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REGULARITY OF SOLUTIONS TO 3-D NEMATIC LIQUID
CRYSTAL FLOWS

QIAO LIU, SHANGBIN CUI

Abstract. In this note we consider the regularity of solutions to 3-D nematic
liquid crystal flows, we prove that if either u ∈ Lq(0, T ; Lp(R3)), 2

q
+ 3

p
≤ 1,

3 < p ≤ ∞; or u ∈ Lα(0, T ; Lβ(R3)), 2
α

+ 3
β
≤ 2, 3

2
< β ≤ ∞, then the

solution (u, d) is regular on (0, T ].

1. Introduction

In this note we study the following hydrodynamical systems modelling the flow
of nematic liquid crystal material [4, 5]:

ut − ν∆u + (u · ∇)u +∇P = −λ∇ · (∇d�∇d), in R3 × (0,∞), (1.1)

dt + (u · ∇)d = γ(∆d− f(d)), in R3 × (0,∞), (1.2)

div u = 0, in R3 × (0,∞), (1.3)

(u, d)|t=0 = (u0, d0) in R3. (1.4)

Here u = u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) is the velocity field of the flow,
d = d(x, t) = (d1(x, t), d2(x, t), d3(x, t)) is the (averaged) macroscopic/continuum
molecule direction, P = P (x, t) is a scalar function representing the pressure, ν, λ, γ
are positive constants, and f(d) = 1

ε2 (|d|2−1)d. The term ∇d�∇d denotes the 3×3
matrix whose (i, j)-th entry is equal to ∂id · ∂jd (for 1 ≤ i, j ≤ 3). For simplicity,
we assume that ν = λ = γ = ε = 1 throughout this paper.

The above system is a simplified version of the Ericksen-Leslie model (see [4])
which retains many essential features of the hydrodynamic equations for nematic
liquid crystal. The existence of global-in-time weak solutions and local-in-time
classical solutions for this system have been established by Lin and Liu [4]. Later,
in [5], they also proved that the one dimensional spacetime Hausdorff measure of
the singular set of the “suitable” weak solutions is zero. Recently, Zhou and Fan in
[8] proved a regularity criterion for another system of partial differential equations
modelling nematic liquid crystal flows, which is considered by Sun and Liu [7] and
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is similar to (1.1)–(1.4); their result says that if the local solution (u, b) satisfies∫ T

0

‖∇u‖r
p

1 + ln(e + ‖∇u‖p)
dt < ∞ with

2
r

+
3
p

= 2, 2 ≤ p ≤ 3,

then (u, d) is regular on (0, T ].
We notice that if d ≡ 0, then the system (1.1)–(1.4) becomes to the Navier-

Stokes equations. There have been a lot of works on regularity criteria of the
solution to the 3-D Navier-Stokes equations. The following results in this direction
are well-known: If one of the following two conditions holds

(1) u ∈ Lq(0, T ;Lp) for 2
q + 3

p ≤ 1 and 3 < p ≤ ∞;
(2) ∇u ∈ Lα(0, T ;Lβ) for 2

α + 3
β ≤ 2 and 3

2 < β ≤ ∞,

then the solution to the 3-D Navier-Stokes equations is regular [1, 2, 3, 6]. In this
note we want to show that the above regularity criteria still hold for the nematic
liquid crystal flow (1.1)–(1.4). More precisely, we have the following results:

Theorem 1.1. Let (u0, d0) ∈ H1(R3)×H2(R3) with div u0 = 0. Suppose that (u, d)
is a local smooth solution of the liquid crystal flow (1.1)–(1.4) on the time interval
[0, T ) associate with the initial value (u0, d0). Assume that one of the following two
conditions holds

(a) u ∈ Lq(0, T ;Lp(R3)), for 2
q + 3

p ≤ 1 with 3 < p ≤ ∞;
(b) ∇u ∈ Lα(0, T ;Lβ(R3)), for 2

α + 3
β ≤ 2 with 3

2 < β ≤ ∞.

Then (u, d) can be extended beyond T .

We shall give the proof of this result in the following section. As usual, we use
the notation C to denote a “generic” constant which may change from line to line,
and use ‖ · ‖p to denote the norm of the Lebesgue space Lp.

