PROPERTIES OF THE FIRST EIGENVALUE OF A MODEL FOR NON NEWTONIAN FLUIDS

OMAR CHAKRONE, OKACHA DIYER, DRISS SBIBIH

Abstract

We consider a nonlinear Stokes problem on a bounded domain. We prove the existence of the first eigenvalue which is given by a minimization formula. Some properties such as strict monotony and the Fredholm alternative are established.

1. Introduction

In studies of semi-linear elliptic equations such as

$$
\begin{gathered}
-\Delta u=f(x, u)+h(x) \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

where Ω is a bounded domain of \mathbb{R}^{n}. It is usual to impose conditions on the asymptotic behavior of the nonlinearity $f(x, u)$ in relation to the spectrum of the linear part of $-\Delta$. In the simplest situations, we consider $f(x, u)$ as a perturbation of λu. According to that λ being or not an eigenvalue of $-\Delta$, the results of such resonance or non-resonance are then obtained. Among the classical references on this subject, we can cite [5] $\left(\lambda<\lambda_{1}\right)$, 4] (λ between two consecutive eigenvalues), 6] $\left(\lambda=\lambda_{1}\right)$. We also cite the Dirichlet problem

$$
\begin{gathered}
-\operatorname{div}\left(|\nabla u|^{k-2} \nabla u\right)=\lambda m(x)|u|^{k-2} u \quad \text { in } \Omega, \\
u=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

The first eigenvalue λ_{1} of the Dirichlet problem is simple and isolated. It was proved that it is the unique positive eigenvalue having a non negative eigenfunction, see [2].

Now we consider the eigenvalue problem of a non-linear operator k-Laplacian. Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain with boundary $\Gamma=\bigcup_{i=1}^{4} \overline{\Gamma_{i}}$, where $\left.\Gamma_{1}=\{0\} \times\right]$ $1,1\left[, \Gamma_{2}=\{1\} \times\right]-1,1\left[\right.$ and Γ_{3}, Γ_{4} are symmetrical to the X-axis, see Figure 1 . In the interior of this domain, a non-Newtonian liquid is subjected to pressures of known differences between the two sides Γ_{1} and Γ_{2}.

[^0]

Figure 1. Geometry of channel Ω

We denote by V the closure of \mathcal{V} in the space $W^{1, k}(\Omega)$, where

$$
\begin{aligned}
\mathcal{V}=\{ & \left\{u=\left(u_{1}, u_{2}\right)^{t} \in\left(C^{1}(\bar{\Omega})\right)^{2}: \operatorname{div} u=0, u_{i}(0, y)=u_{i}(1, y) \text { on }[-1,1]\right. \\
& \text { for } \left.i=1,2 \text { and } u=0 \text { on } \Gamma_{3} \cup \Gamma_{4}\right\} .
\end{aligned}
$$

For given $\alpha \in \mathbb{R}$, we consider the eigenvalue problem: Find $(\lambda, u, p) \in \mathbb{R} \times V \backslash\{0\} \times$ $L^{2}(\Omega)$ such that

$$
\begin{gather*}
-\Delta_{k} u_{1}+\frac{\partial p}{\partial x}=\lambda m(x, y)\left|u_{1}\right|^{k-2} u_{1} \quad \text { in } \Omega \\
-\Delta_{k} u_{2}+\frac{\partial p}{\partial y}=\lambda m(x, y)\left|u_{2}\right|^{k-2} u_{2} \quad \text { in } \Omega \\
\operatorname{div} u=\frac{\partial u_{1}}{\partial x}+\frac{\partial u_{2}}{\partial y}=0 \quad \text { in } \Omega, \\
u_{1}(0, y)=u_{1}(1, y) \quad \text { on }[-1,1], \tag{1.1}\\
u_{2}(0, y)=u_{2}(1, y) \quad \text { on }[-1,1], \\
\frac{\partial u_{1}}{\partial x}(0, y)=\frac{\partial u_{1}}{\partial x}(1, y) \quad \text { on }[-1,1], \\
\left|\nabla u_{2}(0, y)\right|^{k-2} \frac{\partial u_{2}}{\partial x}(0, y)=\left|\nabla u_{2}(1, y)\right|^{k-2} \frac{\partial u_{2}}{\partial x}(1, y) \quad \text { on }[-1,1] \\
p(1, y)-p(0, y)=-\alpha \quad \text { on }[-1,1]
\end{gather*}
$$

