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MONOTONE ITERATIVE METHOD FOR SEMILINEAR
IMPULSIVE EVOLUTION EQUATIONS OF MIXED TYPE IN

BANACH SPACES

PENGYU CHEN, JIA MU

Abstract. We use a monotone iterative method in the presence of lower and

upper solutions to discuss the existence and uniqueness of mild solutions for
the initial value problem

u′(t) + Au(t) = f(t, u(t), Tu(t)), t ∈ J, t 6= tk,

∆u|t=tk = Ik(u(tk)), k = 1, 2, . . . , m,

u(0) = x0,

where A : D(A) ⊂ E → E is a closed linear operator and −A generates a

strongly continuous semigroup T (t)(t ≥ 0) in E. Under wide monotonicity

conditions and the non-compactness measure condition of the nonlinearity f ,
we obtain the existence of extremal mild solutions and a unique mild solution

between lower and upper solutions requiring only that −A generate a strongly

continuous semigroup.

1. Introduction

The theory of impulsive differential equations is a new and important branch of
differential equation theory, which has an extensive physical, chemical, biological,
and engineering background; hence it has emerged as an important area of research
in the previous decades, see for example [6]. Consequently, some basic results on
impulsive differential equations have been obtained and applications to different
areas have been considered by many authors; see [1, 4, 7, 10] and their references.

In this article, we use a monotone iterative method in the presence of lower and
upper solutions to discuss the existence of mild solutions to the initial value problem
(IVP) of first order semilinear impulsive integro-differential evolution equations of
Volterra type in an ordered Banach space E

u′(t) + Au(t) = f(t, u(t), Tu(t)), t ∈ J, t 6= tk,

∆u|t=tk
= Ik(u(tk)), k = 1, 2, . . . ,m,

u(0) = x0,

(1.1)
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where A : D(A) ⊂ E → E be a closed linear operator and −A generates a strongly
continuous semigroup (C0-semigroup, in short) T (t)(t ≥ 0) in E; f ∈ C(J × E ×
E,E), J = [0, a], a > 0 is a constant, 0 < t1 < t2 < · · · < tm < a; Ik ∈ C(E,E) is
an impulsive function, k = 1, 2, . . . ,m; x0 ∈ E; and

Tu(t) =
∫ t

0

K(t, s)u(s)ds (1.2)

is a Volterra integral operator with integral kernel K ∈ C(∆, R+), ∆ = {(t, s) :
0 ≤ s ≤ t ≤ a}; ∆u|t=tk

denotes the jump of u(t) at t = tk; i.e., ∆u|t=tk
=

u(t+k )− u(t−k ), where u(t+k ) and u(t−k ) represent the right and left limits of u(t) at
t = tk respectively. Let PC(J,E) = {u : J → E, u(t) is continuous at t 6= tk, and
left continuous at t = tk, and u(t+k ) exists, k = 1, 2, . . . ,m}. Evidently, PC(J,E)
is a Banach space with the norm ‖u‖PC = supt∈J ‖u(t)‖. Denote E1 by the norm
‖ · ‖1 = ‖ · ‖ + ‖A · ‖. Let J ′ = J\{t1, t2, . . . , tm}. An abstract function u ∈
PC(J,E) ∩ C1(J ′, E) ∩ C(J ′, E1) is called a solution of IVP (1.1) if u(t) satisfies
all the equalities in (1.1).

The monotone iterative technique in the presence of lower and upper solutions
is an important method for seeking solutions of differential equations in abstract
spaces. Recently, Du and Lakshmikantham [3], Sun and Zhao [12] investigated
the existence of minimal and maximal solutions to initial value problem of ordi-
nary differential equation without impulse by using the method of upper and lower
solutions and the monotone iterative technique. Guo and Liu [4] developed the
monotone iterative method for impulsive integro-differential equations, and built a
monotone iterative method for impulsive ordinary integro-differential equation for
the IVP in E

u′(t) = f(t, u(t), Tu(t)), t ∈ J, t 6= tk,

∆u|t=tk
= Ik(u(tk)), k = 1, 2, . . . ,m,

u(0) = x0.

