Electronic Journal of Differential Equations, Vol. 2010(2010), No. 173, pp. 1-5. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

REGULARITY OF SOLUTIONS TO 3-D NEMATIC LIQUID CRYSTAL FLOWS

QIAO LIU, SHANGBIN CUI

Abstract

In this note we consider the regularity of solutions to 3-D nematic liquid crystal flows, we prove that if either $u \in L^{q}\left(0, T ; L^{p}\left(\mathbb{R}^{3}\right)\right), \frac{2}{q}+\frac{3}{p} \leq 1$, $3<p \leq \infty$; or $u \in L^{\alpha}\left(0, T ; L^{\beta}\left(\mathbb{R}^{3}\right)\right), \frac{2}{\alpha}+\frac{3}{\beta} \leq 2, \frac{3}{2}<\beta \leq \infty$, then the solution (u, d) is regular on $(0, T]$.

1. Introduction

In this note we study the following hydrodynamical systems modelling the flow of nematic liquid crystal material 4, 5]:

$$
\begin{gather*}
u_{t}-\nu \Delta u+(u \cdot \nabla) u+\nabla P=-\lambda \nabla \cdot(\nabla d \odot \nabla d), \quad \text { in } \mathbb{R}^{3} \times(0, \infty), \tag{1.1}\\
d_{t}+(u \cdot \nabla) d=\gamma(\Delta d-f(d)), \quad \text { in } \mathbb{R}^{3} \times(0, \infty) \tag{1.2}\\
\operatorname{div} u=0, \quad \text { in } \mathbb{R}^{3} \times(0, \infty), \tag{1.3}\\
\left.(u, d)\right|_{t=0}=\left(u_{0}, d_{0}\right) \quad \text { in } \mathbb{R}^{3} \tag{1.4}
\end{gather*}
$$

Here $u=u(x, t)=\left(u_{1}(x, t), u_{2}(x, t), u_{3}(x, t)\right)$ is the velocity field of the flow, $d=d(x, t)=\left(d_{1}(x, t), d_{2}(x, t), d_{3}(x, t)\right)$ is the (averaged) macroscopic/continuum molecule direction, $P=P(x, t)$ is a scalar function representing the pressure, ν, λ, γ are positive constants, and $f(d)=\frac{1}{\epsilon^{2}}\left(|d|^{2}-1\right) d$. The term $\nabla d \odot \nabla d$ denotes the 3×3 matrix whose (i, j)-th entry is equal to $\partial_{i} d \cdot \partial_{j} d$ (for $1 \leq i, j \leq 3$). For simplicity, we assume that $\nu=\lambda=\gamma=\epsilon=1$ throughout this paper.

The above system is a simplified version of the Ericksen-Leslie model (see [4]) which retains many essential features of the hydrodynamic equations for nematic liquid crystal. The existence of global-in-time weak solutions and local-in-time classical solutions for this system have been established by Lin and Liu [4. Later, in [5], they also proved that the one dimensional spacetime Hausdorff measure of the singular set of the "suitable" weak solutions is zero. Recently, Zhou and Fan in 8 proved a regularity criterion for another system of partial differential equations modelling nematic liquid crystal flows, which is considered by Sun and Liu [7] and

[^0]is similar to (1.1)-1.4); their result says that if the local solution (u, b) satisfies
$$
\int_{0}^{T} \frac{\|\nabla u\|_{p}^{r}}{1+\ln \left(e+\|\nabla u\|_{p}\right)} d t<\infty \quad \text { with } \quad \frac{2}{r}+\frac{3}{p}=2,2 \leq p \leq 3
$$
then (u, d) is regular on $(0, T]$.
We notice that if $d \equiv 0$, then the system (1.1) becomes to the NavierStokes equations. There have been a lot of works on regularity criteria of the solution to the 3-D Navier-Stokes equations. The following results in this direction are well-known: If one of the following two conditions holds
(1) $u \in L^{q}\left(0, T\right.$; $\left.L^{p}\right)$ for $\frac{2}{q}+\frac{3}{p} \leq 1$ and $3<p \leq \infty$;
(2) $\nabla u \in L^{\alpha}\left(0, T ; L^{\beta}\right)$ for $\frac{2}{\alpha}+\frac{3}{\beta} \leq 2$ and $\frac{3}{2}<\beta \leq \infty$,
then the solution to the 3-D Navier-Stokes equations is regular [1, 2, 3, 6]. In this note we want to show that the above regularity criteria still hold for the nematic liquid crystal flow (1.1)-(1.4). More precisely, we have the following results:

