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HOMOCLINIC SOLUTIONS FOR SECOND-ORDER
NON-AUTONOMOUS HAMILTONIAN SYSTEMS WITHOUT

GLOBAL AMBROSETTI-RABINOWITZ CONDITIONS

RONG YUAN, ZIHENG ZHANG

Abstract. This article studies the existence of homoclinic solutions for the

second-order non-autonomous Hamiltonian system

q̈ − L(t)q + Wq(t, q) = 0,

where L ∈ C(R, Rn2
) is a symmetric and positive definite matrix for all t ∈

R. The function W ∈ C1(R × Rn, R) is not assumed to satisfy the global

Ambrosetti-Rabinowitz condition. Assuming reasonable conditions on L and

W , we prove the existence of at least one nontrivial homoclinic solution, and
for W (t, q) even in q, we prove the existence of infinitely many homoclinic

solutions.

1. Introduction

The purpose of this work is to study the existence of homoclinic solutions for
the second-order non-autonomous Hamiltonian system

q̈ − L(t)q + Wq(t, q) = 0, (1.1)

where L ∈ C(R, Rn2
) is a symmetric and definite matrix for all t ∈ R, W ∈ C1(R×

Rn, R). We say that a solution q(t) of (1.1) is homoclinic (to 0) if q ∈ C2(R, Rn),
q(t) → 0 and q̇(t) → 0 as t → ±∞. If q(t) 6≡ 0, q(t) is called a nontrivial homoclinic
solution.

The existence of homoclinic solutions is one of the most important problems in
the history of Hamiltonian systems, and has been studied intensively by many math-
ematicians. Assuming that L(t) and W (t, q) are independent of t, or T -periodic in
t, many authors have studied the existence of homoclinic solutions for Hamilton-
ian system (1.1) via critical point theory and variational methods, see for instance
[2, 4, 6, 8, 3, 15, 17] and the references therein. More general cases are considered
in the recent papers [9, 19]. In this case, the existence of homoclinic solutions can
be obtained by going to the limit of periodic solutions of approximating problems.

In this paper we are interested in the case where (1.1) is non-autonomous. If
L(t) and W (t, q) are neither autonomous nor periodic in t, this problem is quite
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different from the ones just described, because of the lack of compactness of the
Sobolev embedding, see for instance [10, 14, 18] and the references therein. In
[18], the authors considered (1.1) without periodicity assumptions on L and W
and showed that (1.1) possesses one homoclinic solution by using a variant of the
Mountain Pass Theorem without the (PS) condition. In [14], under the same as-
sumptions of [18], the authors, by employing a new compact embedding theorem,
obtained the existence and multiplicity of homoclinic solution of (1.1). The authors
in [10] removed the technical coercivity condition on L and proved the existence
of homoclinic solutions when L and W are even in t by the method of approxi-
mating the homoclinic orbits from solutions of boundary problems. By the way,
a concentration-compactness principle by Lions [11, 12] has also been used to find
one homoclinic solution of (1.1), for example [1, 5].

Here, we must point that all the results in the works mentioned above are ob-
tained under the assumption that W satisfies the global Ambrosetti-Rabinowitz
condition on q; i.e., there is a constant θ > 2 such that, for every t ∈ R and
q ∈ Rn\{0},

0 < θW (t, q) ≤
(
Wq(t, q), q

)
, (1.2)

where (·, ·) : Rn × Rn → R denotes the standard inner product in Rn and | · | is
the induced norm. More recently, in [13], the authors discussed the existence of
even homoclinic solutions under a class of superquadratic conditions on W which is
weaker than the global Ambrosetti-Rabinowitz condition (see Corollary 2 in [13]).
More precisely, they assumed that W and L are even in t ∈ R and satisfy:

(W1) there exist constants d1 > 0 and ϑ ≥ 2 such that W (t, q) ≤ d1|q|ϑ for all
t ∈ R and q ∈ Rn;

(W2) W (t, q) = o(|q|2) as |q| → 0 uniformly with respect to t ∈ R;
(W3) Wq(t, q) → 0 as |q| → 0 uniformly with respect to t ∈ R;
(W4) there exist constants d2 > 0 and δ > ϑ− 2 and τ ∈ L1(R, R+) such that(

Wq(t, q), q
)
− 2W (t, q) ≥ d2|q|δ − τ(t)

for all t ∈ R and q ∈ Rn;
and some other reasonable assumptions on L and W . They also gave an example
which satisfies their conditions but do not satisfy the global Ambrosetti-Rabinowitz
condition ([13, Remark 2]). On the other hand, compared with the case that W (t, q)
is superquadratic as |q| → +∞, the literature is smaller which is available for the
case that W (t, q) is subquadratic as |q| → +∞. As far as the authors are aware,
only the papers [7, 20, 21] dealt with this case.

