Electronic Journal of Differential Equations, Vol. 2010(2010), No. 173, pp. 1-5.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu

REGULARITY OF SOLUTIONS TO 3-D NEMATIC LIQUID
CRYSTAL FLOWS

QIAO LIU, SHANGBIN CUI

ABSTRACT. In this note we consider the regularity of solutions to 3-D nematic
liquid crystal flows, we prove that if either e L9(0,T; LP(R3)), % + % <1,
3 < p < oo;oru € LY0,T; LP(R3)), % + ﬁ < 2, % < B < oo, then the
solution (u, d) is regular on (0, T7.

1. INTRODUCTION

In this note we study the following hydrodynamical systems modelling the flow
of nematic liquid crystal material [4, [5]:

uy — vAuU+ (u- V)u+ VP =-AV - (Vd©® Vd), inR*x (0,00), (1.1)
di + (u-V)d =~v(Ad — f(d)), in R?x (0,00), (1.2)

divu=0, inR?x (0,00), (1.3)

(u,d)|i—0 = (ug,do) in R3. (1.4)

Here u = u(z,t) = (ui(x,t),us(x,t),us(x,t)) is the velocity field of the flow,
d = d(z,t) = (di(x,t),da(x,t),ds(z,t)) is the (averaged) macroscopic/continuum
molecule direction, P = P(z,t) is a scalar function representing the pressure, v, A,y
are positive constants, and f(d) = % (|d|*—1)d. The term Vd®Vd denotes the 3x 3
matrix whose (4, j)-th entry is equal to 9;d - 9;d (for 1 < ¢,j < 3). For simplicity,
we assume that v = A = v = € = 1 throughout this paper.

The above system is a simplified version of the Ericksen-Leslie model (see [4])
which retains many essential features of the hydrodynamic equations for nematic
liquid crystal. The existence of global-in-time weak solutions and local-in-time
classical solutions for this system have been established by Lin and Liu [4]. Later,
in [5], they also proved that the one dimensional spacetime Hausdorff measure of
the singular set of the “suitable” weak solutions is zero. Recently, Zhou and Fan in
[8] proved a regularity criterion for another system of partial differential equations
modelling nematic liquid crystal flows, which is considered by Sun and Liu [7] and
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is similar to (1.1))—(1.4); their result says that if the local solution (u,b) satisfies

’ [Vl .2 3

dt <oo with —4+-=2,2<p<3,
o 14in(e+Vullp) rop

then (u,d) is regular on (0, 7.

We notice that if d = 0, then the system (1.1)—(1.4) becomes to the Navier-
Stokes equations. There have been a lot of works on regularity criteria of the
solution to the 3-D Navier-Stokes equations. The following results in this direction
are well-known: If one of the following two conditions holds

(1) we L0, T; L?) for %—l— % <1and3<p<o0;
(2) Vue L*(0,T;LP) for 2 + 3 <2 and § < § < o0,
then the solution to the 3-D Navier-Stokes equations is regular [Il 2 B, 6]. In this

note we want to show that the above regularity criteria still hold for the nematic
liquid crystal flow (1.1)—(1.4). More precisely, we have the following results:

Theorem 1.1. Let (ug,do) € H'(R?)x H2(R?) with divug = 0. Suppose that (u, d)
is a local smooth solution of the liquid crystal flow 7 on the time interval
[0,T) associate with the initial value (ug,dp). Assume that one of the following two
conditions holds

(a) u € L0, T; LP(R?)), for % + % <1 with 3 <p < oo;
(b) Vu € L*(0,T; LP(R?)), for 2 + 3 <2 with 3 < 3 < cc.
Then (u,d) can be extended beyond T .

3
B

We shall give the proof of this result in the following section. As usual, we use
the notation C' to denote a “generic” constant which may change from line to line,
and use | - ||, to denote the norm of the Lebesgue space L?.

2. PROOF OF THEOREM [L.1]

Assume that [0, Tyae) is the maximal interval of the existence of local smooth
solution. To conclude our proof, we only need to show that T < T},4,. Arguing
by contradiction, we assume that Tp,q, < T, and either (a) or (b) holds. If we can
establish the estimate

i ([ Vulls + | Adl) < oo, (21)

then [0,7) is not a maximal interval of the existence of solution, which leads to an
contradiction.
We multiply (1.1)) by u and integrate over R3, and multiply (1.2) by —Ad+ f(d)

and integrate over R3. By adding the two results above, we obtain

1d 2 2 2 2

—— [ (Ju|* +|Vd]* +2F(d))dx+ [ (|Vul*+ |Ad - f(d)|")dz =0, (2.2)

2 dt R3 R3
where F'(d) is the primitive function of f(d); i.e., F(d) = . Here we used
the condition divu = 0 and the fact that

((u-V)u,u) = (u, VP) = ((u-V)d, f(d)) = (u, V"—--) =

Hence
[ullLos 0,712y + llullL2(0,75m1) < C. (2.3)
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Multiply (T.2)) by |d|?d and integrate by parts yields

