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PROPERTIES OF THE FIRST EIGENVALUE OF A MODEL FOR
NON NEWTONIAN FLUIDS

OMAR CHAKRONE, OKACHA DIYER, DRISS SBIBIH

Abstract. We consider a nonlinear Stokes problem on a bounded domain.
We prove the existence of the first eigenvalue which is given by a minimization

formula. Some properties such as strict monotony and the Fredholm alterna-
tive are established.

1. Introduction

In studies of semi-linear elliptic equations such as

−∆u = f(x, u) + h(x) in Ω,

u = 0 on ∂Ω

where Ω is a bounded domain of Rn. It is usual to impose conditions on the
asymptotic behavior of the nonlinearity f(x, u) in relation to the spectrum of the
linear part of −∆. In the simplest situations, we consider f(x, u) as a perturbation
of λu. According to that λ being or not an eigenvalue of −∆, the results of such
resonance or non-resonance are then obtained. Among the classical references on
this subject, we can cite [5] (λ < λ1), [4] (λ between two consecutive eigenvalues),
[6] (λ = λ1). We also cite the Dirichlet problem

−div(|∇u|k−2∇u) = λm(x)|u|k−2u in Ω,

u = 0 on ∂Ω.

The first eigenvalue λ1 of the Dirichlet problem is simple and isolated. It was proved
that it is the unique positive eigenvalue having a non negative eigenfunction, see
[2].

Now we consider the eigenvalue problem of a non-linear operator k-Laplacian.
Let Ω ⊂ R2 be a bounded domain with boundary Γ =

⋃4
i=1 Γi, where Γ1 = {0}×]−

1, 1[, Γ2 = {1}×] − 1, 1[ and Γ3, Γ4 are symmetrical to the X-axis, see Figure 1.
In the interior of this domain, a non-Newtonian liquid is subjected to pressures of
known differences between the two sides Γ1 and Γ2.
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Figure 1. Geometry of channel Ω

We denote by V the closure of V in the space W 1,k(Ω), where

V =
{
u = (u1, u2)t ∈ (C1(Ω̄))2 : div u = 0, ui(0, y) = ui(1, y) on [−1, 1]

for i = 1, 2 and u = 0 on Γ3 ∪ Γ4

}
.

For given α ∈ R, we consider the eigenvalue problem: Find (λ, u, p) ∈ R×V \{0}×
L2(Ω) such that

−∆ku1 +
∂p

∂x
= λm(x, y)|u1|k−2u1 in Ω,

−∆ku2 +
∂p

∂y
= λm(x, y)|u2|k−2u2 in Ω,

div u =
∂u1

∂x
+

∂u2

∂y
= 0 in Ω,

u1(0, y) = u1(1, y) on [−1, 1],

u2(0, y) = u2(1, y) on [−1, 1],
∂u1

∂x
(0, y) =

∂u1

∂x
(1, y) on [−1, 1],

|∇u2(0, y)|k−2 ∂u2

∂x
(0, y) = |∇u2(1, y)|k−2 ∂u2

∂x
(1, y) on [−1, 1],

p(1, y)− p(0, y) = −α on [−1, 1]

(1.1)

where the weight function m(x, y) ∈ L∞(Ω) can change the sign and it is positive
in a subset of Ω,

−∆kui = −div(|∇ui|k−2∇ui)

is a k-Laplacian, i = 1, 2 and 1 < k < ∞. In the particular case k = 2; i.e.,
∆k = ∆, and λ = 0, the above problem has been studied by many authors, we
cite for example Amrouche et al. [1]. Here, we give an extension to previous work
in the nonlinear case by applying new methods to characterize the first eigenvalue
for this kind of problem such as minimization and as application is to solving the
problem of Fredholm alternative. This note is organized as follows. In Section 2,
we give the existence and the characterization of the first eigenvalue. In Section
3, we prove the Fredholm alternative and we justify all the given properties. In
Section 4, we give a conclusion.
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2. Existence and characterization of the first eigenvalue

Theorem 2.1. There exists one principal eigenvalue λ1 for Problem (1.1). It is
characterized by

λ1 = kβ + (k − 1)α
∫ 1

−1

(ϕ1)1(0, y)dy, (2.1)

where ϕ1 is the principal corresponding eigenfunction and

β = min
{1

k

∫
Ω

|∇u1|k + |∇u2|k − α

∫ 1

−1

u1(0, y)dy;∫
Ω

m(x, y)(|u1|k + |u2|k) = 1, u ∈ V
}
,

β =
1
k

∫
Ω

|∇(ϕ1)1|k + |∇(ϕ1)2|k − α

∫ 1

−1

(ϕ1)1(0, y)dy,∫
Ω

m(x, y)[|(ϕ1)1|k + |(ϕ1)2|k] = 1.

