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MINIMIZING CONVEX FUNCTIONS BY CONTINUOUS
DESCENT METHODS

SERGIU AIZICOVICI, SIMEON REICH, ALEXANDER J. ZASLAVSKI

Abstract. We study continuous descent methods for minimizing convex func-
tions, defined on general Banach spaces, which are associated with an appro-

priate complete metric space of vector fields. We show that there exists an

everywhere dense open set in this space of vector fields such that each of its
elements generates strongly convergent trajectories.

1. Introduction and preliminaries

Discrete and continuous descent methods are important topics in optimization
theory and in the study of dynamical systems. See, for example, the references in
this article. Given a real-valued continuous convex function f on a Banach space
X, we associate with f a complete metric space of vector fields V : X → X such
that f0(x, V x) ≤ 0 for all x ∈ X. Here f0(x, u) is the directional derivative of
f at x in the direction of u ∈ X. In the discrete case, to each such vector field
there correspond two gradient-like iterative processes. In the papers [10, 11, 12]
it is shown that for most of these vector fields, both iterative processes generate
sequences {xn}∞n=1 such that the sequences {f(xn)}∞n=1 tend to inf(f) as n → ∞.
Here by “most”, we mean an everywhere dense Gδ subset of the space of vector
fields. In our recent papers [1, 2, 3, 4] we studied the convergence of the trajectories
of an analogous continuous dynamical system governed by such vector fields to the
point where the function f attains its infimum.

In the present paper, we improve upon the results of our previous papers by
showing that in a certain space of Lipschitz vector fields, equipped with an appro-
priate complete metric, there exists an open everywhere dense set such that each
of its elements generates strongly convergent trajectories.

More precisely, let (X, ‖ · ‖) be a Banach space and let f : X → R1 be a convex
continuous function which satisfies the following conditions:

C(i) lim‖x‖→∞ f(x) = ∞;
C(ii) there is x̄ ∈ X such that f(x̄) ≤ f(x) for all x ∈ X;
C(iii) if {xn}∞n=1 ⊂ X and limn→∞ f(xn) = f(x̄), then

lim
n→∞

‖xn − x̄‖ = 0.
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By C(iii), the point x̄, where the minimum of f is attained, is unique.
For each x ∈ X, let

f0(x, u) = lim
t→0+

[f(x + tu)− f(x)]/t, u ∈ X. (1.1)

Let (X∗, ‖ · ‖) be the dual space of (X, ‖ · ‖). For each x ∈ X and each r > 0, set

B(x, r) = {z ∈ X : ‖z − x‖ ≤ r}, B(r) = B(0, r). (1.2)

For each mapping A : X → X and each r > 0, put

Lip(A, r) = sup{‖Ax−Ay‖/‖x− y‖ : x, y ∈ B(r) and x 6= y}. (1.3)

Denote by A1 the set of all mappings V : X → X such that the restriction of V to
any bounded subset of X is Lipschitz (namely, Lip(V, r) < ∞ for any positive r)
and f0(x, V x) ≤ 0 for all x ∈ X.

For the set A1, we consider the uniformity determined by the base

E(n, ε) =
{
(V1, V2) ∈ A1 ×A1 : Lip(V1 − V2, n) ≤ ε,

‖V1x− V2x‖ ≤ ε for all x ∈ B(n)
}
,

(1.4)

where n, ε > 0.
Clearly, this uniform space A1 is metrizable and complete. We equip it with the

topology induced by this uniformity. The following existence result was proved in
[2, Section 3].

Proposition 1.1. Let x0 ∈ X and V ∈ A1. Then there exists a unique continuously
differentiable mapping x : [0,∞) → X such that

x′(t) = V x(t), t ∈ [0,∞), x(0) = x0.

Let x ∈ W 1,1(0, T ;X); i.e.,

x(t) = x0 +
∫ T

0

u(s)ds, t ∈ [0, T ],

where T > 0, x0 ∈ X and u ∈ L1(0, T ;X). Then x : [0, T ] → X is absolutely
continuous and x′(t) = u(t) for a.e. t ∈ [0, T ].