Motivated by the works mentioned above, in this paper we give some more gen-
eral conditions on L and W to guarantee that (1.1) has nontrivial homoclinic so-
lutions. Explicitly, assuming that W (t, q) satisfies some superquadratic conditions
which are weaker than the global Ambrosetti-Rabinowitz condition and different
from in [13], and some other reasonable assumptions on L and W , we give a new
result to guarantee that (1.1) has at least one nontrivial homoclinic solution and
infinitely many homoclinic solutions if W (t, q) is even in q, which generalizes and
improves the previous results in the literature.

To state our main result, we state the basic hypotheses on L and W :

(H1) L ∈ C(R, Rn2
) is a symmetric and positive definite matrix for all t ∈ R;

there is a continuous function α : R → R such that α(t) > 0 for all t ∈ R
and

(
L(t)q, q

)
≥ α(t)|q|2 and α(t) → +∞ as |t| → +∞.
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From this condition, we see that there is a positive constant β > 0 such that(
L(t)q, q

)
≥ β|q|2 for all t ∈ R, q ∈ Rn. (1.3)

(H2) W (t, q) ≥ 0 for all (t, q) ∈ R × Rn and there exist constants M > 0 and
R1 > 0 such that

W (t, q) ≤ M |q|2 for all (t, q) ∈ R× Rn, |q| ≤ R1,

where 2M < β, with β defined in (1.3);
(H3) there exist α0(t) > 0 and constants α1 > 2, R2 > 0 such that

W (t, q) ≥ α0(t)|q|α1 for all (t, q) ∈ R× Rn, |q| ≥ R2;

(H4) there exist constants µ > 2 and α2 with 0 ≤ α2 < (µ− 2)/2 such that

µW (t, q)−
(
Wq(t, q), q

)
≤ α2

(
L(t)q, q

)
for all (t, q) ∈ R× Rn;

(H5) Wq(t, q) = O(|q|) as |q| → 0 uniformly with respect to t ∈ R;
(H6) there exists W ∈ C(Rn, R) such that

|Wq(t, q)| ≤ |W (q)|
for every t ∈ R and q ∈ Rn.

Our main result reads as follows.

Theorem 1.1. Suppose that the conditions (H1)-(H6) are satisfied, then (1.1) pos-
sesses one nontrivial homoclinic solution. Moreover, if we assume that W (t, q) is
even in q, i.e.,

(H7) W (t,−q) = W (t, q) for all t ∈ R and q ∈ Rn,
then (1.1) has infinitely many homoclinic solutions.

Remark 1.2. Note that if (1.2) holds, so does (H4), however the reverse is not
true. Now, we give an example of W which satisfies (H2)-(H6) but does not satisfy
the conditions (1.2), (W1) and (W2). This does not say anything about (W4).

Example 1.3.
W (t, q) = a(t) |q|2 exp(|q|γ), (1.4)

where γ > 0 is a constant and a(t) is a positive, continuous, bounded function with
inft∈R a(t) > 0.

Then we have

W (t, q) ≤ sup
t∈R

a(t) exp(Rγ
1 )|q|2 := M |q|2 for all (t, q) ∈ R× Rn, |q| ≤ R1,

where R1 > 0 is any given constant, which implies that (H2) holds if supt∈R a(t) is
small enough. Moreover, it is easy to check that

W (t, q) ≥ a(t)|q|2+γ ,

Wq(t, q) = 2a(t) exp(|q|γ)q + γa(t) exp(|q|γ)|q|γq,(
Wq(t, q), q

)
= 2a(t)|q|2 exp(|q|γ) + γa(t)|q|γ+2 exp(|q|γ).