Furthermore, for all α, α′ ∈ R such that αα′ > 0, λ1(α) is an eigenvalue of Problem
(1.1).

For the sake of simplicity, in what follows, we denote λ1 = λ1(m) = λ1(α, m) =
λ1(α).

Theorem 2.2. (i) λ1 defined by

1
λ1

= max{
∫

Ω

m(x, y)(|u1|k + |u2|k);
∫

Ω

|∇u1|k + |∇u2|k = 1, u ∈ V } (2.2)

is the first eigenvalue of Problem (1.1) with α = 0 in the sense Σ ⊂ [λ1,+∞[,
where Σ is the set of the positive eigenvalues. Moreover, u is the eigenfunction
associated with λ1 if and only if

∫
Ω
|∇u1|k + |∇u2|k−λ1

∫
Ω

m(x, y)(|u1|k + |u2|k) =
inf{

∫
Ω
|∇v1|k + |∇v2|k − λ1

∫
Ω

m(x, y)(|v1|k + |v2|k) v ∈ V } = 0.
(ii) λ1(.) is strictly monotone in L∞(Ω); i.e., if m1,m2 are in the set

{
m ∈ L∞(Ω);measure{(x, y) ∈ Ω; m(x, y) > 0} 6= 0

}
such that m1(x, y) < m2(x, y) a.e., then λ1(m1) > λ1(m2).

(iii) λ1(.) is continuous in L∞(Ω).
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Theorem 2.3 (Fredholm alternative). Suppose that λ < λ1, then for f ∈ (C(Ω))2

the problem: Find (u, p) ∈ V × L2(Ω) such that

−∆ku1 +
∂p

∂x
= λm(x, y)|u1|k−2u1 + f1 in Ω,

−∆ku2 +
∂p

∂y
= λm(x, y)|u2|k−2u2 + f2 in Ω,

div u =
∂u1

∂x
+

∂u2

∂y
= 0 in Ω,

u1(0, y) = u1(1, y) on [−1, 1],

u2(0, y) = u2(1, y) on [−1, 1],
∂u1

∂x
(0, y) =

∂u1

∂x
(1, y) on [−1, 1],

|∇u2(0, y)|k−2 ∂u2

∂x
(0, y) = |∇u2(1, y)|k−2 ∂u2

∂x
(1, y) on [−1, 1],

p(1, y)− p(0, y) = −α on [−1, 1]

(2.3)

has a solution.

3. Proof of the main theorems

For proving Theorem 2.1, we need the following results.

Proposition 3.1. u = (u1, u2)t is a solution of problem: Find (u, p) ∈ V \ {0} ×
L2(Ω) such that

−∆ku1 +
∂p

∂x
= f1 in Ω,

−∆ku2 +
∂p

∂y
= f2 in Ω,

div u =
∂u1

∂x
+

∂u2

∂y
= 0 in Ω,

u1(0, y) = u1(1, y) on [−1, 1],

u2(0, y) = u2(1, y) on [−1, 1],
∂u1

∂x
(0, y) =

∂u1

∂x
(1, y) on [−1, 1],

|∇u2(0, y)|k−2 ∂u2

∂x
(0, y) = |∇u2(1, y)|k−2 ∂u2

∂x
(1, y) on [−1, 1],

p(1, y)− p(0, y) = −α on [−1, 1]

(3.1)

where f = (f1, f2)t ∈ (C(Ω))2, if and only if u is a solution of problem: Find u ∈ V
such that

2∑
i=1

∫
Ω

|∇ui|k−2∇ui∇vi − α

∫ 1

−1

v1(0, y)dy =
∫

Ω

(f1v1 + f2v2) (3.2)

for all v ∈ V .
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Remark 3.2. If we take fi = λm(x, y)|ui|k−2ui, i = 1, 2. Then (λ, u, p) is a
solution of (1.1) if and only if

2∑
i=1

∫
Ω

|∇ui|k−2∇ui∇vi − α

∫ 1

−1

v1(0, y)dy = λ
2∑

i=1

∫
Ω

m(x, y)|ui|k−2uivi

for all v ∈ V . For a proof of this remark see [3].

