to LI®)(9R) is compact and continuous;
(4) (Poincaré) There is a constant C' > 0, such that

tlp(a) < C|Vulpy Yu € WP ™(Q).

3. ASSUMPTIONS AND STATEMENT OF MAIN RESULT

The assumptions on the source terms f and g are as follows:

(F1) f:9Q xR — R is a measurable function with respect to the first argument
and continuous differentiable with respect to the second argument for a.e.
x € Q. Moreover, f(z,0) =0 for every x € ().
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(F2) There exist q(z),s(z),t(z), such that p(z) < pT < ¢= < q(z) < p*(x),

s(z) > p(2)/ (0" (z) — q(x)),
t(x) = s(@)a(@)/ 2 + (@) - Ds(z)) > p"()/ (7" (z) — 2)

and there exist functions a(x) € L*®)(Q), b(z) € L*®)(Q), such that for
z €, ueER,

| fule,w)] < a(@)|u|”™ 72 + b(x).

(F3) There exist constants c¢; € (0,1/(p™ — 1)), ca > p™, 0 < c3 < ¢4, such that
for any u € LI®)(Q),

Cs/ [u ") da < Cz/ F(z,u)dr < / (@, u)u dz
Q Q Q
< Cl/ ful, uyu® do §C4/ |u?®) da.
@ Q

(Gl) ¢g: 90 xR — R is a measurable function with respect to the first argument
and continuous differentiable with respect to the second argument for a.e.
x € 9. Moreover, g(x,0) = 0 for every x € 9.

(G2) There exist functions r(z),o(x), 7(x), such that p(z) < p*t <r~ < r(z) <
p5(@), o(z) > pj(z)/(ph(z) — r(z)), 7(x) = o(x)r(z)/(2+(r(z)—-2)o(z)) >
pi(z)/(ph(x) —2) and there exist functions a(z) € L™ (09Q), B(x) €
L™@)(99), such that for z € 99, u € R,

9@, w)] < al)ul" D72 + B(z).

(G3) There exist constants k1 € (0,1/(pT —1)), k2 > p™, 0 < k3 < ky, such that
for any u € L"®)(99) satisfies

kg/ u|"®) da < kg/ G(z,u)ng/ g(x,u)udS
Q o o0
< kl/ gu(z, u)u’dS < k:4/ Ju|"®) dz.
o Q

We remark that by assumptions (F1), (F2) there exists m(x) < p*(x) such that
the operators u — f(u) is bounded and Lipschitz continuous from L7(*)(Q) —
(WLP)(Q))~1. Moreover, by the compactness of the embedding W'»(*)(Q) —
L™®)(Q) the operator is compact if viewed as acting on W1P(#)(Q). Hence the
expression

is well defined and Lipschitz continuously differentiable in W'?(®)(Q), where (-, -)

is the duality pairing between (W) (Q))~1 and W1PE)(Q).
The main result of the paper reads as follows:

Theorem 3.1. Under assumptions (F1)-(F3), (G1)-(G3), there exist three differ-
ent, non trivial solutions of (1.1)) and (1.2). Moreover these solutions are, one
positive, one negative and the other one has non-constant sign.
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4. THE PROOF FOR THE NEUMANN PROBLEM

The proof uses the similar approach as in [I4]. That is, we will construct three
disjoint sets K; # () not containing 0 such that ® has a critical point in K;. These
sets will be subsets of smooth manifolds N; € W) (Q) which we will obtain by
imposing a sign condition and a normalization condition on admissible functions.
Let

Ny = {u e WHE(Q) . / uy dr > 0,(V®(u),u’) =0},
Q
Ny = fu e Wr@(Q) : / w_dz > 0, (VO(u),u) = 0},
Q
N3 = N; N Noy,

where uy = max{u,0}, u_ = max{—u, 0} are the positive and negative parts of u.
In fact, following Nehari [13], conditions in N;, (i = 1,2, 3), are norming condi-
tions for the positive and negative parts of u.
Also we define

Klz{U€N1|UZO}, KQZ{U€N2|U§O},K3:N3.