where the weight function $m(x, y) \in L^{\infty}(\Omega)$ can change the sign and it is positive in a subset of Ω,

$$
-\Delta_{k} u_{i}=-\operatorname{div}\left(\left|\nabla u_{i}\right|^{k-2} \nabla u_{i}\right)
$$

is a k -Laplacian, $i=1,2$ and $1<k<\infty$. In the particular case $k=2$; i.e., $\Delta_{k}=\Delta$, and $\lambda=0$, the above problem has been studied by many authors, we cite for example Amrouche et al. [1]. Here, we give an extension to previous work in the nonlinear case by applying new methods to characterize the first eigenvalue for this kind of problem such as minimization and as application is to solving the problem of Fredholm alternative. This note is organized as follows. In Section 2, we give the existence and the characterization of the first eigenvalue. In Section 3, we prove the Fredholm alternative and we justify all the given properties. In Section 4, we give a conclusion.

2. Existence and characterization of the first eigenvalue

Theorem 2.1. There exists one principal eigenvalue λ_{1} for Problem 1.1. It is characterized by

$$
\begin{equation*}
\lambda_{1}=k \beta+(k-1) \alpha \int_{-1}^{1}\left(\varphi^{1}\right)_{1}(0, y) d y \tag{2.1}
\end{equation*}
$$

where φ^{1} is the principal corresponding eigenfunction and

$$
\begin{gathered}
\beta=\min \left\{\frac{1}{k} \int_{\Omega}\left|\nabla u_{1}\right|^{k}+\left|\nabla u_{2}\right|^{k}-\alpha \int_{-1}^{1} u_{1}(0, y) d y\right. \\
\left.\int_{\Omega} m(x, y)\left(\left|u_{1}\right|^{k}+\left|u_{2}\right|^{k}\right)=1, u \in V\right\} \\
\beta=\frac{1}{k} \int_{\Omega}\left|\nabla\left(\varphi^{1}\right)_{1}\right|^{k}+\left|\nabla\left(\varphi^{1}\right)_{2}\right|^{k}-\alpha \int_{-1}^{1}\left(\varphi^{1}\right)_{1}(0, y) d y \\
\int_{\Omega} m(x, y)\left[\left|\left(\varphi^{1}\right)_{1}\right|^{k}+\left|\left(\varphi^{1}\right)_{2}\right|^{k}\right]=1
\end{gathered}
$$

Furthermore, for all $\alpha, \alpha^{\prime} \in \mathbb{R}$ such that $\alpha \alpha^{\prime}>0, \lambda_{1}(\alpha)$ is an eigenvalue of Problem (1.1).

For the sake of simplicity, in what follows, we denote $\lambda_{1}=\lambda_{1}(m)=\lambda_{1}(\alpha, m)=$ $\lambda_{1}(\alpha)$.

Theorem 2.2. (i) λ_{1} defined by

$$
\begin{equation*}
\frac{1}{\lambda_{1}}=\max \left\{\int_{\Omega} m(x, y)\left(\left|u_{1}\right|^{k}+\left|u_{2}\right|^{k}\right) ; \int_{\Omega}\left|\nabla u_{1}\right|^{k}+\left|\nabla u_{2}\right|^{k}=1, u \in V\right\} \tag{2.2}
\end{equation*}
$$