(1.5)

So, for any constant µ > 2, we have

µW (t, q)−
(
Wq(t, q), q

)
= a(t)|q|2 exp(|q|γ)

(
µ− 2− γ|q|γ

)
,

which yields

0 < µW (t, q)−
(
Wq(t, q), q

)
≤ (µ− 2) sup

t∈R
a(t) exp

(µ− 2
γ

)
|q|2 (1.6)
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for all (t, q) ∈ R × Rn and 0 < |q| ≤
(

µ−2
γ

)1/γ ; i.e., (1.2) does not hold for every
t ∈ R and q ∈ Rn \ {0}; and

µW (t, q)−
(
Wq(t, q), q

)
≤ 0 for all (t, q) ∈ R× Rn, |q| ≥

(µ− 2
γ

)1/γ
,

which, combining with (1.6), implies that, for some µ > 2, if supt∈R a(t) is small
enough (note that (1.3)), (H4) holds. On the other hand, by (1.4), we have

lim
q→0

W (t, q)
|q|2

= a(t) ≥ inf
t∈R

a(t) > 0,

and, by (1.5), we have

|Wq(t, q)| = 2a(t) exp(|q|γ)q + γa(t) exp(|q|γ)|q|γq

≤ sup
t∈R

a(t) exp(|q|γ)(2 + γ|q|γ)|q|

and

2 inf
t∈R

a(t) ≤ lim
q→0

|Wq(t, q)|
|q|

= 2a(t) ≤ 2 sup
t∈R

a(t).

The remainder of the paper is organized as follows. In section 2, some preliminary
results are given. In section 3, we give the proof of Theorem 1.1.

2. Preliminary Results

To establish our result via the critical point theory, we firstly describe some
properties of the space on which the variational framework associated with (1.1) is
defined. Let

E =
{
q ∈ H1(R, Rn) :

∫
R

[
|q̇(t)|2 +

(
L(t)q(t), q(t)

)]
dt < +∞

}
,

then the space E is a Hilbert space with the inner product

(x, y) =
∫

R

[(
ẋ(t), ẏ(t)

)
+

(
L(t)x(t), y(t)

)]
dt

and the corresponding norm ‖x‖2 = (x, x). Note that

E ⊂ H1(R, Rn) ⊂ Lp(R, Rn)

for all p ∈ [2,+∞] with the embedding being continuous. In particular, for p = +∞,
there exists a constant C > 0 such that

‖q‖∞ ≤ C‖q‖, ∀q ∈ E. (2.1)

Here Lp(R, Rn) (2 ≤ p < +∞) and H1(R, Rn) denote the Banach spaces of func-
tions on R with values in Rn under the norms

‖q‖p :=
( ∫

R
|q(t)|pdt

)1/p

and ‖q‖H1 :=
(
‖q‖22 + ‖q̇‖22

)1/2

respectively. L∞(R, Rn) is the Banach space of essentially bounded functions from
R into Rn equipped with the norm

‖q‖∞ := ess sup{|q(t)| : t ∈ R}.

Lemma 2.1 ([14, Lemma 1]). Suppose that L satisfies (H1). Then the embedding
of E in L2(R, Rn) is compact.
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Similar to Lemma 2 of [14], we can get the following result. For the reader’s
convenience, we give the details of its proof.

Lemma 2.2. Suppose that (H1), (H5), (H6) are satisfied. If qk ⇀ q0 (weakly) in
E, then Wq(t, qk) → Wq(t, q0) in L2(R, Rn).

Proof. Assume that qk ⇀ q0 in E. Then, by Banach-Steinhaus Theorem and (2.1),
there is a constant b1 > 0 such that

sup
k∈N

‖qk‖∞ ≤ b1.

Assumptions (H5) and (H6) imply the existence of b2 > 0 such that

|Wq(t, qk(t))| ≤ b2|qk(t)|
for all k ∈ N and t ∈ R. Hence

|Wq(t, qk(t))−Wq(t, q0(t))| ≤ b2(|qk(t)|+ |q0(t)|) ≤ b2(|qk(t)− q0(t)|+ 2|q0(t)|).
Since, by Lemma 2.1, qk → q0 in L2, passing to a subsequence if necessary, it can
be assumed that

∞∑
k=1

‖qk − q0‖2 < +∞,

which implies that qk(t) → q0(t) for almost every t ∈ R and
∞∑

k=1

|qk(t)− q0(t)| = ζ(t) ∈ L2(R, Rn).

Therefore,
|Wq(t, qk(t))−Wq(t, q0(t))| ≤ b2(ζ(t) + 2|q0(t)|).

Then, using the Lebesgue’s Convergence Theorem, the lemma is readily proved. �

Now we introduce more notations and some necessary definitions. Let B be a
real Banach space, I ∈ C1(B, R), which means that I is a continuously Fréchet-
differentiable functional defined on B.

