Electron. J. Diff. Equ., Vol. 2010(2010), No. 177, pp. 1-8.

Lienard type p-Laplacian neutral Rayleigh equation with a deviating argument

Aomar Anane, Omar Chakrone, Loubna Moutaouekkil

Abstract:
Based on Manasevich-Mawhin continuation theorem, we prove the existence of periodic solutions for Lienard type $p$-Laplacian neutral Rayleigh equations with a deviating argument,
$$
 (\phi_p(x(t)-c x(t-\sigma))')'+f(x(t))x'(t)+
 g(t,x(t-\tau(t)))=e(t).
 $$
An example is provided to illustrate our results.

Submitted September 15, 2010. Published December 22, 2010.
Math Subject Classifications: 34C25, 34B15
Key Words: Periodic solution; neutral Rayleigh equation; Lienard equation; Deviating argument; p-Laplacian; Manasevich-Mawhin continuation.

Show me the PDF file (206 KB), TEX file, and other files for this article.

Aomar Anane
Université Mohamed I, Faculté des Sciences
Département de Mathématiques et Informatique
Oujda, Maroc
email: anane@sciences.univ-oujda.ac.ma
Omar Chakrone
Université Mohamed I, Faculté des Sciences
Département de Mathématiques et Informatique
Oujda, Maroc
email: chakrone@yahoo.fr
Loubna Moutaouekkil
Université Mohamed I, Faculté des Sciences
Département de Mathématiques et Informatique
Oujda, Maroc
email: loubna_anits@yahoo.fr

Return to the EJDE web page