is the first eigenvalue of Problem (1.1) with $\alpha=0$ in the sense $\Sigma \subset\left[\lambda_{1},+\infty[\right.$, where Σ is the set of the positive eigenvalues. Moreover, u is the eigenfunction associated with λ_{1} if and only if $\int_{\Omega}\left|\nabla u_{1}\right|^{k}+\left|\nabla u_{2}\right|^{k}-\lambda_{1} \int_{\Omega} m(x, y)\left(\left|u_{1}\right|^{k}+\left|u_{2}\right|^{k}\right)=$ $\inf \left\{\int_{\Omega}\left|\nabla v_{1}\right|^{k}+\left|\nabla v_{2}\right|^{k}-\lambda_{1} \int_{\Omega} m(x, y)\left(\left|v_{1}\right|^{k}+\left|v_{2}\right|^{k}\right) \quad v \in V\right\}=0$.
(ii) $\lambda_{1}($.$) is strictly monotone in L^{\infty}(\Omega)$; i.e., if m_{1}, m_{2} are in the set

$$
\left\{m \in L^{\infty}(\Omega) ; \text { measure }\{(x, y) \in \Omega ; m(x, y)>0\} \neq 0\right\}
$$

such that $m_{1}(x, y)<m_{2}(x, y)$ a.e., then $\lambda_{1}\left(m_{1}\right)>\lambda_{1}\left(m_{2}\right)$.
(iii) $\lambda_{1}($.$) is continuous in L^{\infty}(\Omega)$.

Theorem 2.3 (Fredholm alternative). Suppose that $\lambda<\lambda_{1}$, then for $f \in(C(\bar{\Omega}))^{2}$ the problem: Find $(u, p) \in V \times L^{2}(\Omega)$ such that

$$
\begin{gather*}
-\Delta_{k} u_{1}+\frac{\partial p}{\partial x}=\lambda m(x, y)\left|u_{1}\right|^{k-2} u_{1}+f_{1} \quad \text { in } \Omega \\
-\Delta_{k} u_{2}+\frac{\partial p}{\partial y}=\lambda m(x, y)\left|u_{2}\right|^{k-2} u_{2}+f_{2} \quad \text { in } \Omega \\
\operatorname{div} u=\frac{\partial u_{1}}{\partial x}+\frac{\partial u_{2}}{\partial y}=0 \quad \text { in } \Omega, \\
u_{1}(0, y)=u_{1}(1, y) \quad \text { on }[-1,1], \tag{2.3}\\
u_{2}(0, y)=u_{2}(1, y) \quad \text { on }[-1,1], \\
\frac{\partial u_{1}}{\partial x}(0, y)=\frac{\partial u_{1}}{\partial x}(1, y) \quad \text { on }[-1,1], \\
\left|\nabla u_{2}(0, y)\right|^{k-2} \frac{\partial u_{2}}{\partial x}(0, y)=\left|\nabla u_{2}(1, y)\right|^{k-2} \frac{\partial u_{2}}{\partial x}(1, y) \quad \text { on }[-1,1], \\
p(1, y)-p(0, y)=-\alpha \quad \text { on }[-1,1]
\end{gather*}
$$

has a solution.

3. Proof of the main theorems

For proving Theorem 2.1, we need the following results.
Proposition 3.1. $u=\left(u_{1}, u_{2}\right)^{t}$ is a solution of problem: Find $(u, p) \in V \backslash\{0\} \times$ $L^{2}(\Omega)$ such that

$$
\begin{gather*}
-\Delta_{k} u_{1}+\frac{\partial p}{\partial x}=f_{1} \quad \text { in } \Omega \\
-\Delta_{k} u_{2}+\frac{\partial p}{\partial y}=f_{2} \quad \text { in } \Omega \\
\operatorname{div} u=\frac{\partial u_{1}}{\partial x}+\frac{\partial u_{2}}{\partial y}=0 \quad \text { in } \Omega \\
u_{1}(0, y)=u_{1}(1, y) \quad \text { on }[-1,1], \tag{3.1}\\
u_{2}(0, y)=u_{2}(1, y) \quad \text { on }[-1,1], \\
\frac{\partial u_{1}}{\partial x}(0, y)=\frac{\partial u_{1}}{\partial x}(1, y) \quad \text { on }[-1,1], \\
\left|\nabla u_{2}(0, y)\right|^{k-2} \frac{\partial u_{2}}{\partial x}(0, y)=\left|\nabla u_{2}(1, y)\right|^{k-2} \frac{\partial u_{2}}{\partial x}(1, y) \quad \text { on }[-1,1] \\
p(1, y)-p(0, y)=-\alpha \quad \text { on }[-1,1]
\end{gather*}
$$