Definition 2.3 ([16]). I ∈ C1(B, R) is said to satisfy the (PS) condition if any
sequence {uj}j∈N ⊂ B, for which {I(uj)}j∈N is bounded and I ′(uj) → 0 as j → +∞,
possesses a convergent subsequence in B.

Moreover, let Br be the open ball in B with the radius r and centered at 0 and
∂Br denote its boundary. We obtain the existence and multiplicity of homoclinic
solutions of (1.1) by use of the following well-known Mountain Pass Theorems, see
[16].

Lemma 2.4 ([16, Theorem 2.2]). Let B be a real Banach space and I ∈ C1(B, R)
satisfying the (PS) condition. Suppose that I(0) = 0 and that

(A1) there exist constants ρ, α > 0 such that I|∂Bρ ≥ α,
(A2) there exists e ∈ B \Bρ such that I(e) ≤ 0.

Then I possesses a critical value c ≥ α given by

c = inf
g∈Γ

max
s∈[0,1]

I(g(s)),

where
Γ = {g ∈ C([0, 1],B) : g(0) = 0, g(1) = e}.
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Lemma 2.5 ([16, Theorem 9.12]). Let B be an infinite dimensional real Banach
space and I ∈ C1(B, R) be even satisfying the (PS) condition and I(0) = 0. If
B = V ⊕X, where V is finite dimensional, and I satisfies:

(A3) there exist constants ρ, α > 0 such that I|∂Bρ∩X ≥ α and
(A4) for each finite dimensional subspace Ẽ ⊂ B, there is an R = R(Ẽ) such

that I ≤ 0 on Ẽ\BR(Ẽ).
Then I has an unbounded sequence of critical values.

3. Proof of Theorem 1.1

Now we establish the corresponding variational framework to obtain homoclinic
solutions of (1.1). Define the functional I : B = E → R as follows

I(q) =
∫

R

[1
2
|q̇(t)|2 +

1
2
(
L(t)q(t), q(t)

)
−W (t, q(t))

]
dt

=
1
2
‖q‖2 −

∫
R

W (t, q(t))dt.

(3.1)

Lemma 3.1. Under the conditions of Theorem 1.1, we have

I ′(q)v =
∫

R

[(
q̇(t), v̇(t)

)
+

(
L(t)q(t), v(t)

)
−

(
Wq(t, q(t)), v(t)

)]
dt, (3.2)

for all q, v ∈ E, which yields that

I ′(q)q = ‖q‖2 −
∫

R

(
Wq(t, q(t)), q(t)

)
dt. (3.3)

Moreover, I is a continuously Fréchet-differentiable functional defined on E, i.e.,
I ∈ C1(E, R) and any critical point of I on E is a classical solution of (1.1) with
q(±∞) = 0 = q̇(±∞).

Proof. We firstly show that I : E → R. By (H2), there exist constants M > 0 and
R1 > 0 such that

W (t, q) ≤ M |q|2 for all (t, q) ∈ R× Rn, |q| ≤ R1. (3.4)

Let q ∈ E, then q ∈ C0(R, Rn) (the space of continuous functions q on R such that
q(t) → 0 as |t| → +∞). Therefore there is a constant R > 0 such that |t| ≥ R
implies that |q(t)| ≤ R1. Hence, by (3.4), we have∫

R
W (t, q(t))dt ≤

∫ R

−R

W (t, q(t))dt + M

∫
|t|≥R

|q(t)|2dt < +∞. (3.5)

Combining (3.1) and (3.5), we show that I : E → R.
Next we prove that I ∈ C1(E, R). Rewrite I as I = I1 − I2, where

I1 :=
∫

R

[1
2
|q̇(t)|2 +

1
2
(
L(t)q(t), q(t)

)]
dt and I2 :=

∫
R

W (t, q(t))dt.

It is easy to check that I1 ∈ C1(E, R) and

I ′1(q)v =
∫

R

[(
q̇(t), v̇(t)

)
+

(
L(t)q(t), v(t)

)]
dt. (3.6)

Therefore it is sufficient to show this is the case for I2. In the process we will see
that

I ′2(q)v =
∫

R

(
Wq(t, q(t)), v(t)

)
dt, (3.7)
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which is defined for all q, v ∈ E. For any given q ∈ E, let us define J(q) : E → R
as

J(q)v =
∫

R

(
Wq(t, q(t)), v(t)

)
dt, v ∈ E.