2. Proof of Theorem 1.1

Assume that [0, Tmax) is the maximal interval of the existence of local smooth
solution. To conclude our proof, we only need to show that T < Tmax. Arguing
by contradiction, we assume that Tmax ≤ T , and either (a) or (b) holds. If we can
establish the estimate

lim
t→T−

(‖∇u‖2 + ‖∆d‖2) < ∞, (2.1)

then [0, T ) is not a maximal interval of the existence of solution, which leads to an
contradiction.

We multiply (1.1) by u and integrate over R3, and multiply (1.2) by −∆d+f(d)
and integrate over R3. By adding the two results above, we obtain

1
2

d

dt

∫
R3

(|u|2 + |∇d|2 + 2F (d)) dx +
∫

R3
(|∇u|2 + |∆d− f(d)|2) dx = 0, (2.2)

where F (d) is the primitive function of f(d); i.e., F (d) = |d|4
4 − |d|2

2 . Here we used
the condition div u = 0 and the fact that

((u · ∇)u, u) = (u,∇P ) = ((u · ∇)d, f(d)) = (u,∇|∇d|2

2
) = 0.

Hence
‖u‖L∞(0,T ;L2) + ‖u‖L2(0,T ;H1) ≤ C. (2.3)
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Multiply (1.2) by |d|2d and integrate by parts yields
1
4

d

dt

∫
R3
|d|4(t, x) dx +

∫
R3

(3d2|∇d|2 + |d|6)(t, x) dx =
∫

R3
|d|4(t, x) dx,

which implies

‖d(t, ·)‖L∞(0,T ;L4) +
∫ t

0

∫
R3

(3d2|∇d|2 + |d|6)(τ, x) dx dτ ≤ C. (2.4)

Multiply (1.2) by f(d) and integrate by parts, we obtain
d

dt

∫
R3

F (d)(t, x) dx =
∫

R3
(∆df(d)− |f(d)|2)(t, x) dx. (2.5)

By (2.2)–(2.5), the Gronwall’s inequality and the fact f(d) = (|d|2− 1)d, we obtain

‖d‖L∞(0,T ;H1) + ‖d‖L2(0,T ;H2) ≤ C. (2.6)

Noticing that the i-th (i=1,2,3) component of u satisfies

∂tui + (u · ∇)ui −∆ui + ∂iP = −
3∑

j=1

∂j

( 3∑
k=1

∂idk∂jdk

)
. (2.7)

Multiplying (2.7) by −∆ui, summing over i, using integration by parts, and noting
that div u = 0, we obtain

1
2

d

dt

∫
R3
|∇u|2 dx +

∫
R3
|∆u|2 dx

=
3∑

i=1

∫
R3

(u · ∇)ui∆ui dx−
3∑

i,k=1

∫
R3

∂idk∆dk∆ui dx.

(2.8)

Applying ∆ to both sides of (1.2), multiplying them with ∆d, and using (1.3), we
obtain

1
2

d

dt

∫
R3
|∆d|2 dx +

∫
R3

(
|∇∆d|2 + ∆f(d)∆d

)
dx

=
3∑

i,k

∫
R3

∆ui∂idk∆dk dx− 2
3∑

i,k=1

∫
R3
∇ui∂i∇dk∆dk dx,

(2.9)

where we used the condition div u = 0. Putting (2.8) and (2.9) together, we obtain
1
2

d

dt

∫
R3

(
|∇u|2 + |∆d|2

)
dx +

∫
R3

(|∆u|2 + |∇∆d|2) dx

=
3∑

i=1

∫
R3

(u · ∇)ui∆ui dx− 2
3∑

i,k=1

∫
R3
∇ui∂i∇dk∆dk dx−

∫
R3

∆f(d)∆d dx

=: I1 + I2 + I3.

(2.10)
Now, we first consider the case that the smooth solution (u, d) satisfies the

condition (a). For I1, we can do estimates for it as

I1 ≤ C‖u‖p‖∇u‖ 2p
p−2

‖∆u‖2 (Hölder’s inequality)

≤ C‖u‖p‖∇u‖
p−3

p

2 ‖∆u‖1+ 3
p

2 (Gagliardo-Nirenberg inequality)

≤ 1
2
‖∆u‖2

2 + C‖u‖
2p

p−3
p ‖∇u‖2

2 (Young inequality).