where $f=\left(f_{1}, f_{2}\right)^{t} \in(C(\bar{\Omega}))^{2}$, if and only if u is a solution of problem: Find $u \in V$ such that

$$
\begin{equation*}
\sum_{i=1}^{2} \int_{\Omega}\left|\nabla u_{i}\right|^{k-2} \nabla u_{i} \nabla v_{i}-\alpha \int_{-1}^{1} v_{1}(0, y) d y=\int_{\Omega}\left(f_{1} v_{1}+f_{2} v_{2}\right) \tag{3.2}
\end{equation*}
$$

for all $v \in V$.

Remark 3.2. If we take $f_{i}=\lambda m(x, y)\left|u_{i}\right|^{k-2} u_{i}, i=1,2$. Then (λ, u, p) is a solution of 1.1 if and only if

$$
\sum_{i=1}^{2} \int_{\Omega}\left|\nabla u_{i}\right|^{k-2} \nabla u_{i} \nabla v_{i}-\alpha \int_{-1}^{1} v_{1}(0, y) d y=\lambda \sum_{i=1}^{2} \int_{\Omega} m(x, y)\left|u_{i}\right|^{k-2} u_{i} v_{i}
$$

for all $v \in V$. For a proof of this remark see [3].
Proof of Theorem 2.1. Since for all $v \in V, v=0$ on $\Gamma_{3} \cup \Gamma_{4}, u \in V \rightarrow\left(\int_{\Omega}\left|\nabla u_{1}\right|^{k}+\right.$ $\left.\left|\nabla u_{2}\right|^{k}\right)^{1 / k}$ define a norm in V according to the Poincaré inequality in the space V : There exists $c>0$ such that

$$
\begin{equation*}
c \int_{\Omega}\left|u_{1}\right|^{k}+\left|u_{2}\right|^{k} \leq \int_{\Omega}\left|\nabla u_{1}\right|^{k}+\left|\nabla u_{2}\right|^{k} \tag{3.3}
\end{equation*}
$$

Suppose by contradiction that for all $n \in \mathbb{N}^{*}$ there exists $u_{n}=\left(u_{1}^{n}, u_{2}^{n}\right)^{t} \in V$ such that $\frac{1}{n} \int_{\Omega}\left|u_{1}^{n}\right|^{k}+\left|u_{2}^{n}\right|^{k}>\int_{\Omega}\left|\nabla u_{1}^{n}\right|^{k}+\left|\nabla u_{2}^{n}\right|^{k}$, then we put

$$
v_{n}=\left(v_{1}^{n}, v_{2}^{n}\right)^{t}
$$

where $v_{i}^{n}=\frac{u_{i}^{n}}{\left(\int_{\Omega}\left|u_{1}^{n}\right|^{k}+\left|u_{2}^{n}\right|^{k}\right)^{1 / k}}, i=1,2$. Thus $\int_{\Omega}\left|v_{1}^{n}\right|^{k}+\left|v_{2}^{n}\right|^{k}=1$, so

$$
\begin{equation*}
\frac{1}{n}>\int_{\Omega}\left|\nabla v_{1}^{n}\right|^{k}+\left|\nabla v_{2}^{n}\right|^{k} \tag{3.4}
\end{equation*}
$$

As $\left(v_{n}\right)_{n}$ is bounded in V, we have for a subsequence also denoted $\left(v_{n}\right)_{n}, v_{n} \rightharpoonup v$ in V and $v_{n} \rightarrow v$ in $L^{k}(\Omega)$. Therefore $\|v\|_{L^{k}(\Omega)}=1$, so $v \neq 0$. By passing to the limit in 3.4, we have

$$
0 \geq \liminf _{n} \int_{\Omega}\left|\nabla v_{1}^{n}\right|^{k}+\left|\nabla v_{2}^{n}\right|^{k} \geq \int_{\Omega}\left|\nabla v_{1}\right|^{k}+\left|\nabla v_{2}\right|^{k}
$$

