Electronic Journal of Differential Equations, Vol. 2010(2010), No. 33, pp. 1-11. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

EXISTENCE OF MULTIPLE SOLUTIONS FOR A $p(x)$-LAPLACE EQUATION

DUCHAO LIU

Abstract

This article shows the existence of at least three nontrivial solutions to the quasilinear elliptic equation $$
-\Delta_{p(x)} u+|u|^{p(x)-2} u=f(x, u)
$$ in a smooth bounded domain $\Omega \subset \mathbb{R}^{n}$, with the nonlinear boundary condition $|\nabla u|^{p(x)-2} \frac{\partial u}{\partial \nu}=g(x, u)$ or the Dirichlet boundary condition $u=0$ on $\partial \Omega$. In addition, this paper proves that one solution is positive, one is negative, and the last one is a sign-changing solution. The method used here is based on Nehari results, on three sub-manifolds of the space $W^{1, p(x)}(\Omega)$.

1. Introduction

The study of variational problems with nonstandard growth conditions is an interesting topic. $p(x)$-growth conditions can be regarded as an important case of nonstandard (p, q)-growth conditions. Many results have been obtained on this kind of problems; see for example [1, 2, 8, ,9, 12]. We refer the reader to the overview papers [10, 15] for advances and references in this area.

In this article, we consider the non-homogeneous nonlinear Neumann boundaryvalue problem

$$
\begin{gather*}
-\Delta_{p(x)} u+|u|^{p(x)-2} u=f(x, u), \quad x \in \Omega \\
|\nabla u|^{p(x)-2} \frac{\partial u}{\partial \nu}=g(x, u), \quad x \in \partial \Omega \tag{1.1}
\end{gather*}
$$

and the problem

$$
\begin{gather*}
-\Delta_{p(x)} u=f(x, u), \quad x \in \Omega \tag{1.2}\\
u=0, \quad x \in \partial \Omega
\end{gather*}
$$

where $\Omega \subset \mathbb{R}^{n}$ is a bounded domain with Lipschitz boundary $\partial \Omega, \frac{\partial}{\partial \nu}$ is the outer unit normal derivative, $p(x) \in C(\bar{\Omega})$, $\inf _{x \in \Omega} p(x)>1$.

The operator $-\Delta_{p(x)} u:=-\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)$ is called $p(x)$-Laplacian, which becomes p-Laplacian when $p(x) \equiv p$ (a constant). It possesses more complicated nonlinearities than the p-Laplacian. For related results involving the Laplace operator, see [1, 10, 15].

[^0]In this article, we construct three sub-manifolds of the space $W^{1, p(x)}(\Omega)$ based on Naheri ideas. And under some assumptions, there exist three different, nontrivial solutions of (1.1) or eqrefePprime on sub-manifold respectively. Moreover these solutions are, one positive, one negative and the other one has non-constant sign. This result extends the conclusions of [14], and in [3], the author also do some research with the similar method.

Throughout this paper, by (weak) solutions of (1.1) or (1.2) we understand critical points of the associated energy functional Φ or Ψ acting on the Sobolev space $W^{1, p(x)}(\Omega)$:

$$
\begin{gathered}
\Phi(v)=\int_{\Omega} \frac{1}{p(x)}\left(|\nabla v|^{p(x)}+|v|^{p(x)}\right) d x-\int_{\Omega} F(x, v) d x-\int_{\partial \Omega} G(x, v) d S \\
\Psi(v)=\int_{\Omega} \frac{1}{p(x)}|\nabla v|^{p(x)} d x-\int_{\Omega} F(x, v) d x
\end{gathered}
$$

where $F(x, u)=\int_{0}^{u} f(x, z) d z, G(x, u)=\int_{0}^{u} g(x, z) d z$ and $d S$ is the surface measure. We also denote $\mathcal{F}(v)=\int_{\Omega} F(x, v) d x$ and $\mathcal{G}(v)=\int_{\partial \Omega} G(x, v) d S$.

For a reflexive manifold $M, T_{u} M$ denotes the tangential space at a point $u \in M$, $T_{u}^{*} M$ denotes the co-tangential space.

In this paper $\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}$ denotes the vector space generated by the vectors v_{1}, \ldots, v_{k}.

2. The space $W^{1, p(x)}(\Omega)$

To discuss problem $\sqrt{1.1}$ or 1.2 , we need some results on the space $W^{1, p(x)}(\Omega)$ which we call variable exponent Sobolev space. Firstly, we state some basic properties of the space $W^{1, p(x)}(\Omega)$ which will be used later (for more details, see [5, 6, 7]).

Let Ω be a bounded domain of \mathbb{R}^{n}, denote:

$$
\begin{gathered}
C_{+}(\bar{\Omega})=\{h \in C(\bar{\Omega}) ; h(x)>1 \forall x \in \bar{\Omega}\} \\
h^{+}=\max _{x \in \bar{\Omega}} h(x), \quad h^{-}=\min _{x \in \bar{\Omega}} h(x), \quad h \in C(\bar{\Omega}) \\
L^{p(x)}(\Omega)=\left\{u: u \text { is a measurable real-valued function, } \int_{\Omega}|u|^{p(x)} d x<\infty\right\} .
\end{gathered}
$$

We introduce a norm on $L^{p(x)}(\Omega)$:

$$
|u|_{p(x)}=\inf \left\{\lambda>0: \int_{\Omega}\left|\frac{u(x)}{\lambda}\right|^{p(x)} d x \leq 1\right\}
$$

Then $\left(L^{p(x)}(\Omega),|\cdot|_{p(x)}\right)$ becomes a Banach space, we call it a generalized Lebesgue space.

Proposition 2.1 ($8, ~ 9]$).