Proof of Theorem 2.1. Since for all v ∈ V , v = 0 on Γ3∪Γ4, u ∈ V → (
∫
Ω
|∇u1|k +

|∇u2|k)1/k define a norm in V according to the Poincaré inequality in the space V :
There exists c > 0 such that

c

∫
Ω

|u1|k + |u2|k ≤
∫

Ω

|∇u1|k + |∇u2|k. (3.3)

Suppose by contradiction that for all n ∈ N∗ there exists un = (un
1 , un

2 )t ∈ V such
that 1

n

∫
Ω
|un

1 |k + |un
2 |k >

∫
Ω
|∇un

1 |k + |∇un
2 |k, then we put

vn = (vn
1 , vn

2 )t

where vn
i = un

i

(
R
Ω |u

n
1 |k+|un

2 |k)1/k , i = 1, 2. Thus
∫
Ω
|vn

1 |k + |vn
2 |k = 1, so

1
n

>

∫
Ω

|∇vn
1 |k + |∇vn

2 |k. (3.4)

As (vn)n is bounded in V , we have for a subsequence also denoted (vn)n, vn ⇀ v
in V and vn → v in Lk(Ω). Therefore ‖v‖Lk(Ω) = 1, so v 6= 0. By passing to the
limit in (3.4), we have

0 ≥ lim inf
n

∫
Ω

|∇vn
1 |k + |∇vn

2 |k ≥
∫

Ω

|∇v1|k + |∇v2|k.

So
∫
Ω
|∇v1|k =

∫
Ω
|∇v2|k = 0, hence v = cst, therefore v = 0 because v = 0 on

Γ3 ∪ Γ4, is a contradiction. By using (3.3) and the Holder’s inequality, we easily
prove that β is well defined. Let (un) = ((un1, un2)) be a suitable minimization of
β, then we have

β = lim
n→∞

1
k

∫
Ω

|∇un1|k + |∇un2|k − α

∫ 1

−1

un1(0, y)dy

and ∫
Ω

m(x, y)(|un1|k + |un2|k) = 1.

The sequence (Xn) := ( 1
k

∫
Ω
|∇un1|k + |∇un2|k) is bounded, if we have not for a

subsequence, also denoted (Xn), Xn → +∞. Using the Holder’s inequality and the
fact that V ↪→ Lk(Γ1) we get

α

∫ 1

−1

un1(0, y)dy ≤ |α|c( 1
k

∫
Ω

|∇un1|k + |∇un2|k)1/k = |α|cX1/k
n

where c ∈ R. Thus 1
k

∫
Ω

∑2
i=1 |∇uni|k − α

∫ 1

−1
un1(0, y)dy ≥ Xn − |α|cX1/k

n , this
prove that β = +∞, which is impossible. According to the reflexivity of the space
V and the compact injections V ↪→ Lk(Ω) and V ↪→ Lk(Γ1), there exists a subse-
quence of (un) = ((un1, un2)), which is also denoted by (un) = ((un1, un2)), such
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that

un = (un1, un2) ⇀ ϕ1 = ((ϕ1)1, (ϕ1)2) in V,

un = (un1, un2) → ϕ1 = ((ϕ1)1, (ϕ1)2) in Lk(Ω),

un1|Γ1 → (ϕ1)1|Γ1 in Lk(Γ1).

Hence
∫
Ω

m(x, y)(|(ϕ1)1|k + |(ϕ1)2|k) = 1, consequently ϕ1 6= 0 and

β ≤ 1
k

∫
Ω

|∇(ϕ1)1|k + |∇(ϕ1)2|k − α

∫ 1

0

(ϕ1)1(0, y)dy

≤ 1
k

∫
Ω

|∇un1|k + |∇un2|k − α

∫ 1

0

un1(0, y)dy,

so

β =
1
k

∫
Ω

|∇(ϕ1)1|k + |∇(ϕ1)2|k − α

∫ 1

0

(ϕ1)1(0, y)dy.

On the other hand, for all t > 0, v = (v1, v2) ∈ V , we put wt = (wthm1, wt2) where

wthm1 =
(ϕ1)1 + tv1

(
∫
Ω

m(x, y)(|(ϕ1)1 + tv1|k + |(ϕ1)2 + tv2|k))1/k
,

wt2 =
(ϕ1)2 + tv2

(
∫
Ω

m(x, y)(|(ϕ1)1 + tv1|k + |(ϕ1)2 + tv2|k))1/k
,

so that
∫
Ω

m(x, y)(|wthm1|k + |wt2|k) = 1 and

β =
1
k

∫
Ω

|∇(ϕ1)1|k + |∇(ϕ1)2|k − α

∫ 1

0

(ϕ1)1(0, y)dy

≤ 1
k

∫
Ω

|∇wthm1|k + |∇wt2|k − α

∫ 1

0

wthm1(0, y)dy.