It was shown in [2] that the function (f ◦x)(t) := f(x(t)), t ∈ [0, T ], is absolutely
continuous. It follows that for almost every t ∈ [0, T ], both the derivatives x′(t)
and (f ◦ x)′(t) exist:

x′(t) = lim
h→0

h−1[x(t + h)− x(t)],

(f ◦ x)′(t) = lim
h→0

h−1[f(x(t + h))− f(x(t))].

We now quote [1, Proposition 3.1].

Proposition 1.2. Assume that t ∈ [0, T ] and that both the derivatives x′(t) and
(f ◦ x)′(t) exist. Then

(f ◦ x)′(t) = lim
h→0

h−1[f(x(t) + hx′(t))− f(x(t))].

Our results are proved under two additional assumptions on the function f .
First, we assume in addition that

C(iv) f is Lipschitz on bounded subsets of X.
The second assumption concerns the existence of a sharp minimum. Specifically,
this hypothesis can be formulated as follows.
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C(v) There is ∆ > 0 such that

f(x) ≥ f(x̄) + ∆‖x− x̄‖ for all x ∈ X.

Clearly, we may assume without any loss of generality that ∆ < 1.
We next show that seemingly different variants of this notion are, in fact, equiv-

alent.

Proposition 1.3. The following conditions are equivalent.
(i) There is ∆ > 0 such that

f(x) ≥ f(x̄) + ∆‖x− x̄‖ for all x ∈ X;

(ii) there exist ∆ > 0 and r > 0 such that

f(x) ≥ f(x̄) + ∆‖x− x̄‖ for all x ∈ X satisfying f(x) ≤ f(x̄) + r;

(iii) there exist ∆ > 0 and r > 0 such that

f(x) ≥ f(x̄) + ∆‖x− x̄‖ for all x ∈ B(x̄, r).

Proof. Clearly, (i) implies (ii). By the continuity of f , (ii) implies (iii).
It remains to show that (iii) implies (i). To this end, assume that (iii) holds.

There are then ∆ > 0 and r > 0 such that

f(x) ≥ f(x̄) + ∆‖x− x̄‖ for all x ∈ B(x̄, r). (1.5)

Assume that
x ∈ X \B(x̄, r). (1.6)

Put
z = x̄ + r‖x− x̄‖−1(x− x̄). (1.7)

By (1.7),
z ∈ B(x̄, r). (1.8)

By (1.5), (1.7) and (1.8),

f(z) ≥ f(x̄) + ∆‖z − x̄‖ = f(x̄) + ∆r. (1.9)

Since f is convex, it follows from (1.7) and (1.6) that

f(z) = f(r‖x− x̄‖−1x + (1− r‖x− x̄‖−1)x̄)

≤ r‖x− x̄‖−1f(x) + (1− r‖x− x̄‖−1)f(x̄).

When combined with (1.9), this implies that

f(x̄) + ∆r ≤ r‖x− x̄‖−1f(x) + (1− r‖x− x̄‖−1)f(x̄),

r‖x− x̄‖−1f(x̄) + ∆r ≤ r‖x− x̄‖−1f(x),

whence
f(x) ≥ f(x̄) + ∆‖x− x̄‖. (1.10)

Thus (1.10) holds for all x ∈ X satisfying (1.6). Together with (1.5) this implies
that (i) holds. Proposition 1.3 is proved. �

Proposition 1.4. For each h ∈ X, f0(x̄, h) ≥ ∆‖h‖.

The above propositon is a direct consequence of (1.1) and C(v).

Proposition 1.5. For any V ∈ A1, V x̄ = 0.
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Proof. Let V ∈ A1. By Proposition 1.1, there is a continuously differentiable
mapping x : [0,∞) → X such that

x(0) = x̄, x′(t) = V x(t), t ∈ [0,∞). (1.11)

In view of (1.11), the inclusion V ∈ A1 and Proposition 1.2, the composition f ◦ x
is a decreasing function. By C(ii) and C(iii), x(t) = x̄ for all t ≥ 0. When combined
with (1.11), this implies that for all t ≥ 0,

0 = x′(t) = V x̄.