Theorem 1.1. Let $\left(u_{0}, d_{0}\right) \in H^{1}\left(\mathbb{R}^{3}\right) \times H^{2}\left(\mathbb{R}^{3}\right)$ with div $u_{0}=0$. Suppose that (u, d) is a local smooth solution of the liquid crystal flow (1.1)-(1.4) on the time interval $[0, T)$ associate with the initial value $\left(u_{0}, d_{0}\right)$. Assume that one of the following two conditions holds
(a) $u \in L^{q}\left(0, T ; L^{p}\left(\mathbb{R}^{3}\right)\right)$, for $\frac{2}{q}+\frac{3}{p} \leq 1$ with $3<p \leq \infty$;
(b) $\nabla u \in L^{\alpha}\left(0, T ; L^{\beta}\left(\mathbb{R}^{3}\right)\right)$, for $\frac{2}{\alpha}+\frac{3}{\beta} \leq 2$ with $\frac{3}{2}<\beta \leq \infty$.

Then (u, d) can be extended beyond T.
We shall give the proof of this result in the following section. As usual, we use the notation C to denote a "generic" constant which may change from line to line, and use $\|\cdot\|_{p}$ to denote the norm of the Lebesgue space L^{p}.

2. Proof of Theorem 1.1

Assume that $\left[0, T_{\max }\right)$ is the maximal interval of the existence of local smooth solution. To conclude our proof, we only need to show that $T<T_{\text {max }}$. Arguing by contradiction, we assume that $T_{\max } \leq T$, and either (a) or (b) holds. If we can establish the estimate

$$
\begin{equation*}
\lim _{t \rightarrow T^{-}}\left(\|\nabla u\|_{2}+\|\Delta d\|_{2}\right)<\infty \tag{2.1}
\end{equation*}
$$

then $[0, T)$ is not a maximal interval of the existence of solution, which leads to an contradiction.

We multiply 1.1 by u and integrate over \mathbb{R}^{3}, and multiply 1.2 by $-\Delta d+f(d)$ and integrate over \mathbb{R}^{3}. By adding the two results above, we obtain

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} \int_{\mathbb{R}^{3}}\left(|u|^{2}+|\nabla d|^{2}+2 F(d)\right) d x+\int_{\mathbb{R}^{3}}\left(|\nabla u|^{2}+|\Delta d-f(d)|^{2}\right) d x=0 \tag{2.2}
\end{equation*}
$$

where $F(d)$ is the primitive function of $f(d)$; i.e., $F(d)=\frac{|d|^{4}}{4}-\frac{|d|^{2}}{2}$. Here we used the condition $\operatorname{div} u=0$ and the fact that

$$
((u \cdot \nabla) u, u)=(u, \nabla P)=((u \cdot \nabla) d, f(d))=\left(u, \nabla \frac{|\nabla d|^{2}}{2}\right)=0
$$

Hence

$$
\begin{equation*}
\|u\|_{L^{\infty}\left(0, T ; L^{2}\right)}+\|u\|_{L^{2}\left(0, T ; H^{1}\right)} \leq C \tag{2.3}
\end{equation*}
$$

Multiply 1.2 by $|d|^{2} d$ and integrate by parts yields

$$
\frac{1}{4} \frac{d}{d t} \int_{\mathbb{R}^{3}}|d|^{4}(t, x) d x+\int_{\mathbb{R}^{3}}\left(3 d^{2}|\nabla d|^{2}+|d|^{6}\right)(t, x) d x=\int_{\mathbb{R}^{3}}|d|^{4}(t, x) d x
$$

which implies

$$
\begin{equation*}
\|d(t, \cdot)\|_{L^{\infty}\left(0, T ; L^{4}\right)}+\int_{0}^{t} \int_{\mathbb{R}^{3}}\left(3 d^{2}|\nabla d|^{2}+|d|^{6}\right)(\tau, x) d x d \tau \leq C \tag{2.4}
\end{equation*}
$$

Multiply (1.2) by $f(d)$ and integrate by parts, we obtain

$$
\begin{equation*}
\frac{d}{d t} \int_{\mathbb{R}^{3}} F(d)(t, x) d x=\int_{\mathbb{R}^{3}}\left(\Delta d f(d)-|f(d)|^{2}\right)(t, x) d x \tag{2.5}
\end{equation*}
$$