It is obvious that J(q) is linear. Now we show that J(q) is bounded. Indeed, for
any given q ∈ E, there exists a constant M1 > 0 such that ‖q‖ ≤ M1 and, by (2.1),
‖q‖∞ ≤ CM1. So according to (H5) and (H6), there is a constant b3 > 0 such that

|Wq(t, q(t))| ≤ b3|q(t)|, for all t ∈ R,

which yields that, by (1.3) and the Hölder inequality,

|J(q)v| =
∣∣ ∫

R

(
Wq(t, q(t), v(t))

)
dt

∣∣ ≤ b3‖q‖2‖v‖2 ≤
b3

β
‖q‖‖v‖. (3.8)

Moreover, for q and v ∈ E, by the Mean Value Theorem, we have∫
R

W (t, q(t) + v(t))dt−
∫

R
W (t, q(t))dt =

∫
R

(
Wq(t, q(t) + h(t)v(t)), v(t)

)
dt,

where h(t) ∈ (0, 1). Therefore, by Lemma 2.2 and the Hölder inequality, we have∫
R

(
Wq(t, q(t) + h(t)v(t)), v(t)

)
dt−

∫
R

(
Wq(t, q(t)), v(t)

)
dt

=
∫

R

(
Wq(t, q(t) + h(t)v(t))−Wq(t, q(t)), v(t)

)
dt → 0

(3.9)

as ‖v‖ → 0. Combining (3.8) and (3.9), we see that (3.7) holds. It remains to prove
that I ′2 is continuous. Suppose that q → q0 in E and note that

sup
‖v‖=1

|I ′2(q)v − I ′2(q0)v| = sup
‖v‖=1

|
∫

R

(
Wq(t, q(t))−Wq(t, q0(t)), v(t)

)
dt|

≤ ‖Wq(·, q(·))−Wq(·, q0(·))‖2‖v‖2

≤ ‖v‖√
β
‖Wq(·, q(·))−Wq(·, q0(·))‖2.

By Lemma 2.2, we obtain I ′2(q)v − I ′2(q0)v → 0 as ‖q‖ → ‖q0‖ uniformly with
respect to v, which implies the continuity of I ′2 and we show that I ∈ C1(E, R).

Lastly, we check that critical points of I are classical solutions of (1.1) satisfying
q(t) → 0 and q̇(t) → 0 as |t| → +∞. We have known that E ⊂ C0(R, Rn).
Moreover if q is one critical point of I, by (3.2), we have L(t)q − Wq(t, q) is the
weak derivative of q̇. Since L ∈ C(R, Rn2

), W ∈ C1(R×Rn, R) and E ⊂ C0(R, Rn),
which yields that q ∈ C2(R, Rn); i.e., q is a classical solution of (1.1). Moreover, it
is easy to check that q̇(t) → 0 as |t| → +∞. �

Lemma 3.2. Under the conditions (H1), (H4), (H5), (H6), I satisfies the (PS)
condition.

Proof. Assume that {uj}j∈N ⊂ E is a sequence such that {I(uj)}j∈N is bounded
and I ′(uj) → 0 as j → +∞. Then there exists a constant C1 > 0 such that

|I(uj)| ≤ C1, ‖I ′(uj)‖E∗ ≤ C1 (3.10)

for every j ∈ N.
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We firstly prove that {uj}j∈N is bounded in E. By (3.1), (3.3) and (H4), we
have (µ

2
− 1

)
‖uj‖2

= µI(uj)− I ′(uj)uj +
∫

R

(
µW (t, uj(t))−

(
Wq(t, uj(t)), uj(t)

))
dt

≤ µI(uj)− I ′(uj)uj + α2

∫
R

(
L(t)uj(t), uj(t)

)
dt.

(3.11)

Let us define

η(q) =
∫

R

[(µ− 2
2

)
|q̇(t)|2 +

(µ− 2
2

− α2

)(
L(t)q(t), q(t)

)]
dt,

then we have
µ1‖q‖2 ≤ η(q) ≤ µ2‖q‖2, (3.12)

where µ1 = µ−2
2 − α2 and µ2 = µ−2

2 . Thus, combining (3.10), (3.11) with (3.12),
we obtain

µ1‖uj‖2 ≤ η(uj) ≤ µI(uj)− I ′(uj)uj ≤ µC1 + C1‖uj‖. (3.13)

Since µ1 > 0, the inequality (3.13) shows that {uj}j∈N is bounded in E. By Lemma
2.1, the sequence {uj}j∈N has a subsequence, again denoted by {uj}j∈N, and there
exists u ∈ E such that

uj ⇀ u, weakly in E,

uj → u, strongly in L2(R, Rn).