To prove that the sets N;, K; possess the properties stated at the beginning of the
paragraph we establish the following estimate:

Lemma 4.1. There exist constants ¢; > 0,5 = 1,2, such that for any u € K;,
; p- Pt p(@) p(z)
ey min{[[ul[” -, [[ul[” } < /(\VUI + [u["*)) dx
Q

T, u)udx z,u)udS
< [ fewudet [ g
< co®(u).

Proof. Since u € K;, we have

/(\Vu\p($)+|u|p(:”))da::/f(x,u)udx+/ g(x,uw)udS.
Q Q o9

This proves the second inequality. Now, by (F3) and (G3)

1
/ F(z,u)dx < — [ f(z,u)udz,
Q €2 Jo

1
G(z,u)dS < — g(x, u)udS.
20 k2 Joo

So for ¢ = max{1/cy,1/ka} < 1/pT,

1

®(u) > ——C/Vup(””)—l— ulP®) dg.
(u) (p+ )Ql | |ul

This proves the third inequality. The first inequality is easily obtained by proposi-
tion 2.3 O
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Lemma 4.2. There exists ¢ > 0 such that
/Q(|W|p<w> +uP®)dz > ¢ for u € K,
/Q(|Vu|p(‘"”) + |u\p(I)) dr >c forue€ Ks,
/Q(|Vui|p(w) + |ui\p($)) dx >c¢ foru € Ks.
Proof. By the definitions of K;, conditions (F3), (G3) and proposition
[ (Vs s )

:/f(:z:,ui)uider/ g(z,us)usdS

<c/|ui|q das+/|ui|””)dx

< efflus ] + flus )

,’,i
(‘vui‘ z) + |U:|:| + |Vui|p(m + |ui|p(z))

p(l’
+

aE r
el [ 1902+ sl d) = + ([ [Fusl® 4+ sl ) =1,
Q Q

IA

Here by UP" we mean maX{U’ﬁ, U?P }. Then obviously the conclusion holds since
pt<q,r . O
Lemma 4.3. There exists ¢ > 0 such that ®(u) > ¢ [,(|VulP @) 4 |uP®) dz for
every u € WHPE)(Q) s.t. |jul| < c.

Proof. By (F3),

~

(G3) and the Sobolev inequalities in proposition we have

D(u) = (IVulP@ + [u"®) de — F(u) — G(u)

1
o p(z
L

(

~

(Va4 @) d = of [ Jufr® da+ [ u @ da)
Q Q

v
+‘H{Q\\
%

)
(9 @) do = [ [ do+ [ o da)
Q Q

> c/ (\Vu|p(x) + |u|p("”))dx
Q

if |Ju] is sufficiently small, since p*™ < ¢~,r~ for all z € Q, and the embedding
from WP (Q) to L) (). O

Lemma 4.4. Put PT(u) = uy, P~ (u) = u_, then the mapping PT and P~:
WP (Q) — WHPE)(Q) is continuous.

Proof. Here we prove only that the projection Pt : WP (Q) — Whrl)(Q) is
continuous. Let u,, — u in W'P®)(Q), we prove (u,)y — uy in WHPE(Q). Tt is
obvious the following inequality holds:

() () = s (@)] < Jun (@) — u(@)], for ace. a € Q,
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which implies
[(tn) 4 () — uy (2)]P®) < up(z) — u(z)P,  for ae. z € Q.
So [q [un(z) — u(z)[P@ dz — 0 implies [, [(un)+(z) — uy (2)[P®) dz — 0. Then

(tn)4 — uy in LPE)(Q).
Next we prove |V (un)+ — Vg [pe) — 0. Define g : R — R by

0={3 126
then
V()4 (x) = Vuy (2)]
= 19(un(2))Vun(z) = g(u(z)) Vu(z)]
< g(un(@))(Vun(z) = Vu()) + [(9(un()) = g(u(z))) Vu(z)]
< [Vun () = Vu(@)] +[(9(un(2)) = g(u(z))) Vu(z)],

IV (un) 4 (x) = Vg (2)|pa) < [Vun = Vulp@) +[(9(un) = 9(w))Vulpa).-

We already know that |Vu, — Vul,,) — 0. And by [(9(u,) — g(u))Vu| — 0
and the Lebesgue Dominated Convergence Theorem, we conclude that [, [(g(un) —
g(u))Vul[P®) dz — 0. That is [(9(wn) —g(u))Vulp@) — 0. So (|Vun) 4 —Vuy|pe) —
0, which ends the proof. ([l

Remark. By the above Lemma, for any ¢ > 0, the set {u € WP (Q) : [lug| < ¢}
is open in WHP@)(Q), and the set {u € W'PE(Q) : |lug| < ¢} is closed in
wir)(Q).