So $\int_{\Omega}\left|\nabla v_{1}\right|^{k}=\int_{\Omega}\left|\nabla v_{2}\right|^{k}=0$, hence $v=$ cst, therefore $v=0$ because $v=0$ on $\Gamma_{3} \cup \Gamma_{4}$, is a contradiction. By using (3.3) and the Holder's inequality, we easily prove that β is well defined. Let $\left(u_{n}\right)=\left(\left(u_{n 1}, u_{n 2}\right)\right)$ be a suitable minimization of β, then we have

$$
\beta=\lim _{n \rightarrow \infty} \frac{1}{k} \int_{\Omega}\left|\nabla u_{n 1}\right|^{k}+\left|\nabla u_{n 2}\right|^{k}-\alpha \int_{-1}^{1} u_{n 1}(0, y) d y
$$

and

$$
\int_{\Omega} m(x, y)\left(\left|u_{n 1}\right|^{k}+\left|u_{n 2}\right|^{k}\right)=1
$$

The sequence $\left(X_{n}\right):=\left(\frac{1}{k} \int_{\Omega}\left|\nabla u_{n 1}\right|^{k}+\left|\nabla u_{n 2}\right|^{k}\right)$ is bounded, if we have not for a subsequence, also denoted $\left(X_{n}\right), X_{n} \rightarrow+\infty$. Using the Holder's inequality and the fact that $V \hookrightarrow L^{k}\left(\Gamma_{1}\right)$ we get

$$
\alpha \int_{-1}^{1} u_{n 1}(0, y) d y \leq|\alpha| c\left(\frac{1}{k} \int_{\Omega}\left|\nabla u_{n 1}\right|^{k}+\left|\nabla u_{n 2}\right|^{k}\right)^{1 / k}=|\alpha| c X_{n}^{1 / k}
$$

where $c \in \mathbb{R}$. Thus $\frac{1}{k} \int_{\Omega} \sum_{i=1}^{2}\left|\nabla u_{n i}\right|^{k}-\alpha \int_{-1}^{1} u_{n 1}(0, y) d y \geq X_{n}-|\alpha| c X_{n}^{1 / k}$, this prove that $\beta=+\infty$, which is impossible. According to the reflexivity of the space V and the compact injections $V \hookrightarrow L^{k}(\Omega)$ and $V \hookrightarrow L^{k}\left(\Gamma_{1}\right)$, there exists a subsequence of $\left(u_{n}\right)=\left(\left(u_{n 1}, u_{n 2}\right)\right)$, which is also denoted by $\left(u_{n}\right)=\left(\left(u_{n 1}, u_{n 2}\right)\right)$, such
that

$$
\begin{gathered}
u_{n}=\left(u_{n 1}, u_{n 2}\right) \rightharpoonup \varphi^{1}=\left(\left(\varphi^{1}\right)_{1},\left(\varphi^{1}\right)_{2}\right) \quad \text { in } V \\
u_{n}=\left(u_{n 1}, u_{n 2}\right) \rightarrow \varphi^{1}=\left(\left(\varphi^{1}\right)_{1},\left(\varphi^{1}\right)_{2}\right) \quad \text { in } L^{k}(\Omega), \\
\left.\left.u_{n 1}\right|_{\Gamma_{1}} \rightarrow\left(\varphi^{1}\right)_{1}\right|_{\Gamma_{1}} \quad \text { in } L^{k}\left(\Gamma_{1}\right) .
\end{gathered}
$$

Hence $\int_{\Omega} m(x, y)\left(\left|\left(\varphi^{1}\right)_{1}\right|^{k}+\left|\left(\varphi^{1}\right)_{2}\right|^{k}\right)=1$, consequently $\varphi^{1} \neq 0$ and

$$
\begin{aligned}
\beta & \leq \frac{1}{k} \int_{\Omega}\left|\nabla\left(\varphi^{1}\right)_{1}\right|^{k}+\left|\nabla\left(\varphi^{1}\right)_{2}\right|^{k}-\alpha \int_{0}^{1}\left(\varphi^{1}\right)_{1}(0, y) d y \\
& \leq \frac{1}{k} \int_{\Omega}\left|\nabla u_{n 1}\right|^{k}+\left|\nabla u_{n 2}\right|^{k}-\alpha \int_{0}^{1} u_{n 1}(0, y) d y
\end{aligned}
$$

so

$$
\beta=\frac{1}{k} \int_{\Omega}\left|\nabla\left(\varphi^{1}\right)_{1}\right|^{k}+\left|\nabla\left(\varphi^{1}\right)_{2}\right|^{k}-\alpha \int_{0}^{1}\left(\varphi^{1}\right)_{1}(0, y) d y
$$