The proof is complete. �

We are finally ready to state our main result. It improves upon previous results
because it guarantees the existence of a good open everywhere dense set, and not
just a good Gδ dense set. Its proof is given in Section 3 while Section 2 is devoted
to several auxiliary results.

Theorem 1.6. Let M0 > 0. Then there exists an open everywhere dense F ⊂ A1

such that for each U ∈ F , there exists a neighborhood U of U in A1 so that the
following property holds:

For each ε > 0, there exists Tε > 0 such that for each W ∈ U and each x ∈
C1([0,∞);X) satisfying

x′(t) = Wx(t), t ∈ [0,∞), ‖x(0‖ ≤ M0,

the inequality ‖x(t)− x̄‖ ≤ ε holds for all t ≥ Tε.

Corollary 1.7. Let M0 > 0 and U ∈ F , where F is the set the existence of which is
guaranteed by Theorem 1.6. Let x ∈ C1([0,∞);X) satisfy x′(t) = Ux(t), t ∈ [0,∞),
‖x(0‖ ≤ M0. Then limt→∞ x(t) = x̄.

2. Auxiliary results

For each V ∈ A1 and each γ ∈ (0, 1), set

Vγx = V x + γ(x̄− x), x ∈ X. (2.1)

Lemma 2.1 ([2, Lemma 4.1]). Let V ∈ A1 and γ ∈ (0, 1). Then Vγ ∈ A1.

Lemma 2.2 ([2, Lemma 4.2]). Let V ∈ A1. Then limγ→0+ Vγ = V .

Lemma 2.3. Let M0 > 0. Then there exists M > 0 such that for each V ∈ A1

and each x ∈ C1([0,∞);X) which satisfies

x′(t) = V x(t), t ∈ [0,∞), ‖x(0)‖ ≤ M0, (2.2)

the following inequality holds:

‖x(t)‖ ≤ M for all t ∈ [0,∞). (2.3)

Proof. By C(iv), there is M1 > 0 such that

f(z) ≤ M1 for all x ∈ B(0,M0). (2.4)

By C(i), there is M > 0 such that

‖z‖ ≤ M for all z ∈ X satisfying f(z) ≤ M1. (2.5)

Assume that V ∈ A1 and that x ∈ C1([0,∞);X) satisfies (2.2). By (2.2), Proposi-
tion 1.2 and the inclusion V ∈ A1, the function f ◦ x is decreasing. Together with
(2.2), (2.4) and (2.5) this implies that f(x(t)) ≤ f(x(0)) ≤ M1 and ‖x(t)‖ ≤ M for
all t ≥ 0. The proof is complete. �
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Lemma 2.4. Let V ∈ A1, γ ∈ (0, 1) and x ∈ X. Then

f0(x, Vγx) ≤ γ(f(x̄)− f(x)) ≤ −γ∆‖x− x̄‖. (2.6)

Proof. By (2.1), the properties of the directional derivative of a convex function
and the relation V ∈ A1,

f0(x, Vγx) = f0(x, V x + γ(x̄− x))

≤ f0(x, V x) + γf0(x, x̄− x)

≤ γf0(x, x̄− x) ≤ γ(f(x̄)− f(x))

≤ −γ∆‖x− x̄‖.
The proof is complete. �

Lemma 2.5. Let V ∈ A1, γ ∈ (0, 1) and M > ‖x̄‖. Then there exists a neighbor-
hood U of Vγ in Al such that for each W ∈ U and each x ∈ B(0,M),

f0(x,Wx) ≤ (γ/2)(f(x̄)− f(x)).