The regularity properties of the sets N; are stated in the following Lemma.

Lemma 4.5. (1) N; is a CY' sub-manifold of WP (Q) of co-dimension
1(: = 1,2),2(i = 3) respectively;
(2) The sets K; are complete;
(3) For any u € N;, we have the direct decomposition

TuVVl’p(m)(Q) = T,N; ® span{u, },
T, W@ (Q) = T, Ny & spanf{u_},
TuWLp(f)(Q) = T,N5 @ span{uy,u_},

where T, N; is the tangent space at u of the Banach manifold N;. Finally,
the projection onto the first component in this decomposition is uniformly
continuous on bounded sets of Nj.

Proof. (1) Denote

Np:memﬂﬂ@mn/u“m>oh

Ny = {u € wtr@) \/u dx > 0},

N} = N, NN,
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By the continuous embedding of WP (Q) — LY(), the set N/ is open in
WP (Q). Therefore it suffices to show that N; is a smooth sub-manifold of
N/. By the implicit function theorem, part (1) of the lemma will be followed from
a representation of N; as the inverse image of a regular value of a C!-function
¥; : Nl = R™ with m = 1( = 1,2),m = 2(i = 3) respectively. In fact we define:
for u € Ny

Y1 (u) = /Q(|VU+|’)(”:) + [y [P9) da — (F'(w), uy) — (G (u), uy);
for u € N/
Pa(u) = /Q(|Vuf|p(z) + u[P) dx — (F'(u),u) = (G (w),u-);

For u € N}
Y3(u) = (P1(u),a(u)).

Then N; = w;l(O) and that 0 is a regular value of v; may be seen from the
estimates:

(Vor(.u) = [ o)+ V0P do = [ e
+ f(z,u)uy do — / gulz, w)u? + g(z,u)usdS
o0
<(pt-1) /Q flz,u)uy do — /Q fulz,w)u? dx

+(pt — 1)/ g(x,u)u+d5'—/ Gu(z, u)u’dS.
o9 a0

By (F3), (G3) the last term is bounded by
0" 1= [ S de s of <147 [ glouugds
Q o0

Recall that ¢1, k1 < 1/(p™ — 1), and by Lemma the above formula is bounded
by

_c/ (V[P 4 Jus [P)) da,
Q

which is strictly negative by Lemma [4.2] Therefore, N; is a smooth sub-manifold
of W1P(®)  The exact same argument applies to Ny. Since, trivially,

(Vi (u), us) = (Vipa(u),uy) =0

for u € N3, the same argument holds for Ns.

(2) Let {u;} be a Cauchy sequence in K;. Then u; — u € WP (Q) and also
uj+ — uy € WHPE)(Q). By Lemma u € {u € W@ (Q)|u > 0,u # 0}. Since
continuity of 1; that u € K;.

(3) By (1), we have the direct decomposition T, W'P(*)(Q) = T,, Ny @span{u, },
T, W@ (Q) = T,Ny @ span{u_}, T,W'P®)(Q) = T,N3 ® span{u,,u_}. Let
v e T,WP*)(Q) be a unit tangential vector. Then v = v/ + v” where v/, are
given by

0" = (Vi (u)| N"HVY1(u),v) € spanfur}, v =v—v" € T,Ny.

span{u4 }’
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Obviously the mapping V1) is uniformly bounded on bounded subsets of K; and
the uniform boundedness of ({(V); (u)|51%m (s} -))~1 on such sets is a consequence
of the estimate proved in part (1) of this proof. So we have the conclusion of the
lemma. The similar results hold for ¢ = 2, 3. ([l

Lemma 4.6. The function <I>|NV satisfies the Palais-Smale condition.