(1.3)

They proved that if (1.3) has a lower solution v0 and an upper solution w0 with
v0 ≤ w0, and the nonlinear term f satisfies the monotonicity condition

f(t, x2, y2)− f(t, x1, y1) ≥ −M(x2 − x1)−M1(y2 − y1),

v0(t) ≤ x1 ≤ x2 ≤ w0(t), T v0(t) ≤ y1 ≤ y2 ≤ Tw0(t), ∀t ∈ J.
(1.4)

They also required that the nonlinear term f and the impulsive function Ik satisfy
the noncompactness measure condition

α(f(t, U, V )) ≤ L1α(U) + L2α(V ), (1.5)

α(Ik(D)) ≤ Mkα(D), k = 1, 2, . . . ,m, (1.6)

where U, V,D ⊂ E are arbitrarily bounded sets, L1, L2 and Mk are positive con-
stants and satisfy

2a(M + L1 + aK0L2) +
m∑

k=1

Mk < 1, (1.7)

where K0 = max(t,s)∈∆ K(t, s), α(·) denotes the Kuratowski measure of noncom-
pactness in E. Then IVP(1.3) has minimal and maximal solutions between v0 and
w0, which can be obtained by a monotone iterative procedure starting from v0 and
w0 respectively. Latter, Li and Liu [7] expanded the results in [4], they obtained
the existence of the extremal solutions to the initial value problem for impulsive
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ordinary integro-differential equation (1.3), but did not require the noncompact-
ness measure condition (1.6) for impulsive function Ik and the restriction condition
(1.7).

On the other hand, some authors consider the initial value problem of evolution
equations, see [1, 8, 9, 10, 13, 14] and the reference therein. But they all require the
semigroup T (t)(t ≥ 0) generated by −A be equicontinuous semigroup, this is a very
strong assumption. In this paper, we will study the initial value problem of impul-
sive integro-differential evolution equation (1.1) not requiring the equicontinuity of
the semigroup T (t)(t ≥ 0) generated by −A. We obtain the existence of extremal
mild solutions and a unique mild solution between lower and upper solutions only
requiring the semigroup T (t)(t ≥ 0) generated by −A is a C0-semigroup in E.

2. Preliminaries

Let E be an ordered Banach space with the norm ‖ · ‖ and partial order ≤,
whose positive cone P = {x ∈ E : x ≥ 0} is normal with normal constant N . Let
C(J,E) denote the Banach space of all continuous E-value functions on interval
J with the norm ‖u‖C = maxt∈J ‖u(t)‖. Evidently, C(J,E) is also an ordered
Banach space reduced by the convex cone P ′ = {u ∈ Y |u(t) ≥ 0, t ∈ J}, and P ′ is
also a normal cone. Let α(·) denote the Kuratowski measure of noncompactness of
the bounded set. For the details of the definition and properties of the measure of
noncompactness, see [2]. For any B ⊂ C(J,E) and t ∈ J , set B(t) = {u(t) : u ∈
B} ⊂ E. If B is bounded in C(J,E), then B(t) is bounded in E, and α(B(t)) ≤
α(B).

We first give the following lemmas to be used in proving our main results.

Lemma 2.1 ([5]). Let B = {un} ⊂ PC(J,E) be a bounded and countable set.
Then α(B(t)) is Lebesgue integral on J , and

α
({∫

J

un(t)dt : n ∈ N
})

≤ 2
∫

J

α(B(t))dt.

Let A : D(A) ⊂ E → E be a closed linear operator and −A generates a C0-
semigroup T (t)(t ≥ 0) in E. Then there exist constants C > 0 and δ ∈ R such
that

‖T (t)‖ ≤ Ceδt, t ≥ 0.

Let I = [t0, T ](t0 ≥ 0), T > t0 be a constant. It is well-known [11, Chapter 4,
Theorem 2.9] that for any x0 ∈ D(A) and h ∈ C1(I, E), the initial value problem
of the linear evolution equation

u′(t) + Au(t) = h(t), t ∈ I,

u(t0) = x0,
(2.1)

has a unique classical solution u ∈ C1(I, E) ∩ C(I, E1) given by

u(t) = T (t− t0)x0 +
∫ t

t0

T (t− s)h(s)ds, t ∈ I. (2.2)

If x0 ∈ E and h ∈ C(I, E), the function u given by (2.2) belongs to C(I, E), we
call it a mild solution [11] of IVP(2.1).
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To prove our main results, for any h ∈ PC(J,E), we consider the initial value
problem (IVP) of linear impulsive evolution equation in E

u′(t) + Au(t) = h(t), t ∈ J ′,

∆u|t=tk
= yk, k = 1, 2, . . . ,m,

u(0) = x0,

(2.3)

where yk ∈ E, k = 1, 2, . . . ,m, x0 ∈ E.