(1) The space $\left(L^{p(x)}(\Omega),|\cdot|_{p(x)}\right)$ is a separable, uniformly convex Banach space, and has conjugate space $L^{q(x)}(\Omega)$, where $1 / q(x)+1 / p(x)=1$. For $u \in$ $L^{p(x)}(\Omega)$ and $v \in L^{q(x)}(\Omega)$, we have

$$
\left|\int_{\Omega} u v d x\right| \leq\left(\frac{1}{p^{-}}+\frac{1}{q^{-}}\right)|u|_{p(x)}|v|_{q(x)}
$$

(2) If $p_{1}, p_{2} \in C_{+}(\bar{\Omega}), p_{1}(x) \leq p_{2}(x)$, for any $x \in \Omega$, then $L^{p_{2}(x)}(\Omega) \hookrightarrow$ $L^{p_{1}(x)}(\Omega)$, and the imbedding is continuous.

Proposition 2.2 ([8, 18). If $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Caratheodory function and satisfies

$$
|f(x, s)| \leq a(x)+b \left\lvert\, s^{\frac{p_{1}(x)}{p_{2}(x)}}\right., \quad \text { for any } x \in \Omega, s \in \mathbb{R}
$$

where $p_{1}(x), p_{2}(x) \in C_{+}(\bar{\Omega}), a(x) \in L^{p_{2}(x)}(\Omega), a(x) \geq 0$, and $b \geq 0$ is a constant, then the Nemytsky operator from $L^{p_{1}(x)}(\Omega)$ to $L^{p_{2}(x)}(\Omega)$ defined by $\left(N_{f}(u)\right)(x)=$ $f(x, u(x))$ is a continuous and bounded operator.

Proposition 2.3 (8, 19]). Denote

$$
\rho(u)=\int_{\Omega}|u|^{p(x)} d x, \quad \forall u \in L^{p(x)}(\Omega)
$$

Then
(1) $|u(x)|_{p(x)}<1(=1 ;>1)$ if and only if $\rho(u)<1(=1 ;>1)$;
(2) $|u(x)|_{p(x)}>1$ implies $|u|_{p(x)}^{p^{-}} \leq \rho(u) \leq|u|_{p(x)}^{p^{+}} ;|u(x)|_{p(x)}<1$ implies $|u|_{p(x)}^{p^{-}} \geq \rho(u) \geq|u|_{p(x)}^{p^{+}} ;$
(3) $|u(x)|_{p(x)} \rightarrow 0$ if and only if $\rho(u) \rightarrow 0 ;|u(x)|_{p(x)} \rightarrow \infty$ if and only if $\rho(u) \rightarrow \infty$.

Proposition 2.4 (8, 19]). If $u, u_{n} \in L^{p(x)}(\Omega), n=1,2, \ldots$, then the following statements are equivalent:
(1) $\lim _{k \rightarrow \infty}\left|u_{k}-u\right|_{p(x)}=0$;
(2) $\lim _{k \rightarrow \infty} \rho\left(u_{k}-u\right)=0$;
(3) $u_{k} \rightarrow u$ in measure in Ω and $\lim _{k \rightarrow \infty} \rho\left(u_{k}\right)=\rho(u)$.

Let us define the space

$$
W^{1, p(x)}(\Omega)=\left\{u \in L^{p(x)}(\Omega):|\nabla u| \in L^{p(x)}(\Omega)\right\}
$$

equipped with the norm

$$
\|u\|=|u|_{p(x)}+|\nabla u|_{p(x)}, \quad \forall u \in W^{1, p(x)}(\Omega)
$$

Let $W_{0}^{1, p(x)}(\Omega)$ be the closure of $C_{0}^{\infty}(\Omega)$ in $W^{1, p(x)}(\Omega)$ and $p^{*}(x)=n p(x) /(n-p(x))$, $p_{\partial}^{*}(x)=(n-1) p(x) /(n-p(x))$, when $p(x)<n$.
Proposition 2.5 ([4, 8]). (1) $W_{(0)}^{1, p(x)}(\Omega)$ is separable reflexive Banach space;
(2) If $q \in C_{+}(\bar{\Omega})$ and $q(x)<p^{*}(x)$ for any $x \in \bar{\Omega}$, then the imbedding from $W^{1, p(x)}(\Omega)$ to $L^{q(x)}(\Omega)$ is compact and continuous;
(3) If $q \in C_{+}(\bar{\Omega})$ and $q(x)<p_{\partial}^{*}(x)$ for any $x \in \bar{\Omega}$, then the trace imbedding from $W^{1, p(x)}(\Omega)$ to $L^{q(x)}(\partial \Omega)$ is compact and continuous;
(4) (Poincaré) There is a constant $C>0$, such that

$$
|u|_{p(x)} \leq C|\nabla u|_{p(x)} \quad \forall u \in W_{0}^{1, p(x)}(\Omega)
$$

3. Assumptions and statement of main result

The assumptions on the source terms f and g are as follows:
(F1) $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a measurable function with respect to the first argument and continuous differentiable with respect to the second argument for a.e. $x \in \Omega$. Moreover, $f(x, 0)=0$ for every $x \in \bar{\Omega}$.
(F2) There exist $q(x), s(x), t(x)$, such that $p(x) \leq p^{+}<q^{-} \leq q(x)<p^{*}(x)$, $s(x)>p^{*}(x) /\left(p^{*}(x)-q(x)\right)$,

$$
t(x)=s(x) q(x) /(2+(q(x)-2) s(x))>p^{*}(x) /\left(p^{*}(x)-2\right)
$$

and there exist functions $a(x) \in L^{s(x)}(\Omega), b(x) \in L^{t(x)}(\Omega)$, such that for $x \in \Omega, u \in \mathbb{R}$,

$$
\left|f_{u}(x, u)\right| \leq a(x)|u|^{q(x)-2}+b(x)
$$

(F3) There exist constants $c_{1} \in\left(0,1 /\left(p^{+}-1\right)\right), c_{2}>p^{+}, 0<c_{3}<c_{4}$, such that for any $u \in L^{q(x)}(\Omega)$,

$$
\begin{aligned}
c_{3} \int_{\Omega}|u|^{q(x)} d x & \leq c_{2} \int_{\Omega} F(x, u) d x \leq \int_{\Omega} f(x, u) u d x \\
& \leq c_{1} \int_{\Omega} f_{u}(x, u) u^{2} d x \leq c_{4} \int_{\Omega}|u|^{q(x)} d x
\end{aligned}
$$