1d
\d|4(t,x) dx +/ (3d%|Vd* + |d|°)(t, z) dz = / |d|*(t, z) dx
4dt R3 R3
which 1mp11es
t
ld(t, )l Lo 0,7314) +/ / (3d%|Vd|* +|d|°) (7, x) dx dr < C. (2.4)
0 JR3
Multiply by f(d) and integrate by parts, we obtain
d
— [ F(d)(t,z)dx = / (Adf(d) — | f(d)|*)(t,z) da. (2.5)
dt R3 R3
By (2.2)-(2.5), the Gronwall’s inequality and the fact f(d) = (|d|?> — 1)d, we obtain
ldll o 0,711 + ||dHL2(O,T;H2) <C. (2.6)
Noticing that the i-th (i=1,2,3) component of u satisfies
3 3
Oru; + (U . V)uz — Au; + ;P = — Z 8]' ( Z &dkajdk) . (27)
j=1 k=1

Multiplying (2.7) by —Auw;, summing over ¢, using integration by parts, and noting
that divu = 0, we obtain

2dt/ |Vu|2dx+/ |Au\2dm

= Z/ (u- V)u;Au; de — / O0;dp Ady Au; dx.
i—1 JR? ik=1

Applying A to both sides of (|1.2]), multiplying them with Ad, and using (1.3)), we
obtain

(2.8)

3T / |Ad|? dx +/ (IVAdP? + Af(d)Ad) da
(2.9)
= Z / Aui0;di Ady da: — 2 Z | VuidiVdiAdy de,
i,k=1
where we used the condition divu = 0. Putting (2.8) and (2.9)) together, we obtain

1d
5%/ (IVul® + |Ad|?) dx—i—/ (|Au* + |VAd|?) d

Z/ - V)u;Au; do — 2 Z/ Vu;0;VdAdy dz — | Af(d)Addx
R3 R3

i,k=1
= Il -|— I2 + .[3.
(2.10)
Now, we first consider the case that the smooth solution (u,d) satisfies the
condition (a). For I;, we can do estimates for it as

L < C||u||p||VuH%||Au||2 (Holder’s inequality)
p=3 3
< ClluflplVulls* ||Au||;er (Gagliardo-Nirenberg inequality) (2.11)

1 _2p_
< QIIAuH% +Cllullp~ [Vull3  (Young inequality).
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Similarly, we can estimate Iy and I3 as

IQ = 2/ ui(()inkVAdk dx
R3
< CHU||p||V2dH27p||Ad||2 (Hélder’s Inequality)
(2.12)
< C’Hu||p||V2dH2 ||VAd||2 (Gagliardo-Nirenberg inequality)

< LIVAIR + Ol |Ad]3 - (Youns inequality)

I _Z/ O.[(|d]2 — 1)) Ad da
3
223/ 8id8iAd|d|2dx—Z/ 9;dd; Ad da
i—1 R3 i—1 R3

C||\Vd||¢|[VAd||2||d||2 + C||Vd||2|| VAd||y  (Hlder’s inequality) — (2.13)
C||Ad|2||[VAd||2||Vd||2 + C||Vd||2|[VAd||2  (Sobolev embedding)

IN

IN

IN

1 . .
1IVAds + C(IVdll3 + ([ Vd|31Ad]3) - (Young inequality)

IN

1
Z||VAd\|§ + C||Ad|)3 + C.

Substituting the above estimates (2.11)—(2.13]) into (2.10]), we obtain

d
= (|Vu|2 +]Ad?) da:—i—/ (|Aul* + |VAd|?) dx
RS
< cnuuF (IVul2 + | AdI2) + CllAd|Z + C (2.14)

2p_
< O+ lully™* ) (IVulls + [|Ad]3) + C
Hence, the Gronwall’s inequality yields

sup {[|Vul3 + |Ad||3} < CeCTels W dt o o, (2.15)
0<t<T

Next we consider the case that the smooth solution (u, d) satisfies the condition
(b). We estimate I; as follows:

Z (Oiw - V)u;05u; de
]RJ

i,j=1

< C’||Vu||g||Vu||2ﬁ (Holder’s inequality) (2.16)

2—5

3
< C||Vullg||Vully 7 ||Au||§ (Gagliardo-Nirenberg inequality)

1
§||Au||2 + C||Vu ||EB FIVul?  (Young inequality).
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Similarly, we can do estimates for I as

I, < O||Vul|g||Ad||*s  (Hblder’s inequality)
B—1

< C[[VullgllAd|l,

28-3 3
7 IVAd||y  (Gagliardo-Nirenberg inequality) (2.17)
28

1
< Z”VAd”% + C||Vu| 7?[|Ad|3  (Young inequality),

and for I3 as

1
I; < 1||VAd||§ + C||Ad|3 + C. (2.18)

Putting the above estimates for (2.15)—(2.18)) into (2.10)), we obtain

d
— | (|Vul® + |Ad]?) der/ (|Au> + |VAd|?) dz
dt R3 R3

_208
< COAA[IVull g7 ) (IVull3 + [Ad]3) + C.

Hence, the Gronwall’s inequality yields

23

sup {[[Vull3 + [|Ad||3} < CeCTeli IVelE™ dt < o, (2.19)
0<t<T

By (2:15) and (2.19)), we see that (2.1)) follows. This proves Theorem [I.1]
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