On the other hand, for all $t>0, v=\left(v_{1}, v_{2}\right) \in V$, we put $w_{t}=\left(w_{t h m 1}, w_{t 2}\right)$ where

$$
\begin{gathered}
w_{t h m 1}=\frac{\left(\varphi^{1}\right)_{1}+t v_{1}}{\left(\int_{\Omega} m(x, y)\left(\left|\left(\varphi^{1}\right)_{1}+t v_{1}\right|^{k}+\left|\left(\varphi^{1}\right)_{2}+t v_{2}\right|^{k}\right)\right)^{1 / k}} \\
w_{t 2}=\frac{\left(\varphi^{1}\right)_{2}+t v_{2}}{\left(\int_{\Omega} m(x, y)\left(\left|\left(\varphi^{1}\right)_{1}+t v_{1}\right|^{k}+\left|\left(\varphi^{1}\right)_{2}+t v_{2}\right|^{k}\right)\right)^{1 / k}}
\end{gathered}
$$

so that $\int_{\Omega} m(x, y)\left(\left|w_{t h m 1}\right|^{k}+\left|w_{t 2}\right|^{k}\right)=1$ and

$$
\begin{aligned}
\beta & =\frac{1}{k} \int_{\Omega}\left|\nabla\left(\varphi^{1}\right)_{1}\right|^{k}+\left|\nabla\left(\varphi^{1}\right)_{2}\right|^{k}-\alpha \int_{0}^{1}\left(\varphi^{1}\right)_{1}(0, y) d y \\
& \leq \frac{1}{k} \int_{\Omega}\left|\nabla w_{t h m 1}\right|^{k}+\left|\nabla w_{t 2}\right|^{k}-\alpha \int_{0}^{1} w_{t h m 1}(0, y) d y
\end{aligned}
$$

By developing to order 1 for $t \rightarrow 0$ and by applying the same reasoning to $(-v)$, we obtain

$$
\begin{aligned}
& \sum_{i=1}^{2} \int_{\Omega}\left|\nabla\left(\varphi^{1}\right)_{i}\right|^{k-2} \nabla\left(\varphi^{1}\right)_{i} \nabla v_{i}-\alpha \int_{0}^{1} v_{1}(0, y) d y \\
& =\left(k \beta+(k-1) \alpha \int_{0}^{1}\left(\varphi^{1}\right)_{1}(0, y) d y\right) \times\left(\sum_{i=1}^{2} \int_{\Omega} m(x, y)\left|\left(\varphi^{1}\right)_{i}\right|^{k-2}\left(\varphi^{1}\right)_{i} v_{i}\right)
\end{aligned}
$$

Now we suppose that $\alpha \alpha^{\prime}>0$. We put $\overline{\varphi^{1}}=\left(\overline{\varphi^{1}}{ }_{1}, \overline{\varphi^{1}}{ }_{2}\right)$, where ${\overline{\varphi^{1}}}_{i}=\eta \varphi_{i}^{1}$ with $\eta^{k-1}=\frac{\alpha^{\prime}}{\alpha}$. Then, by replacing in the equation $\left(P_{1}(\alpha)\right)$, we obtain

$$
\sum_{i=1}^{2} \int_{\Omega}\left|\nabla{\overline{\varphi^{1}}}_{i}\right|^{k-2} \nabla{\overline{\varphi^{1}}}_{i} \nabla v_{i}-\alpha^{\prime} \int_{0}^{1} v_{1}(0, y) d y=\lambda_{1}(\alpha) \sum_{i=1}^{2} \int_{\Omega} m(x, y)\left|{\overline{\varphi^{1}}}_{i}\right|^{k-2} \bar{\varphi}_{i}^{1}{ }_{i}
$$