(G1) $g: \partial \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a measurable function with respect to the first argument and continuous differentiable with respect to the second argument for a.e. $x \in \partial \Omega$. Moreover, $g(x, 0)=0$ for every $x \in \partial \Omega$.
(G2) There exist functions $r(x), \sigma(x), \tau(x)$, such that $p(x) \leq p^{+}<r^{-} \leq r(x)<$ $p_{\partial}^{*}(x), \sigma(x)>p_{\partial}^{*}(x) /\left(p_{\partial}^{*}(x)-r(x)\right), \tau(x)=\sigma(x) r(x) /(2+(r(x)-2) \sigma(x))>$ $p_{\partial}^{*}(x) /\left(p_{\partial}^{*}(x)-2\right)$ and there exist functions $\alpha(x) \in L^{\sigma(x)}(\partial \Omega), \beta(x) \in$ $L^{\tau(x)}(\partial \Omega)$, such that for $x \in \partial \Omega, u \in \mathbb{R}$,

$$
\left|g_{u}(x, u)\right| \leq \alpha(x)|u|^{r(x)-2}+\beta(x)
$$

(G3) There exist constants $k_{1} \in\left(0,1 /\left(p^{+}-1\right)\right), k_{2}>p^{+}, 0<k_{3}<k_{4}$, such that for any $u \in L^{r(x)}(\partial \Omega)$ satisfies

$$
\begin{aligned}
k_{3} \int_{\Omega}|u|^{r(x)} d x & \leq k_{2} \int_{\partial \Omega} G(x, u) d S \leq \int_{\partial \Omega} g(x, u) u d S \\
& \leq k_{1} \int_{\partial \Omega} g_{u}(x, u) u^{2} d S \leq k_{4} \int_{\Omega}|u|^{r(x)} d x
\end{aligned}
$$

We remark that by assumptions (F1), (F2) there exists $\pi(x)<p^{*}(x)$ such that the operators $u \rightarrow f(u)$ is bounded and Lipschitz continuous from $L^{\pi(x)}(\Omega) \rightarrow$ $\left(W^{1, p(x)}(\Omega)\right)^{-1}$. Moreover, by the compactness of the embedding $W^{1, p(x)}(\Omega) \hookrightarrow$ $L^{\pi(x)}(\Omega)$ the operator is compact if viewed as acting on $W^{1, p(x)}(\Omega)$. Hence the expression

$$
\psi(u, \cdot)=\langle\nabla \Phi(u), \cdot\rangle
$$

is well defined and Lipschitz continuously differentiable in $W^{1, p(x)}(\Omega)$, where $\langle\cdot, \cdot\rangle$ is the duality pairing between $\left(W^{1, p(x)}(\Omega)\right)^{-1}$ and $W^{1, p(x)}(\Omega)$.

The main result of the paper reads as follows:
Theorem 3.1. Under assumptions (F1)-(F3), (G1)-(G3), there exist three different, non trivial solutions of 1.1 and 1.2. Moreover these solutions are, one positive, one negative and the other one has non-constant sign.

4. The proof for the Neumann problem

The proof uses the similar approach as in [14. That is, we will construct three disjoint sets $K_{i} \neq \emptyset$ not containing 0 such that Φ has a critical point in K_{i}. These sets will be subsets of smooth manifolds $N_{i} \in W^{1, p(x)}(\Omega)$ which we will obtain by imposing a sign condition and a normalization condition on admissible functions. Let

$$
\begin{gathered}
N_{1}=\left\{u \in W^{1, p(x)}(\Omega): \int_{\Omega} u_{+} d x>0,\left\langle\nabla \Phi(u), u^{+}\right\rangle=0\right\}, \\
N_{2}=\left\{u \in W^{1, p(x)}(\Omega): \int_{\Omega} u_{-} d x>0,\left\langle\nabla \Phi(u), u^{-}\right\rangle=0\right\}, \\
N_{3}=N_{1} \cap N_{2}
\end{gathered}
$$

where $u_{+}=\max \{u, 0\}, u_{-}=\max \{-u, 0\}$ are the positive and negative parts of u.
In fact, following Nehari [13], conditions in $N_{i},(i=1,2,3)$, are norming conditions for the positive and negative parts of u.

Also we define

$$
K_{1}=\left\{u \in N_{1} \mid u \geq 0\right\}, \quad K_{2}=\left\{u \in N_{2} \mid u \leq 0\right\}, K_{3}=N_{3} .
$$

To prove that the sets N_{i}, K_{i} possess the properties stated at the beginning of the paragraph we establish the following estimate:

Lemma 4.1. There exist constants $c_{j}>0, j=1,2$, such that for any $u \in K_{i}$,

$$
\begin{aligned}
c_{1} \min \left\{\|u\|^{p^{-}},\|u\|^{p^{+}}\right\} & \leq \int_{\Omega}\left(|\nabla u|^{p(x)}+|u|^{p(x)}\right) d x \\
& \leq \int_{\Omega} f(x, u) u d x+\int_{\partial \Omega} g(x, u) u d S \\
& \leq c_{2} \Phi(u) .
\end{aligned}
$$