By (2.2-2.5), the Gronwall's inequality and the fact $f(d)=\left(|d|^{2}-1\right) d$, we obtain

$$
\begin{equation*}
\|d\|_{L^{\infty}\left(0, T ; H^{1}\right)}+\|d\|_{L^{2}\left(0, T ; H^{2}\right)} \leq C \tag{2.6}
\end{equation*}
$$

Noticing that the i-th $(i=1,2,3)$ component of u satisfies

$$
\begin{equation*}
\partial_{t} u_{i}+(u \cdot \nabla) u_{i}-\Delta u_{i}+\partial_{i} P=-\sum_{j=1}^{3} \partial_{j}\left(\sum_{k=1}^{3} \partial_{i} d_{k} \partial_{j} d_{k}\right) \tag{2.7}
\end{equation*}
$$

Multiplying (2.7) by $-\Delta u_{i}$, summing over i, using integration by parts, and noting that $\operatorname{div} u=0$, we obtain

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t} \int_{\mathbb{R}^{3}}|\nabla u|^{2} d x+\int_{\mathbb{R}^{3}}|\Delta u|^{2} d x \\
& =\sum_{i=1}^{3} \int_{\mathbb{R}^{3}}(u \cdot \nabla) u_{i} \Delta u_{i} d x-\sum_{i, k=1}^{3} \int_{\mathbb{R}^{3}} \partial_{i} d_{k} \Delta d_{k} \Delta u_{i} d x \tag{2.8}
\end{align*}
$$

Applying Δ to both sides of $(1.2$, multiplying them with Δd, and using (1.3), we obtain

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t} \int_{\mathbb{R}^{3}}|\Delta d|^{2} d x+\int_{\mathbb{R}^{3}}\left(|\nabla \Delta d|^{2}+\Delta f(d) \Delta d\right) d x \\
& =\sum_{i, k}^{3} \int_{\mathbb{R}^{3}} \Delta u_{i} \partial_{i} d_{k} \Delta d_{k} d x-2 \sum_{i, k=1}^{3} \int_{\mathbb{R}^{3}} \nabla u_{i} \partial_{i} \nabla d_{k} \Delta d_{k} d x \tag{2.9}
\end{align*}
$$

where we used the condition $\operatorname{div} u=0$. Putting (2.8) and (2.9) together, we obtain

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t} \int_{\mathbb{R}^{3}}\left(|\nabla u|^{2}+|\Delta d|^{2}\right) d x+\int_{\mathbb{R}^{3}}\left(|\Delta u|^{2}+|\nabla \Delta d|^{2}\right) d x \\
& =\sum_{i=1}^{3} \int_{\mathbb{R}^{3}}(u \cdot \nabla) u_{i} \Delta u_{i} d x-2 \sum_{i, k=1}^{3} \int_{\mathbb{R}^{3}} \nabla u_{i} \partial_{i} \nabla d_{k} \Delta d_{k} d x-\int_{\mathbb{R}^{3}} \Delta f(d) \Delta d d x \\
& =: I_{1}+I_{2}+I_{3} . \tag{2.10}
\end{align*}
$$

Now, we first consider the case that the smooth solution (u, d) satisfies the condition (a). For I_{1}, we can do estimates for it as

$$
\begin{align*}
I_{1} & \leq C\|u\|_{p}\|\nabla u\|_{\frac{2 p}{p-2}}\|\Delta u\|_{2} \quad \text { (Hölder's inequality) } \\
& \leq C\|u\|_{p}\|\nabla u\|_{2}^{\frac{p-3}{p}}\|\Delta u\|_{2}^{1+\frac{3}{p}} \quad \text { (Gagliardo-Nirenberg inequality) } \tag{2.11}\\
& \leq \frac{1}{2}\|\Delta u\|_{2}^{2}+C\|u\|_{p}^{\frac{2 p}{p-3}}\|\nabla u\|_{2}^{2} \quad \text { (Young inequality). }
\end{align*}
$$