Proof. Let {ux} € N; be a Palais-Smale sequence, that is ®(uy) is uniformly
bounded and V‘I)| Ny (ux) — 0 strongly. We need to show that there exists a sub-
sequence uy,, that converges strongly.
In fact, the assumptions imply that V®(uy) — 0. To see this let v; € Tulevp(’”)(Q)
be a unit tangential vector such that
(VO(uy),vj) = ”vq)(uj)H(Wl,p(z)(Q))*l'

By Lemma(?)), v; = vi+vy € T, Ny+span{(u;)4 }, since ((u;) 1) < ®(uj) < c
and by Lemmal[4.1] then the sequence {(u;) } is uniformly bounded. Hence ||v;| >
[vjll = [lv} || implies v} is uniformly bounded in Wir@(Q). (Vo
(uj)+) = v1(u;) = 0.) Hence

IV (uj) | (wrse @))-1 = (VO(uy), v5) = (V| (u5),v5) — 0.

As wu; is bounded in W'P@)(Q), there exists u € W'P@)(Q) such that u; — u,
weakly in W) (Q). By condition (F2) and (G2), it is well known that the unre-
stricted functional ® satisfies the Palais-Smale condition, the lemma then follows.
Similaly when ¢ = 2,3 the lemma also holds. t

span{(u)4 ) (43))

From the proof of lemma we immediately obtain the following result.

Lemma 4.7 (Nehari result). Let u € N; be a critical point of the restricted func-
tional <I>}N’_. Then u is also a critical point of the unrestricted functional ®.

Lemma 4.8. There exists a critical point of the energy functional ® in K;.

Proof. From Lemma[4.3| we know that there exists a sufficient small constant 7 > 0,
such that

B(u) > T/ V@ + [uP® dz > rljulP+, (4.1)
Q

when |lu|| < 7. Let
U={ueN :|u"|| <7}
then U is an open set in N; which contains K, and U is complete. As ® is bounded
from below, we denote ¢ = inf, i ®(u). Let {u,} be the sequence minimizing ®
to ¢; i.e.m u,, € U, such that ®(u,) — ¢ as n — oco. From Lemma we know
that ®((un)+) < @(uy), so {(un)+} is also the minimizing sequence tending ® to
c. (In fact, (u,)y € K;.) Now we have ®((u,)y) < ¢+ &y, in which 7P+ > ¢
for Vn € N*. Put §, = /e, from Ekeland’s variational principle we know there
exists a sequence {v,} C U such that the following holds,
[(un)+ = vnll <0, P(vn) < P((un)+) < c+én,
n = 4.2
D (vy,) <<I>(w)—i—Z—an—wﬂ7 Yw e U, w# vy, (42)
We assert that
v, €U, e, [[(vn)—|l < T (4.3)
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In fact, if the above assertion doesn’t hold, i.e. |(v,)-| = 7, then from (4.1]) we
have

O((vn)-) 2 7l (va)- [P+ = 77+ F1 > ey

Observe that (v,)+ € K1 C U, we have

D(vn) = @((vn)+) + @((vn)-) > c+én,

which contradicts ®(v,) < ¢+ &,. So assertion holds.

Since v, € U and imply V@’Nl (v,) — 0 as n — oco. By Lemma
{vn} contains a convergence subsequence, which we also denote as {v, }, and v, —
vg € WHPE@(Q) as n — oo. From |[|(un)s — va| — 0, we have (u,)y — wvg in
WhPE)(Q). And from the completeness of K we get vy € K. At the same time
V<I>|N1 (vg) = 0. Then from Lemma V®(vg) = 0. Similarly, we can prove the
lemma when ¢ = 2, 3. [l

Finally since the sets K; are disjoint and 0 ¢ K; the proof of Theorem is
complete.
Remark For the Dirichlet problem ([1.2)), let

Ny = {u e WHD(Q) / wy dr > 0, (VU (), ut) = 0},
Q

Ny = fu e W@ (q) . / w_dz > 0, (VU(u),u~) = 0},
Q
N3 = N1 N Ny, Klz{UZOIUENl},

KQZ{’U,SOZUENQ}, K3 = N3,

with a similar approach, we can prove that (|1.2]) has three nontrivial solutions.
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