Proof. Since $u \in K_{i}$, we have

$$
\int_{\Omega}\left(|\nabla u|^{p(x)}+|u|^{p(x)}\right) d x=\int_{\Omega} f(x, u) u d x+\int_{\partial \Omega} g(x, u) u d S .
$$

This proves the second inequality. Now, by (F3) and (G3)

$$
\begin{aligned}
\int_{\Omega} F(x, u) d x & \leq \frac{1}{c_{2}} \int_{\Omega} f(x, u) u d x \\
\int_{\partial \Omega} G(x, u) d S & \leq \frac{1}{k_{2}} \int_{\partial \Omega} g(x, u) u d S
\end{aligned}
$$

So for $c=\max \left\{1 / c_{2}, 1 / k_{2}\right\}<1 / p^{+}$,

$$
\Phi(u) \geq\left(\frac{1}{p^{+}}-c\right) \int_{\Omega}|\nabla u|^{p(x)}+|u|^{p(x)} d x
$$

This proves the third inequality. The first inequality is easily obtained by proposition 2.3 .

Lemma 4.2. There exists $c>0$ such that

$$
\begin{array}{cl}
\int_{\Omega}\left(|\nabla u|^{p(x)}+|u|^{p(x)}\right) d x \geq c & \text { for } u \in K_{1} \\
\int_{\Omega}\left(|\nabla u|^{p(x)}+|u|^{p(x)}\right) d x \geq c & \text { for } u \in K_{2} \\
\int_{\Omega}\left(\left|\nabla u_{ \pm}\right|^{p(x)}+\left|u_{ \pm}\right|^{p(x)}\right) d x \geq c & \text { for } u \in K_{3}
\end{array}
$$

Proof. By the definitions of K_{i}, conditions (F3), (G3) and proposition 2.3 ,

$$
\begin{aligned}
& \int_{\Omega}\left(\left|\nabla u_{ \pm}\right|^{p(x)}+\left|u_{ \pm}\right|^{p(x)}\right) d x \\
& =\int_{\Omega} f\left(x, u_{ \pm}\right) u_{ \pm} d x+\int_{\partial \Omega} g\left(x, u_{ \pm}\right) u_{ \pm} d S \\
& \leq c\left(\int_{\Omega}\left|u_{ \pm}\right|^{q(x)} d x+\int_{\Omega}\left|u_{ \pm}\right|^{r(x)} d x\right) \\
& \leq c\left(\left\|u_{ \pm}\right\|^{q^{ \pm}}+\left\|u_{ \pm}\right\|^{r^{ \pm}}\right) \\
& \leq c\left(\left|\nabla u_{ \pm}\right|_{p(x)}^{q^{ \pm}}+\left|u_{ \pm}\right|_{p(x)}^{q^{ \pm}}+\left|\nabla u_{ \pm}\right|_{p(x)}^{r^{ \pm}}+\left|u_{ \pm}\right|_{p(x)}^{r^{ \pm}}\right) \\
& \leq c\left[\left(\int_{\Omega}\left|\nabla u_{ \pm}\right|^{p(x)}+\left|u_{ \pm}\right|^{p(x)} d x\right)^{\frac{q^{ \pm}}{p \pm}}+\left(\int_{\Omega}\left|\nabla u_{ \pm}\right|^{p(x)}+\left|u_{ \pm}\right|^{p(x)} d x\right)^{\frac{r^{ \pm}}{p \pm}}\right]
\end{aligned}
$$

Here by $U^{p^{ \pm}}$we mean $\max \left\{U^{p^{+}}, U^{p^{-}}\right\}$. Then obviously the conclusion holds since $p^{+}<q^{-}, r^{-}$.

Lemma 4.3. There exists $c>0$ such that $\Phi(u) \geq c \int_{\Omega}\left(|\nabla u|^{p(x)}+|u|^{p(x)}\right) d x$ for every $u \in W^{1, p(x)}(\Omega)$ s.t. $\|u\| \leq c$.
Proof. By (F3), (G3) and the Sobolev inequalities in proposition 2.5 we have

$$
\begin{aligned}
\Phi(u) & =\int_{\Omega} \frac{1}{p(x)}\left(|\nabla u|^{p(x)}+|u|^{p(x)}\right) d x-\mathcal{F}(u)-\mathcal{G}(u) \\
& \geq \int_{\Omega} \frac{1}{p(x)}\left(|\nabla u|^{p(x)}+|u|^{p(x)}\right) d x-c\left(\int_{\Omega}|u|^{q(x)} d x+\int_{\Omega}|u|^{r(x)} d x\right) \\
& \geq \frac{1}{p^{+}} \int_{\Omega}\left(|\nabla u|^{p(x)}+|u|^{p(x)}\right) d x-c\left(\int_{\Omega}|u|^{q(x)} d x+\int_{\Omega}|u|^{r(x)} d x\right) \\
& \geq c \int_{\Omega}\left(|\nabla u|^{p(x)}+|u|^{p(x)}\right) d x
\end{aligned}
$$

if $\|u\|$ is sufficiently small, since $p^{+}<q^{-}, r^{-}$,for all $x \in \Omega$, and the embedding from $W^{1, p(x)}(\Omega)$ to $L^{q(x)}(\Omega)$.

Lemma 4.4. Put $P^{+}(u)=u_{+}, P^{-}(u)=u_{-}$, then the mapping P^{+}and P^{-}: $W^{1, p(x)}(\Omega) \rightarrow W^{1, p(x)}(\Omega)$ is continuous.