Similarly, we can estimate I_{2} and I_{3} as

$$
\begin{align*}
I_{2} & =2 \int_{\mathbb{R}^{3}} u_{i} \partial_{i} \nabla d_{k} \nabla \Delta d_{k} d x \\
& \leq C\|u\|_{p}\left\|\nabla^{2} d\right\|_{\frac{2 p}{p-2}}\|\Delta d\|_{2} \quad \text { (Hölder's Inequality) } \tag{2.12}\\
& \leq C\|u\|_{p}\left\|\nabla^{2} d\right\|_{2}^{\frac{p-3}{p}}\|\nabla \Delta d\|_{2}^{1+\frac{3}{p}} \quad \text { (Gagliardo-Nirenberg inequality) } \\
& \leq \frac{1}{4}\|\nabla \Delta d\|_{2}^{2}+C\|u\|_{p}^{\frac{2 p}{p-3}}\|\Delta d\|_{2}^{2} \quad \text { (Young inequality), } \\
I_{3} & =\sum_{i=1}^{3} \int_{\mathbb{R}^{3}} \partial_{i}\left[\left(|d|^{2}-1\right) d\right] \partial_{i} \Delta d d x \\
& =\sum_{i=1}^{3} 3 \int_{\mathbb{R}^{3}} \partial_{i} d \partial_{i} \Delta d|d|^{2} d x-\sum_{i=1}^{3} \int_{\mathbb{R}^{3}} \partial_{i} d \partial_{i} \Delta d d x \\
& \leq C\|\nabla d\|_{6}\|\nabla \Delta d\|_{2}\|d\|_{6}^{2}+C\|\nabla d\|_{2}\|\nabla \Delta d\|_{2} \quad \text { (Hölder's inequality) } \tag{2.13}\\
& \leq C\|\Delta d\|_{2}\|\nabla \Delta d\|_{2}\|\nabla d\|_{2}^{2}+C\|\nabla d\|_{2}\|\nabla \Delta d\|_{2} \quad \text { (Sobolev embedding) } \\
& \leq \frac{1}{4}\|\nabla \Delta d\|_{2}^{2}+C\left(\|\nabla d\|_{2}^{2}+\|\nabla d\|_{2}^{2}\|\Delta d\|_{2}^{2}\right) \quad \text { (Young inequality) } \\
& \leq \frac{1}{4}\|\nabla \Delta d\|_{2}^{2}+C\|\Delta d\|_{2}^{2}+C .
\end{align*}
$$

Substituting the above estimates $2.11-(2.13$ into 2.10 , we obtain

$$
\begin{align*}
& \frac{d}{d t} \int_{\mathbb{R}^{3}}\left(|\nabla u|^{2}+|\Delta d|^{2}\right) d x+\int_{\mathbb{R}^{3}}\left(|\Delta u|^{2}+|\nabla \Delta d|^{2}\right) d x \\
& \leq C\|u\|_{p}^{\frac{2 p}{p-3}}\left(\|\nabla u\|_{2}^{2}+\|\Delta d\|_{2}^{2}\right)+C\|\Delta d\|_{2}^{2}+C \tag{2.14}\\
& \leq C\left(1+\|u\|_{p}^{\frac{2 p}{p-3}}\right)\left(\|\nabla u\|_{2}^{2}+\|\Delta d\|_{2}^{2}\right)+C
\end{align*}
$$

Hence, the Gronwall's inequality yields

$$
\begin{equation*}
\sup _{0 \leq t \leq T}\left\{\|\nabla u\|_{2}^{2}+\|\Delta d\|_{2}^{2}\right\} \leq C e^{C T} e^{\int_{0}^{T}\|u\|_{p}^{2 p /(p-3)} d t}<\infty \tag{2.15}
\end{equation*}
$$

Next we consider the case that the smooth solution (u, d) satisfies the condition (b). We estimate I_{1} as follows:

$$
\begin{align*}
I_{1} & =-\sum_{i, j=1}^{3} \int_{\mathbb{R}^{3}}\left(\partial_{i} u \cdot \nabla\right) u_{i} \partial_{j} u_{i} d x \\
& \leq C\|\nabla u\|_{\beta}\|\nabla u\|_{\frac{2 \beta}{\beta-1}}^{2} \quad \text { (Hölder's inequality) } \tag{2.16}\\
& \leq C\|\nabla u\|_{\beta}\|\nabla u\|_{2}^{\frac{2 \beta-3}{\beta}}\|\Delta u\|_{2}^{\frac{3}{\beta}} \quad \text { (Gagliardo-Nirenberg inequality) } \\
& \leq \frac{1}{2}\|\Delta u\|_{2}^{2}+C\|\nabla u\|_{\beta}^{\frac{2 \beta}{2 \beta-3}}\|\nabla u\|_{2}^{2} \quad \text { (Young inequality). }
\end{align*}
$$