Proof. By C(iv), there exists L0 > 1 such that

|f(z1)− f(z2)| ≤ L0‖z1 − z2‖ for all z1, z2 ∈ B(0,M + 1). (2.7)

Choose
δ ∈ (0, γ∆̄(2L0)−1). (2.8)

Put
U = {W ∈ A1 : (W,Vγ) ∈ E(M + 1, δ)}. (2.9)

Let
W ∈ U and x ∈ B(0,M). (2.10)

By Lemma 2.4,
f0(x, Vγx) ≤ γ(f(x̄)− f(x)). (2.11)

By the properties of the directional derivative of a convex function, (2.11), (2.7),
Proposition 1.5, (2.10), the inequality M > ‖x̄‖, (2.9), C(v) and (2.8),

f0(x,Wx) ≤ f0(x, Vγx) + f0(x, Wx− Vγx)

≤ γ(f(x̄)− f(x)) + L0‖Wx− Vγx‖
≤ γ(f(x̄)− f(x)) + L0‖(W − Vγ)x− (W − Vγ)x̄‖
≤ γ(f(x̄)− f(x)) + L0δ‖x− x̄‖
≤ (f(x̄)− f(x))(γ − L0δ∆̄−1)

≤ (γ/2)(f(x̄)− f(x)).

The proof is complete. �

3. Completion of the proof of Theorem 1.6

Let M0 > 0. By Lemma 2.3, there exists M > ‖x̄‖ such that the following
property holds:

(P1) For each V ∈ A1 and each x ∈ C1([0,∞);X) which satisfies

x′(t) = V x(t), t ∈ [0,∞), ‖x(0)‖ ≤ M0,

the following inequality holds:

‖x(t)‖ ≤ M, t ∈ [0,∞).
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Let V ∈ A1 and γ ∈ (0, 1). By Lemma 2.5, there exists an open neighborhood
U(V, γ) of Vγ in A1 such that following property holds:

(P2) For each W ∈ U(V, γ) and each x ∈ B(0,M),

f0(x,Wx) ≤ (γ/2)(f(x̄)− f(x)).

Put
F = ∪{U(V, γ) : V ∈ A1, γ ∈ (0, 1)}. (3.1)

Clearly, F is an open everywhere dense subset of A1.
Let U ∈ F . By (3.1) there are V ∈ A1 and γ ∈ (0, 1) such that

U ∈ U(V, γ). (3.2)

Let ε > 0. By C(ii), there is ε1 ∈ (0, ε) such that

‖x− x̄‖ ≤ ε for all x ∈ X satisfying f(x) ≤ f(x̄) + ε1. (3.3)

Choose a number

Tε > 1 + 4(ε1γ)−1[sup{|f(z)| : z ∈ B(0,M0)} − f(x̄)]. (3.4)

Assume that
W ∈ U(V, γ), x ∈ C1([0,∞);X) (3.5)

and that
x′(t) = Wx(t), t ∈ [0,∞), ‖x(0)‖ ≤ M0.

To complete the proof it is sufficient to show that

‖x(t)− x̄‖ ≤ ε, t ≥ Tε. (3.6)

By (3.3), it suffices to show that

f(x(t)) ≤ f(x̄) + ε1, t ∈ [Tε,∞). (3.7)

Since (f ◦ x) is decreasing, (3.7) would follow once we prove that

min{f(x(t)) : t ∈ [0, Tε]} ≤ f(x̄) + ε1. (3.8)

Assume the contrary. Then

f(x(t)) > f(x̄) + ε1, t ∈ [0, Tε]. (3.9)

By (3.5) and (P1), we have

‖x(t)‖ ≤ M, t ∈ [0,∞). (3.10)

By (3.10), (3.9), (P2) and (3.5), for all t ∈ [0, Tε],

f0(x(t),Wx(t)) ≤ (γ/2)(f(x̄)− f(x(t)) ≤ −ε1γ/2. (3.11)

By Proposition 1.2, (3.5) and (3.11),

f(x(Tε))− f(x(0)) =
∫ T0

0

(f ◦ x)′(t)dt =
∫ Tε

0

f0(x(t), x′(t))dt < −Tεε1γ/2

and (cf. (3.5) and (3.9))

Tεε1γ/2 ≤ f(x(0))− f(x(Tε)) ≤ sup{f(z) : z ∈ B(0,M0)} − f(x̄).

This contradicts (3.4). The contradiction we have reached shows that (3.8) holds
and therefore the proof of Theorem 1.6 is complete.
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