Proof. Here we prove only that the projection $P^{+}: W^{1, p(x)}(\Omega) \rightarrow W^{1, p(x)}(\Omega)$ is continuous. Let $u_{n} \rightarrow u$ in $W^{1, p(x)}(\Omega)$, we prove $\left(u_{n}\right)_{+} \rightarrow u_{+}$in $W^{1, p(x)}(\Omega)$. It is obvious the following inequality holds:

$$
\left|\left(u_{n}\right)_{+}(x)-u_{+}(x)\right| \leq\left|u_{n}(x)-u(x)\right|, \quad \text { for a.e. } x \in \Omega,
$$

which implies

$$
\left|\left(u_{n}\right)_{+}(x)-u_{+}(x)\right|^{p(x)} \leq\left|u_{n}(x)-u(x)\right|^{p(x)}, \quad \text { for a.e. } x \in \Omega .
$$

So $\int_{\Omega}\left|u_{n}(x)-u(x)\right|^{p(x)} d x \rightarrow 0$ implies $\int_{\Omega}\left|\left(u_{n}\right)_{+}(x)-u_{+}(x)\right|^{p(x)} d x \rightarrow 0$. Then $\left(u_{n}\right)_{+} \rightarrow u_{+}$in $L^{p(x)}(\Omega)$.

Next we prove $\left|\nabla\left(u_{n}\right)_{+}-\nabla u_{+}\right|_{p(x)} \rightarrow 0$. Define $g: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
g(t)= \begin{cases}1, & t>0 \\ 0, & t \leq 0\end{cases}
$$

then

$$
\begin{aligned}
& \left|\nabla\left(u_{n}\right)_{+}(x)-\nabla u_{+}(x)\right| \\
& =\left|g\left(u_{n}(x)\right) \nabla u_{n}(x)-g(u(x)) \nabla u(x)\right| \\
& \leq\left|g\left(u_{n}(x)\right)\left(\nabla u_{n}(x)-\nabla u(x)\right)\right|+\left|\left(g\left(u_{n}(x)\right)-g(u(x))\right) \nabla u(x)\right| \\
& \leq\left|\nabla u_{n}(x)-\nabla u(x)\right|+\left|\left(g\left(u_{n}(x)\right)-g(u(x))\right) \nabla u(x)\right|,
\end{aligned}
$$

so

$$
\left|\nabla\left(u_{n}\right)_{+}(x)-\nabla u_{+}(x)\right|_{p(x)} \leq\left|\nabla u_{n}-\nabla u\right|_{p(x)}+\left|\left(g\left(u_{n}\right)-g(u)\right) \nabla u\right|_{p(x)} .
$$

We already know that $\left|\nabla u_{n}-\nabla u\right|_{p(x)} \rightarrow 0$. And by $\left|\left(g\left(u_{n}\right)-g(u)\right) \nabla u\right| \rightarrow 0$ and the Lebesgue Dominated Convergence Theorem, we conclude that $\int_{\Omega} \mid\left(g\left(u_{n}\right)-\right.$ $g(u))\left.\nabla u\right|^{p(x)} d x \rightarrow 0$. That is $\left|\left(g\left(u_{n}\right)-g(u)\right) \nabla u\right|_{p(x)} \rightarrow 0$. So $\left(\mid \nabla u_{n}\right)_{+}-\left.\nabla u_{+}\right|_{p(x)} \rightarrow$ 0 , which ends the proof.

Remark. By the above Lemma, for any $c>0$, the set $\left\{u \in W^{1, p(x)}(\Omega):\left\|u_{ \pm}\right\|<c\right\}$ is open in $W^{1, p(x)}(\Omega)$, and the set $\left\{u \in W^{1, p(x)}(\Omega):\left\|u_{ \pm}\right\| \leq c\right\}$ is closed in $W^{1, p(x)}(\Omega)$.

The regularity properties of the sets N_{i} are stated in the following Lemma.
Lemma 4.5. (1) N_{i} is a $C^{1,1}$ sub-manifold of $W^{1, p(x)}(\Omega)$ of co-dimension $1(i=1,2), 2(i=3)$ respectively;
(2) The sets K_{i} are complete;
(3) For any $u \in N_{i}$, we have the direct decomposition

$$
\begin{gathered}
T_{u} W^{1, p(x)}(\Omega)=T_{u} N_{1} \oplus \operatorname{span}\left\{u_{+}\right\} \\
T_{u} W^{1, p(x)}(\Omega)=T_{u} N_{2} \oplus \operatorname{span}\left\{u_{-}\right\} \\
T_{u} W^{1, p(x)}(\Omega)=T_{u} N_{3} \oplus \operatorname{span}\left\{u_{+}, u_{-}\right\},
\end{gathered}
$$

where $T_{u} N_{i}$ is the tangent space at u of the Banach manifold N_{i}. Finally, the projection onto the first component in this decomposition is uniformly continuous on bounded sets of N_{i}.

Proof. (1) Denote

$$
\begin{aligned}
& N_{1}^{\prime}=\left\{u \in W^{1, p(x)}(\Omega) \mid \int_{\Omega} u_{+} d x>0\right\}, \\
& N_{2}^{\prime}=\left\{u \in W^{1, p(x)}(\Omega) \mid \int_{\Omega} u_{-} d x>0\right\}, \\
& N_{3}^{\prime}=N_{1}^{\prime} \cap N_{1}^{\prime}
\end{aligned}
$$

By the continuous embedding of $W^{1, p(x)}(\Omega) \rightarrow L^{1}(\Omega)$, the set N_{i}^{\prime} is open in $W^{1, p(x)}(\Omega)$. Therefore it suffices to show that N_{i} is a smooth sub-manifold of N_{i}^{\prime}. By the implicit function theorem, part (1) of the lemma will be followed from a representation of N_{i} as the inverse image of a regular value of a $C^{1,1}$-function $\psi_{i}: N_{i}^{\prime} \rightarrow \mathbb{R}^{m}$ with $m=1(i=1,2), m=2(i=3)$ respectively. In fact we define: for $u \in N_{1}^{\prime}$

$$
\psi_{1}(u)=\int_{\Omega}\left(\left|\nabla u_{+}\right|^{p(x)}+\left|u_{+}\right|^{p(x)}\right) d x-\left\langle\mathcal{F}^{\prime}(u), u_{+}\right\rangle-\left\langle\mathcal{G}^{\prime}(u), u_{+}\right\rangle
$$

for $u \in N_{2}^{\prime}$

$$
\psi_{2}(u)=\int_{\Omega}\left(\left|\nabla u_{-}\right|^{p(x)}+\left|u_{-}\right|^{p(x)}\right) d x-\left\langle\mathcal{F}^{\prime}(u), u_{-}\right\rangle-\left\langle\mathcal{G}^{\prime}(u), u_{-}\right\rangle
$$