Similarly, we can do estimates for I_{2} as

$$
\begin{align*}
I_{2} & \leq C\|\nabla u\|_{\beta}\|\Delta d\|_{\frac{2 \beta}{\beta-1}}^{2} \quad \text { (Hölder's inequality) } \\
& \leq C\|\nabla u\|_{\beta}\|\Delta d\|_{2}^{\frac{2 \beta-3}{\beta}}\|\nabla \Delta d\|_{2}^{\frac{3}{\beta}} \quad \text { (Gagliardo-Nirenberg inequality) } \tag{2.17}\\
& \leq \frac{1}{4}\|\nabla \Delta d\|_{2}^{2}+C\|\nabla u\|_{\beta}^{\frac{2 \beta}{2 \beta-3}}\|\Delta d\|_{2}^{2} \quad \text { (Young inequality), }
\end{align*}
$$

and for I_{3} as

$$
\begin{equation*}
I_{3} \leq \frac{1}{4}\|\nabla \Delta d\|_{2}^{2}+C\|\Delta d\|_{2}^{2}+C \tag{2.18}
\end{equation*}
$$

Putting the above estimates for $2.15-2.18$ into 2.10 , we obtain

$$
\begin{aligned}
& \frac{d}{d t} \int_{\mathbb{R}^{3}}\left(|\nabla u|^{2}+|\Delta d|^{2}\right) d x+\int_{\mathbb{R}^{3}}\left(|\Delta u|^{2}+|\nabla \Delta d|^{2}\right) d x \\
& \leq C\left(1+\|\nabla u\|_{\beta}^{\frac{2 \beta}{2 \beta-3}}\right)\left(\|\nabla u\|_{2}^{2}+\|\Delta d\|_{2}^{2}\right)+C .
\end{aligned}
$$

Hence, the Gronwall's inequality yields

$$
\begin{equation*}
\sup _{0 \leq t \leq T}\left\{\|\nabla u\|_{2}^{2}+\|\Delta d\|_{2}^{2}\right\} \leq C e^{C T} e^{\int_{0}^{T}\|\nabla u\|_{\beta}^{\frac{2 \beta}{2 \beta-3}} d t}<\infty \tag{2.19}
\end{equation*}
$$

By (2.15) and 2.19, we see that (2.1) follows. This proves Theorem 1.1.

References

[1] H. Beiráo da Veiga; A new regularity class for the Navier-Stokes equations in \mathbb{R}^{n}, Chinese Ann. Math. Ser. B 16 (1995), no. 4, 407-412.
[2] Y. Giga; Solutions for semilinear parabolic equations in L^{p} and regularity of weak solutions of the Navier-Stokes system. J. Diff. Equ. 62 (1986), no. 2, 186-212.
[3] C. He and Z. Xin; On the regularity of weak solutions to the magnetohydrodynamic equations, J. Diff. Equ. 213 (2005) 235-254.
[4] F. Lin and C. Liu; Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure and Appl. Math. 48 (1995) 501-537.
[5] F. Lin and C. Liu; Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals, Disc. Contin. Dyn. Syst. 2 (1996) 1-23.
[6] J. Serrin; On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal. 9 (1962) 187-195.
[7] H. Sun and C. Liu; On energetic variational approaches in modeling the nematic liquid crystal flows, Dis. Contin. Dyn. Syst. A, 23 (2009) 455-475.
[8] Y. Zhou and J. Fan; A regularity criterion for the nematic liquid crystal flows. J. Inequal. Appl. 2010, Art. ID 589697, 9 pp.

Qiao Liu
Department of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong 510275, China

E-mail address: liuqao2005@lzu.cn, liuqao2005@163.com
Shangbin Cui
Department of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong 510275, China

E-mail address: cuisb3@yahoo.com.cn

[^0]: 2000 Mathematics Subject Classification. 76A15, 35B65, 35Q35.
 Key words and phrases. Liquid crystal flow; initial value problem; regularity of solutions. (C) 2010 Texas State University - San Marcos.

 Submitted November 4, 2010. Published December 6, 2010.
 Supported by grant 10771223 from the National Natural Science Foundation of China.

