Xavier Carvajal Paredes, Pedro Gamboa Romero
Abstract:
In this article, we prove that the initial value problem associated with
the Korteweg-de Vries equation is well-posed in weighted
Sobolev spaces
,
for
and the initial value problem
associated with the nonlinear Schrodinger equation is
well-posed in weighted Sobolev spaces
,
for
. Persistence property has been
proved by approximation of the solutions and using
a priori estimates.
Submitted October 18, 2010. Published November 24, 2010.
Math Subject Classifications: 35A07, 35Q53.
Key Words: Schrodinger equation; Korteweg-de Vries equation;
global well-posed; persistence property; weighted Sobolev spaces.
Show me the PDF file (246 KB), TEX file, and other files for this article.
Xavier Carvajal IM UFRJ, Av. Athos da Silveira Ramos P.O. Box 68530. CEP 21945-970. RJ. Brazil email: carvajal@im.ufrj.br, Phone 55-21-25627520 | |
Pedro Gamboa Romero IM UFRJ, Av. Athos da Silveira Ramos P.O. Box 68530. CEP 21945-970. RJ. Brazil email: pgamboa@im.ufrj.br, Phone 55-21-25627520 |
Return to the EJDE web page