For $u \in N_{3}^{\prime}$

$$
\psi_{3}(u)=\left(\psi_{1}(u), \psi_{2}(u)\right)
$$

Then $N_{i}=\psi_{i}^{-1}(0)$ and that 0 is a regular value of ψ_{i} may be seen from the estimates:

$$
\begin{aligned}
\left\langle\nabla \psi_{1}(u), u_{+}\right\rangle= & \int_{\Omega} p(x)\left(\left|u_{+}\right|^{p(x)}+\left|\nabla u_{+}\right|^{p(x)}\right) d x-\int_{\Omega} f_{u}(x, u) u_{+}^{2} \\
& +f(x, u) u_{+} d x-\int_{\partial \Omega} g_{u}(x, u) u_{+}^{2}+g(x, u) u_{+} d S \\
\leq & \left(p^{+}-1\right) \int_{\Omega} f(x, u) u_{+} d x-\int_{\Omega} f_{u}(x, u) u_{+}^{2} d x \\
& +\left(p^{+}-1\right) \int_{\partial \Omega} g(x, u) u_{+} d S-\int_{\partial \Omega} g_{u}(x, u) u_{+}^{2} d S
\end{aligned}
$$

By (F3), (G3) the last term is bounded by

$$
\left(p^{+}-1-c_{1}^{-1}\right) \int_{\Omega} f(x, u) u_{+} d x+\left(p^{+}-1-k_{1}^{-1}\right) \int_{\partial \Omega} g(x, u) u_{+} d S
$$

Recall that $c_{1}, k_{1}<1 /\left(p^{+}-1\right)$, and by Lemma 4.1 the above formula is bounded by

$$
-c \int_{\Omega}\left(\left|\nabla u_{+}\right|^{p(x)}+\left|u_{+}\right|^{p(x)}\right) d x
$$

which is strictly negative by Lemma 4.2 . Therefore, N_{1} is a smooth sub-manifold of $W^{1, p(x)}$. The exact same argument applies to N_{2}. Since, trivially,

$$
\left\langle\nabla \psi_{1}(u), u_{-}\right\rangle=\left\langle\nabla \psi_{2}(u), u_{+}\right\rangle=0
$$

for $u \in N_{3}$, the same argument holds for N_{3}.
(2) Let $\left\{u_{j}\right\}$ be a Cauchy sequence in K_{i}. Then $u_{j} \rightarrow u \in W^{1, p(x)}(\Omega)$ and also $u_{j \pm} \rightarrow u_{ \pm} \in W^{1, p(x)}(\Omega)$. By Lemma 4.2, $u \in\left\{u \in W^{1, p(x)}(\Omega) \mid u \geq 0, u \neq 0\right\}$. Since continuity of ψ_{i} that $u \in K_{i}$.
(3) By (1), we have the direct decomposition $T_{u} W^{1, p(x)}(\Omega)=T_{u} N_{1} \oplus \operatorname{span}\left\{u_{+}\right\}$, $T_{u} W^{1, p(x)}(\Omega)=T_{u} N_{2} \oplus \operatorname{span}\left\{u_{-}\right\}, T_{u} W^{1, p(x)}(\Omega)=T_{u} N_{3} \oplus \operatorname{span}\left\{u_{+}, u_{-}\right\}$. Let $v \in T_{u} W^{1, p(x)}(\Omega)$ be a unit tangential vector. Then $v=v^{\prime}+v^{\prime \prime}$ where $v^{\prime}, v^{\prime \prime}$ are given by

$$
v^{\prime \prime}=\left(\left\langle\left.\nabla \psi_{1}(u)\right|_{\operatorname{span}\left\{u_{+}\right\}}, \cdot\right\rangle\right)^{-1}\left\langle\nabla \psi_{1}(u), v\right\rangle \in \operatorname{span}\left\{u_{+}\right\}, \quad v^{\prime}=v-v^{\prime \prime} \in T_{u} N_{1}
$$

Obviously the mapping $\nabla \psi_{1}$ is uniformly bounded on bounded subsets of K_{1} and the uniform boundedness of $\left(\left\langle\left.\nabla \psi_{1}(u)\right|_{\text {span }\left\{u_{+}\right\}}, \cdot\right\rangle\right)^{-1}$ on such sets is a consequence of the estimate proved in part (1) of this proof. So we have the conclusion of the lemma. The similar results hold for $i=2,3$.