By developing to order 1 for t → 0 and by applying the same reasoning to (−v),
we obtain

2∑
i=1

∫
Ω

|∇(ϕ1)i|k−2∇(ϕ1)i∇vi − α

∫ 1

0

v1(0, y)dy

= (kβ + (k − 1)α
∫ 1

0

(ϕ1)1(0, y)dy)× (
2∑

i=1

∫
Ω

m(x, y)|(ϕ1)i|k−2(ϕ1)ivi).

Now we suppose that αα′ > 0. We put ϕ1 = (ϕ1
1, ϕ

1
2), where ϕ1

i = ηϕ1
i with

ηk−1 = α′

α . Then, by replacing in the equation (P1(α)), we obtain
2∑

i=1

∫
Ω

|∇ϕ1
i|k−2∇ϕ1

i∇vi − α′
∫ 1

0

v1(0, y)dy = λ1(α)
2∑

i=1

∫
Ω

m(x, y)|ϕ1
i|k−2ϕ1

ivi,

which completes the proof of Theorem 2.1. �

Proof of Theorem 2.2. (i) It is easy to prove that for α = 0, λ1 is an eigen-
value of Problem (1.1) with α = 0 and u 6= 0 is a eigenfunction if and only
if

∑2
i=1

∫
Ω
|∇ui|k − λ1(m)

∫
Ω

m(x, y)(|u1|k + |u2|k) = 0 = inf{
∑2

i=1

∫
Ω
|∇vi|k −

λ1(m)
∫
Ω

m(x, y)(|v1|k + |v2|k); v ∈ V }. The proofs of (ii) and (iii) follow from
(i). �
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Proof of Theorem 2.3. It is clear that Problem (2.3) is equivalent to the weak for-
mulation: Find u ∈ V such that

2∑
i=1

∫
Ω

|∇ui|k−2∇ui∇vi − α

∫ 1

−1

v1(0, y)dy

= λ
2∑

i=1

∫
Ω

m(x, y)|ui|k−2uivi +
2∑

i=1

∫
Ω

fivi ∀v ∈ V.

(3.5)

We consider the energy functional defined on V ,

Φ(u) =
1
k

2∑
i=1

∫
Ω

|∇ui|k − α

∫ 1

−1

u1(0, y)dy − λ

k

2∑
i=1

∫
Ω

m(x, y)|ui|k −
2∑

i=1

∫
Ω

fiui.

(3.6)
We verify that u is a solution of Problem (3.5) if and only if u is a critical point of
the function Φ. For the existence, it suffices to prove that there exists u ∈ V such
that

Φ(u) = inf
v∈V

Φ(v).

The functional Φ is continuous and convex, it suffices to show that Φ is coercive,
indeed for all u ∈ V , using Theorem 2.2, we obtain

λ1

∫
Ω

m(x, y)(|u1|k + |u2|k) ≤
∫

Ω

|∇u1|k + |∇u2|k. (3.7)

Since the function u 7→ (
∫
Ω
|∇u1|k)1/k + (

∫
Ω
|∇u2|k)1/k := ‖u‖V defines a norm in

V , then we have successively

2∑
i=1

∫
Ω

fiui ≤
2∑

i=1

‖fi‖Lk′ ‖ui‖Lk

≤ c
2∑

i=1

‖∇ui‖Lk = c‖u‖V ,

where c > 0.

α

∫ 1

−1

u1(0, y)dy ≤ |α|
∫

∂Ω

|u1|dσ

≤ |α|c′(
∫

∂Ω

|u1|kdσ)1/k (Holder’s inequality)

≤ |α|c′(
∫

Ω

|∇u1|k)1/k (V ↪→ Lk(∂Ω) a continuous injection)

= c′′‖u‖V ,

where c′ and c′′ are positive.

λ

k

2∑
i=1

∫
Ω

m(x, y)|ui|k ≤
λ̃

k

2∑
i=1

∫
Ω

m(x, y)|ui|k

≤ λ̃

λ1k

∫
Ω

|∇u1|k + |∇u2|k,
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where λ̃ :=

{
0 if λ < 0
λ if λ ≥ 0.

According to (3.6), we obtain

Φ(u) ≥ 1
k

(1− λ̃

λ1
)
∫

Ω

|∇u1|k + |∇u2|k − c′′′‖u‖V ,

where c′′′ > 0. Thus

Φ(u) ≥ 1
k

(1− λ̃

λ1
)‖u‖k

V − c′′′‖u‖V ,

where c′′′ > 0. Since λ < λ1, we deduce that Φ(u) → +∞ when ‖u‖V → +∞, so
we have proved the existence. �
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Université Mohammed I, Ecole Supérieure de Technologie, Laboratoire MATSI, Oujda,

Maroc
E-mail address: odiyer@yahoo.fr

Driss Sbibih
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