which completes the proof of Theorem 2.1.
Proof of Theorem 2.2. (i) It is easy to prove that for $\alpha=0, \lambda_{1}$ is an eigenvalue of Problem (1.1) with $\alpha=0$ and $u \neq 0$ is a eigenfunction if and only if $\sum_{i=1}^{2} \int_{\Omega}\left|\nabla u_{i}\right|^{k}-\lambda_{1}(m) \int_{\Omega} m(x, y)\left(\left|u_{1}\right|^{k}+\left|u_{2}\right|^{k}\right)=0=\inf \left\{\sum_{i=1}^{2} \int_{\Omega}\left|\nabla v_{i}\right|^{k}-\right.$ $\left.\lambda_{1}(m) \int_{\Omega} m(x, y)\left(\left|v_{1}\right|^{k}+\left|v_{2}\right|^{k}\right) ; \quad v \in V\right\}$. The proofs of (ii) and (iii) follow from (i).

Proof of Theorem 2.3. It is clear that Problem 2.3 is equivalent to the weak formulation: Find $u \in V$ such that

$$
\begin{align*}
& \sum_{i=1}^{2} \int_{\Omega}\left|\nabla u_{i}\right|^{k-2} \nabla u_{i} \nabla v_{i}-\alpha \int_{-1}^{1} v_{1}(0, y) d y \tag{3.5}\\
& =\lambda \sum_{i=1}^{2} \int_{\Omega} m(x, y)\left|u_{i}\right|^{k-2} u_{i} v_{i}+\sum_{i=1}^{2} \int_{\Omega} f_{i} v_{i} \quad \forall v \in V
\end{align*}
$$

We consider the energy functional defined on V,

$$
\begin{equation*}
\Phi(u)=\frac{1}{k} \sum_{i=1}^{2} \int_{\Omega}\left|\nabla u_{i}\right|^{k}-\alpha \int_{-1}^{1} u_{1}(0, y) d y-\frac{\lambda}{k} \sum_{i=1}^{2} \int_{\Omega} m(x, y)\left|u_{i}\right|^{k}-\sum_{i=1}^{2} \int_{\Omega} f_{i} u_{i} . \tag{3.6}
\end{equation*}
$$

We verify that u is a solution of Problem (3.5) if and only if u is a critical point of the function Φ. For the existence, it suffices to prove that there exists $u \in V$ such that

$$
\Phi(u)=\inf _{v \in V} \Phi(v)
$$

The functional Φ is continuous and convex, it suffices to show that Φ is coercive, indeed for all $u \in V$, using Theorem 2.2 , we obtain

$$
\begin{equation*}
\lambda_{1} \int_{\Omega} m(x, y)\left(\left|u_{1}\right|^{k}+\left|u_{2}\right|^{k}\right) \leq \int_{\Omega}\left|\nabla u_{1}\right|^{k}+\left|\nabla u_{2}\right|^{k} \tag{3.7}
\end{equation*}
$$

Since the function $u \mapsto\left(\int_{\Omega}\left|\nabla u_{1}\right|^{k}\right)^{1 / k}+\left(\int_{\Omega}\left|\nabla u_{2}\right|^{k}\right)^{1 / k}:=\|u\|_{V}$ defines a norm in V, then we have successively

$$
\begin{aligned}
\sum_{i=1}^{2} \int_{\Omega} f_{i} u_{i} & \leq \sum_{i=1}^{2}\left\|f_{i}\right\|_{L^{k^{\prime}}}\left\|u_{i}\right\|_{L^{k}} \\
& \leq c \sum_{i=1}^{2}\left\|\nabla u_{i}\right\|_{L^{k}}=c\|u\|_{V}
\end{aligned}
$$

where $c>0$.