Lemma 4.6. The function $\left.\Phi\right|_{N_{i}}$ satisfies the Palais-Smale condition.
Proof. Let $\left\{u_{k}\right\} \in N_{1}$ be a Palais-Smale sequence, that is $\Phi\left(u_{k}\right)$ is uniformly bounded and $\left.\nabla \Phi\right|_{N_{1}}\left(u_{k}\right) \rightarrow 0$ strongly. We need to show that there exists a subsequence $u_{k_{i}}$, that converges strongly.
In fact, the assumptions imply that $\nabla \Phi\left(u_{k}\right) \rightarrow 0$. To see this let $v_{j} \in T_{u_{j}} W^{1, p(x)}(\Omega)$ be a unit tangential vector such that

$$
\left\langle\nabla \Phi\left(u_{j}\right), v_{j}\right\rangle=\left\|\nabla \Phi\left(u_{j}\right)\right\|_{\left(W^{1, p(x)}(\Omega)\right)^{-1}}
$$

By Lemma 4.5 (3), $v_{j}=v_{j}^{\prime}+v_{j}^{\prime \prime} \in T_{u_{j}} N_{1}+\operatorname{span}\left\{\left(u_{j}\right)_{+}\right\}$, since $\Phi\left(\left(u_{j}\right)_{+}\right) \leq \Phi\left(u_{j}\right) \leq c$ and by Lemma 4.1. then the sequence $\left\{\left(u_{j}\right)_{+}\right\}$is uniformly bounded. Hence $\left\|v_{j}\right\| \geq$ $\left\|v_{j}^{\prime}\right\|-\left\|v_{j}^{\prime \prime}\right\|$ implies v_{j}^{\prime} is uniformly bounded in $W^{1, p(x)}(\Omega) .\left(\left\langle\left.\nabla \Phi\right|_{\operatorname{span}\left\{\left(u_{j}\right)_{+}\right\}}\left(u_{j}\right)\right.\right.$, $\left.\left(u_{j}\right)_{+}\right\rangle=\psi_{1}\left(u_{j}\right)=0$.) Hence

$$
\left\|\nabla \Phi\left(u_{j}\right)\right\|_{\left(W^{1, p(x)}(\Omega)\right)^{-1}}=\left\langle\nabla \Phi\left(u_{j}\right), v_{j}\right\rangle=\left\langle\left.\nabla \Phi\right|_{N_{1}}\left(u_{j}\right), v_{j}^{\prime}\right\rangle \rightarrow 0
$$

As u_{j} is bounded in $W^{1, p(x)}(\Omega)$, there exists $u \in W^{1, p(x)}(\Omega)$ such that $u_{j} \rightharpoonup u$, weakly in $W^{1, p(x)}(\Omega)$. By condition (F2) and (G2), it is well known that the unrestricted functional Φ satisfies the Palais-Smale condition, the lemma then follows. Similaly when $i=2,3$ the lemma also holds.

From the proof of lemma 4.6. we immediately obtain the following result.
Lemma 4.7 (Nehari result). Let $u \in N_{i}$ be a critical point of the restricted functional $\left.\Phi\right|_{N_{i}}$. Then u is also a critical point of the unrestricted functional Φ.

Lemma 4.8. There exists a critical point of the energy functional Φ in K_{i}.
Proof. From Lemma 4.3 we know that there exists a sufficient small constant $\tau>0$, such that

$$
\begin{equation*}
\Phi(u) \geq \tau \int_{\Omega}|\nabla u|^{p(x)}+|u|^{p(x)} d x \geq \tau\|u\|^{p_{+}} \tag{4.1}
\end{equation*}
$$

when $\|u\| \leq \tau$. Let

$$
U=\left\{u \in N_{1}:\left\|u^{-}\right\|<\tau\right\}
$$

then U is an open set in N_{1} which contains K_{1}, and \bar{U} is complete. As Φ is bounded from below, we denote $c=\inf _{u \in \bar{U}} \Phi(u)$. Let $\left\{u_{n}\right\}$ be the sequence minimizing Φ to c; i.e.m $u_{n} \in \bar{U}$, such that $\Phi\left(u_{n}\right) \rightarrow c$ as $n \rightarrow \infty$. From Lemma 4.3 we know that $\Phi\left(\left(u_{n}\right)_{+}\right) \leq \Phi\left(u_{n}\right)$, so $\left\{\left(u_{n}\right)_{+}\right\}$is also the minimizing sequence tending Φ to c. (In fact, $\left(u_{n}\right)_{+} \in K_{1}$.) Now we have $\Phi\left(\left(u_{n}\right)_{+}\right)<c+\varepsilon_{n}$, in which $\tau^{p_{+}+1}>\varepsilon_{n}$ for $\forall n \in N^{+}$. Put $\delta_{n}=\sqrt{\varepsilon_{n}}$, from Ekeland's variational principle we know there exists a sequence $\left\{v_{n}\right\} \subset \bar{U}$ such that the following holds,

$$
\begin{align*}
& \left\|\left(u_{n}\right)_{+}-v_{n}\right\| \leq \delta_{n}, \quad \Phi\left(v_{n}\right) \leq \Phi\left(\left(u_{n}\right)_{+}\right)<c+\varepsilon_{n} \\
& \Phi\left(v_{n}\right)<\Phi(w)+\frac{\varepsilon_{n}}{\delta_{n}}\left\|v_{n}-w\right\|, \quad \forall w \in \bar{U}, w \neq v_{n} \tag{4.2}
\end{align*}
$$

We assert that

$$
\begin{equation*}
v_{n} \in U, \quad \text { i.e., }\left\|\left(v_{n}\right)_{-}\right\|<\tau \tag{4.3}
\end{equation*}
$$

In fact, if the above assertion doesn't hold, i.e. $\left\|\left(v_{n}\right)_{-}\right\|=\tau$, then from 4.1 we have

$$
\Phi\left(\left(v_{n}\right)_{-}\right) \geq \tau\left\|\left(v_{n}\right)_{-}\right\|^{p_{+}}=\tau^{p_{+}+1}>\varepsilon_{n}
$$

Observe that $\left(v_{n}\right)_{+} \in K_{1} \subset U$, we have

$$
\Phi\left(v_{n}\right)=\Phi\left(\left(v_{n}\right)_{+}\right)+\Phi\left(\left(v_{n}\right)_{-}\right) \geq c+\varepsilon_{n},
$$

which contradicts $\Phi\left(v_{n}\right)<c+\varepsilon_{n}$. So assertion 4.3) holds.
Since $v_{n} \in U$ and 4.2 imply $\left.\nabla \Phi\right|_{N_{1}}\left(v_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. By Lemma 4.6. $\left\{v_{n}\right\}$ contains a convergence subsequence, which we also denote as $\left\{v_{n}\right\}$, and $v_{n} \rightarrow$ $v_{0} \in W^{1, p(x)}(\Omega)$ as $n \rightarrow \infty$. From $\left\|\left(u_{n}\right)_{+}-v_{n}\right\| \rightarrow 0$, we have $\left(u_{n}\right)_{+} \rightarrow v_{0}$ in $W^{1, p(x)}(\Omega)$. And from the completeness of K_{1} we get $v_{0} \in K_{1}$. At the same time $\left.\nabla \Phi\right|_{N_{1}}\left(v_{0}\right)=0$. Then from Lemma 4.7, $\nabla \Phi\left(v_{0}\right)=0$. Similarly, we can prove the lemma when $i=2,3$.