Hence (
I ′(uj)− I ′(u)

)
(uj − u) → 0,

and by Lemma 2.2 and the Hölder inequality, we have∫
R

(
Wq(t, uj(t))−Wq(t, u(t)), uj(t)− u(t)

)
dt → 0

as j → +∞. On the other hand, an easy computation shows that(
I ′(uj)− I ′(u), uj − u

)
= ‖uj − u‖2 −

∫
R

(
Wq(t, uj(t))−Wq(t, u(t)), uj(t)− u(t)

)
dt.

Consequently, ‖uj − u‖ → 0 as j → +∞. �

Now, we present the proof of Theorem 1.1, divided into several steps.

Proof of Theorem 1.1. Step 1. It is clear that I(0) = 0 by (H2) and I ∈
C1(E, R) satisfies the (PS) condition by Lemmas 3.1 and 3.2.
Step 2. We now show that there exist constants ρ > 0 and α > 0 such that
I satisfies the condition (A1) of Lemma 2.4. In fact, assume that q ∈ E and
0 < ‖q‖∞ ≤ R1. Then, by (1.3) and (H2), we have∫

R
W (t, q(t))dt ≤ M

∫
R
|q(t)|2dt ≤ M‖q‖22 ≤

M

β
‖q‖2,

and in consequence, combining this with (3.1), we obtain

I(q) ≥ 1
2
‖q‖2 − M

β
‖q‖2 =

1
2
(
1− 2M

β

)
‖q‖2. (3.14)
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Note that (H2) implies 1− 2M
β > 0. Set

ρ =
R1

C
, α =

(β − 2M)R2
1

2βC2
> 0. (3.15)

By (2.1), if ‖q‖ = ρ, then 0 < ‖q‖∞ ≤ R1 and (3.14) gives that I|∂Bρ
≥ α.

Step 3. It remains to prove that there exists e ∈ E such that ‖e‖ > ρ and I(e) ≤ 0,
where ρ is defined in (3.15). By (3.1), we have, for every m ∈ R\{0} and q ∈ E\{0},

I(m q) =
m2

2
‖q‖2 −

∫
R

W (t, m q(t))dt.

Take some Q ∈ E such that ‖Q‖ = 1. Then there exists a subset Ω of positive
measure of R such that Q(t) 6= 0 for t ∈ Ω. Take m > 0 such that m|Q(t)| ≥ R2

for t ∈ Ω. Then, by (H2) and (H3), we obtain that

I(m Q) ≤ m2

2
−mα1

∫
Ω

α0(t)|Q(t)|α1dt. (3.16)

Since α0(t) > 0 and α1 > 2, (3.16) implies that I(m Q) < 0 for some m > 0 such
that m|Q(t)| ≥ R2 for t ∈ Ω and ‖m Q‖ > ρ, where ρ is defined in (3.15). By
Lemma 2.4, I possesses a critical value c ≥ α > 0 given by

c = inf
g∈Γ

max
s∈[0,1]

I(g(s)),

where
Γ = {g ∈ C([0, 1], E) : g(0) = 0, g(1) = e}.

Hence there is q ∈ E such that

I(q) = c, I ′(q) = 0.

Step 4. Now suppose that W (t, q) is even in q; i.e., (H7) holds, which implies that
I is even. Moreover, we already know that I(0) = 0 and I ∈ C1(E, R) satisfies the
(PS) condition in Step 1.

To apply Lemma 2.5, it suffices to prove that I satisfies the conditions (A3) and
(A4) of Lemma 2.5. (A3) is identically the same as in Step 2, so it is already proved.
Now we prove that (A4) holds. Let Ẽ ⊂ E be a finite dimensional subspace. From
Step 3 we know that, for any Q ∈ Ẽ ⊂ E such that ‖Q‖ = 1, there is mQ > 0 such
that

I(m Q) < 0, for every |m| ≥ mQ > 0.

Since Ẽ ⊂ E is a finite dimensional subspace, we can choose an R̃ = R(Ẽ) > 0 such
that

I(q) < 0, ∀q ∈ Ẽ\BR̃.

Hence, by Lemma 2.5, I possesses an unbounded sequence of critical values {cj}j∈N
with cj → +∞. Let qj be the critical point of I corresponding to cj , then (1.1) has
infinitely many homoclinic solutions.
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