$$
\begin{aligned}
\alpha \int_{-1}^{1} u_{1}(0, y) d y & \leq|\alpha| \int_{\partial \Omega}\left|u_{1}\right| d \sigma \\
& \leq|\alpha| c^{\prime}\left(\int_{\partial \Omega}\left|u_{1}\right|^{k} d \sigma\right)^{1 / k} \quad \text { (Holder's inequality) } \\
& \leq|\alpha| c^{\prime}\left(\int_{\Omega}\left|\nabla u_{1}\right|^{k}\right)^{1 / k} \quad\left(V \hookrightarrow L^{k}(\partial \Omega)\right. \text { a continuous injection) } \\
& =c^{\prime \prime}\|u\|_{V}
\end{aligned}
$$

where c^{\prime} and $c^{\prime \prime}$ are positive.

$$
\begin{aligned}
\frac{\lambda}{k} \sum_{i=1}^{2} \int_{\Omega} m(x, y)\left|u_{i}\right|^{k} & \leq \frac{\tilde{\lambda}}{k} \sum_{i=1}^{2} \int_{\Omega} m(x, y)\left|u_{i}\right|^{k} \\
& \leq \frac{\tilde{\lambda}}{\lambda_{1} k} \int_{\Omega}\left|\nabla u_{1}\right|^{k}+\left|\nabla u_{2}\right|^{k},
\end{aligned}
$$

where $\tilde{\lambda}:=\left\{\begin{array}{ll}0 & \text { if } \lambda<0 \\ \lambda & \text { if } \lambda \geq 0 .\end{array}\right.$ According to 3.6, we obtain

$$
\Phi(u) \geq \frac{1}{k}\left(1-\frac{\tilde{\lambda}}{\lambda_{1}}\right) \int_{\Omega}\left|\nabla u_{1}\right|^{k}+\left|\nabla u_{2}\right|^{k}-c^{\prime \prime \prime}\|u\|_{V}
$$

where $c^{\prime \prime \prime}>0$. Thus

$$
\Phi(u) \geq \frac{1}{k}\left(1-\frac{\tilde{\lambda}}{\lambda_{1}}\right)\|u\|_{V}^{k}-c^{\prime \prime \prime}\|u\|_{V}
$$

where $c^{\prime \prime \prime}>0$. Since $\lambda<\lambda_{1}$, we deduce that $\Phi(u) \rightarrow+\infty$ when $\|u\|_{V} \rightarrow+\infty$, so we have proved the existence.

References

[1] C. Amrouche, M. Batchi, J. Batina; Navier-Stokes equations with periodic boundary conditions and pressure loss, Applied Mathematics Letters. 20 (2007), 48-53.
[2] A. Anane; Simplicité et isolation de la premire valeur propre du p-Laplacien avec poids, C. R. Acad. Sci. Paris, t. 305 (1987), 725-728.
[3] O. Chakrone, O. Diyer, D. Sbibih; A non resonance of non-Newtonian fluid with known differences pressures between two parallel plates. Submitted.
[4] C. L. Dolph; Nonlinear integral equations of the Hammerstein type, Trans. Amer. Math. Soc. 66 (1949), 289-307.
[5] A. Hammerstein; Nichtlineare Integralgleichungen nebst anwendungen acta, Math. 54 (1930), 117-176.
[6] E. Landesman, A. Lazer; Nonlinear perturbation of linear elliptic boundary value problems at resonance, J. Amer. Math. Mech. 19 (1970), 609-623.

Omar Chakrone
Université Mohammed I, Faculté des sciences, Laboratoire LANOL, Oujda, Maroc
E-mail address: chakrone@yahoo.fr
Okacha Diyer
Université Mohammed I, Ecole Supérieure de Technologie, Laboratoire MATSI, Oujda, Maroc

E-mail address: odiyer@yahoo.fr
Driss Sbibih
Université Mohammed I, Ecole Supérieure de Technologie, Laboratoire MATSI, Oujda, Maroc

E-mail address: sbibih@yahoo.fr

[^0]: 2000 Mathematics Subject Classification. 74S05, 76T10.
 Key words and phrases. k-Laplacian; eigenvalue; minimization.
 (C) 2010 Texas State University - San Marcos.

 Submitted May 6, 2010. Published October 28, 2010.