(2.11)
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Similarly, we can estimate I2 and I3 as

I2 = 2
∫

R3
ui∂i∇dk∇∆dk dx

≤ C‖u‖p‖∇2d‖ 2p
p−2

‖∆d‖2 (Hölder’s Inequality)

≤ C‖u‖p‖∇2d‖
p−3

p

2 ‖∇∆d‖1+ 3
p

2 (Gagliardo-Nirenberg inequality)

≤ 1
4
‖∇∆d‖2

2 + C‖u‖
2p

p−3
p ‖∆d‖2

2 (Young inequality),

(2.12)

I3 =
3∑

i=1

∫
R3

∂i[(|d|2 − 1)d]∂i∆d dx

=
3∑

i=1

3
∫

R3
∂id∂i∆d|d|2 dx−

3∑
i=1

∫
R3

∂id∂i∆d dx

≤ C‖∇d‖6‖∇∆d‖2‖d‖2
6 + C‖∇d‖2‖∇∆d‖2 (Hölder’s inequality)

≤ C‖∆d‖2‖∇∆d‖2‖∇d‖2
2 + C‖∇d‖2‖∇∆d‖2 (Sobolev embedding)

≤ 1
4
‖∇∆d‖2

2 + C(‖∇d‖2
2 + ‖∇d‖2

2‖∆d‖2
2) (Young inequality)

≤ 1
4
‖∇∆d‖2

2 + C‖∆d‖2
2 + C.

(2.13)

Substituting the above estimates (2.11)–(2.13) into (2.10), we obtain

d

dt

∫
R3

(
|∇u|2 + |∆d|2

)
dx +

∫
R3

(|∆u|2 + |∇∆d|2) dx

≤ C‖u‖
2p

p−3
p (‖∇u‖2

2 + ‖∆d‖2
2) + C‖∆d‖2

2 + C

≤ C(1 + ‖u‖
2p

p−3
p )(‖∇u‖2

2 + ‖∆d‖2
2) + C.

(2.14)

Hence, the Gronwall’s inequality yields

sup
0≤t≤T

{‖∇u‖2
2 + ‖∆d‖2

2} ≤ CeCT e
R T
0 ‖u‖2p/(p−3)

p dt < ∞. (2.15)

Next we consider the case that the smooth solution (u, d) satisfies the condition
(b). We estimate I1 as follows:

I1 = −
3∑

i,j=1

∫
R3

(∂iu · ∇)ui∂jui dx

≤ C‖∇u‖β‖∇u‖2
2β

β−1
(Hölder’s inequality)

≤ C‖∇u‖β‖∇u‖
2β−3

β

2 ‖∆u‖
3
β

2 (Gagliardo-Nirenberg inequality)

≤ 1
2
‖∆u‖2

2 + C‖∇u‖
2β

2β−3
β ‖∇u‖2

2 (Young inequality).

(2.16)
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Similarly, we can do estimates for I2 as

I2 ≤ C‖∇u‖β‖∆d‖2
2β

β−1
(Hölder’s inequality)

≤ C‖∇u‖β‖∆d‖
2β−3

β

2 ‖∇∆d‖
3
β

2 (Gagliardo-Nirenberg inequality)

≤ 1
4
‖∇∆d‖2

2 + C‖∇u‖
2β

2β−3
β ‖∆d‖2

2 (Young inequality),

(2.17)

and for I3 as

I3 ≤
1
4
‖∇∆d‖2

2 + C‖∆d‖2
2 + C. (2.18)

Putting the above estimates for (2.15)–(2.18) into (2.10), we obtain
d

dt

∫
R3

(
|∇u|2 + |∆d|2

)
dx +

∫
R3

(|∆u|2 + |∇∆d|2) dx

≤ C(1 + ‖∇u‖
2β

2β−3
β )(‖∇u‖2

2 + ‖∆d‖2
2) + C.

Hence, the Gronwall’s inequality yields

sup
0≤t≤T

{‖∇u‖2
2 + ‖∆d‖2

2} ≤ CeCT e
R T
0 ‖∇u‖

2β
2β−3
β dt < ∞. (2.19)

By (2.15) and (2.19), we see that (2.1) follows. This proves Theorem 1.1.
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