Electron. J. Diff. Equ., Vol. 2010(2010), No. 169, pp. 1-10.

Persistence of solutions to nonlinear evolution equations in weighted Sobolev spaces

Xavier Carvajal Paredes, Pedro Gamboa Romero

Abstract:
In this article, we prove that the initial value problem associated with the Korteweg-de Vries equation is well-posed in weighted Sobolev spaces $\mathcal{X}^{s,\theta}$, for $s \geq 2\theta \ge 2$ and the initial value problem associated with the nonlinear Schrodinger equation is well-posed in weighted Sobolev spaces $\mathcal{X}^{s,\theta}$, for $s \geq \theta \geq 1$. Persistence property has been proved by approximation of the solutions and using a priori estimates.

Submitted October 18, 2010. Published November 24, 2010.
Math Subject Classifications: 35A07, 35Q53.
Key Words: Schrodinger equation; Korteweg-de Vries equation; global well-posed; persistence property; weighted Sobolev spaces.

Show me the PDF file (246 KB), TEX file, and other files for this article.

Xavier Carvajal
IM UFRJ, Av. Athos da Silveira Ramos
P.O. Box 68530. CEP 21945-970. RJ. Brazil
email: carvajal@im.ufrj.br, Phone 55-21-25627520
Pedro Gamboa Romero
IM UFRJ, Av. Athos da Silveira Ramos
P.O. Box 68530. CEP 21945-970. RJ. Brazil
email: pgamboa@im.ufrj.br, Phone 55-21-25627520

Return to the EJDE web page