Finally since the sets K_{i} are disjoint and $0 \notin K_{i}$ the proof of Theorem 3.1 is complete.
Remark For the Dirichlet problem (1.2), let

$$
\begin{gathered}
N_{1}=\left\{u \in W_{0}^{1, p(x)}(\Omega): \int_{\Omega} u_{+} d x>0,\left\langle\nabla \Psi(u), u^{+}\right\rangle=0\right\}, \\
N_{2}=\left\{u \in W_{0}^{1, p(x)}(\Omega): \int_{\Omega} u_{-} d x>0,\left\langle\nabla \Psi(u), u^{-}\right\rangle=0\right\}, \\
N_{3}=N_{1} \cap N_{2}, \quad K_{1}=\left\{u \geq 0: u \in N_{1}\right\}, \\
K_{2}=\left\{u \leq 0: u \in N_{2}\right\}, \quad K_{3}=N_{3},
\end{gathered}
$$

with a similar approach, we can prove that (1.2) has three nontrivial solutions.
Acknowledgements. The author would like to thank Professor Xianling Fan adn the anonymous referee for their valuable suggestions.

References

[1] E. Acerbi, N. Fusco; Partial regularity under anisotropic (p, q)-growth conditions, J. Differential Equations, 107 (1994) 46-47.
[2] E. Acerbi, N. Fusco; A transmission problem in the calculus of variations, Calc. Var. 2 (1994) 1-16.
[3] J. Bonder; Multiple solutions for the p-Laplace equation with nonlinear boundary conditions, Electronic Journal of Differential Equations, 2006 (2006), No. 37, pp. 1-7.
[4] X. L. Fan; Boundary trace embedding theorems for variable exponent Soblev spaces, J. Math. Anal. Appl. (2007), doi: 10. 1016/j. jmaa. 2007. 08. 003.
[5] X. L. Fan; Solutions for $p(x)$-Laplacian Dirichlet problems with singular coefficients, J. Math. Anal. Appl. 312 (2005) 464-447.
[6] X. L. Fan, Q. H. Zhang; Existence of solutions for $p(x)$-Laplacian Direchlet problem, Nonlinear Anal. 52 (2003) 464-477.
[7] X. L. Fan, D. Zhao; On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl. 263 (2001) 424-446.
[8] X. L. Fan, D. Zhao; On the generalized Olicz-Sobolev space $W^{1, p(x)}(\Omega)$, J. Gansu Educ. college, 12(1) (1998) 1-6.
[9] X. L. Fan; Regularity of minimizers of variational intrgrals with $p(x)-$ growth conditions, Ann. Math. Sinica, 17A(5) (1996) 557-564.
[10] P. Harjulehto, P. Hasto; An overview of variable exponent Lebesgue and Soblev spaces, in: D. Herron (Ed.), Future Trends in Geometric Function Theory, RNC Workshop, Jyvaskyla, 2003, pp. 85-93.
[11] N. Levinson; Positive eigenfunctions of the equation $\Delta u+\lambda f(u)=0$, Arch. Rat. Mech. Anal. 11 (1962) 259-272.
[12] P. Marcellini; Regularity of minimizers of intergrals of the calculus of variations with nonstandard growth conditions, Arch. Rational Mech. Anal. 105 (1989) 267-284.
[13] Zeev Nehari; Characteristic values associated with a class of nonlinear second order differential equations, Acta. math. Acta Math. 1051961 141-175.
[14] R. S. Palais, S. Smale; A generalized Morse theory, Bull. AMS 70 (1964) 165-171. 105(1961) 141-175.
[15] M. Struwe; Three nontrivial solutions of anticoercive boundary value problems for the PseudoLaplace operator, J. Reine Angew. Math. 325 (1981), 68-74.
[16] S. Samko; On a progress in the theory of Lebesgue spaces with variable exponent, Maximal and singular operators, Integral Transforms Spec. Funct. 16 (2005) 461-482.
[17] J. T. Schwartz; Generalizing the Lusternik-Schnirelman theory of critical points, Comm. Pure Appl. Math. 17 (1964) 307-315.
[18] D. Zhao, X. L. Fan, W. J. Qiang; On generalized Orlicz spaces $L^{p(x)}(\Omega)$, J. Gansu Sci. 9(2) (1996) 1-7.
[19] D. Zhao, X. L. Fan; On the Nemytsky operators from $L^{p_{1}(x)}$ to $L^{p_{2}(x)}$, J. Lanzhou Univ. 34 (1) (1998) 1-5.

Duchao Liu
School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China
E-mail address: liudch06@lzu.cn

[^0]: 2000 Mathematics Subject Classification. 35B38, 35D05, 35J20.
 Key words and phrases. Critical points; $p(x)$-Laplacian; integral functionals;
 generalized Lebesgue-Sobolev spaces.
 (C) 2010 Texas State University - San Marcos.

 Submitted September 26, 2008. Published March 3, 2010.
 Supported by grant 10671084 from the National Natural Science Foundation of China.