Lemma 2.2. Let T (t)(t ≥ 0) be a C0-semigroup in E generated by −A, for any
h ∈ PC(J,E), x0 ∈ E and yk ∈ E, k = 1, 2, . . . ,m, then the linear IVP (2.3) has
a unique mild solution u ∈ PC(J,E) given by

u(t) = T (t)x0 +
∫ t

0

T (t− s)h(s)ds +
∑

0<tk<t

T (t− tk)yk, t ∈ J. (2.4)

Proof. Let y0 = θ, Jk = [tk−1, tk], k = 1, 2, . . . ,m + 1, where t0 = 0 and tm+1 = a.
If u ∈ PC(J,E) is a mild solution of IVP(2.3), then the restriction of u on Jk

satisfies the initial value problem of linear evolution equation without impulse

u′(t) + Au(t) = h(t), tk−1 < t ≤ tk,

u(t+k−1) = u(tk−1) + yk−1.

Hence, on (tk−1, tk], u(t) can be expressed by

u(t) = T (t− tk−1)(u(tk−1) + yk−1) +
∫ t

tk−1

T (t− s)h(s)ds.

Iterating successively in the above equality with u(tj), j = k − 1, k − 2, . . . , 1, we
see that u satisfies (2.4).

Inversely, we can verify directly that the function u ∈ PC(J,E) defined by
(2.4) is a mild solution of IVP(2.3). Hence IVP(2.3) has a unique mild solution
u ∈ PC(J,E) given by (2.4). �

Definition 2.3. If a function v0 ∈ PC(J,E) ∩ C1(J ′, E) ∩ C(J ′, E1) satisfies

v′0(t) + Av0(t) ≤ f(t, v0(t), T v0(t)) t ∈ J ′,

∆v0|t=tk
≤ Ik(v0(tk)), k = 1, 2, . . . ,m,

v0(0) ≤ x0,

(2.5)

we call it a lower solution of IVP(1.1); if all the inequalities in (2.5) are reversed,
we call it an upper solution of IVP(1.1).

Definition 2.4. A C0-semigroup T (t)(t ≥ 0) in E is called to be positive, if order
inequality T (t)x ≥ θ holds for each x ≥ θ, x ∈ E and t ≥ 0.

It is easy to see that for any M ≥ 0, −(A + MI) also generates a C0-semigroup
S(t) = e−MtT (t)(t ≥ 0) in E. And S(t)(t ≥ 0) is a positive C0-semigroup if
T (t)(t ≥ 0) is a positive C0-semigroup (about the positive C0-semigroup, see [8]).

Evidently, PC(J,E) is also an ordered Banach space with the partial order ≤
induced by the positive cone KPC = {u ∈ PC(J,E) : u(t) ≥ 0, t ∈ J}. KPC is also
normal with the same normal constant N . For v, w ∈ PC(J,E) with v ≤ w, we use
[v, w] to denote the order interval {u ∈ PC(J,E) : v ≤ u ≤ w} in PC(J,E), and
[v(t), w(t)] to denote the order interval {u ∈ E : v(t) ≤ u(t) ≤ w(t), t ∈ J} in E.
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3. Main results

Theorem 3.1. Let E be an ordered Banach space, whose positive cone P is normal,
A : D(A) ⊂ E → E be a closed linear operator, the positive C0-semigroup T (t)(t ≥
0) generated by −A is compact in E, f ∈ C(J × E × E,E) and Ik ∈ C(E,E),
k = 1, 2, . . . ,m. Assume that IVP(1.1) has a lower solution v0 ∈ PC(J,E) ∩
C1(J ′, E)∩C(J ′, E1) and an upper solution w0 ∈ PC(J,E)∩C1(J ′, E)∩C(J ′, E1)
with v0 ≤ w0. Suppose also that the following conditions are satisfied:

(H1) There exist a constant M > 0 such that

f(t, u2, v2)− f(t, u1, v1) ≥ −M(u2 − u1),

for any t ∈ J , and v0(t) ≤ u1 ≤ u2 ≤ w0(t), Tv0(t) ≤ v1 ≤ v2 ≤ Tw0(t).
(H2) Ik(u) is increasing on order interval [v0(t), w0(t)] for t ∈ J, k = 1, 2, . . . ,m.

Then the IVP(1.1) has minimal and maximal mild solutions u and u between v0

and w0.

Proof. Let M = supt∈J ‖S(t)‖, we define the mapping Q : [v0, w0] → PC(J,E) by

Qu(t) = S(t)x0 +
∫ t

0

S(t− s)(f(s, u(s), Tu(s)) + Mu(s))ds

+
∑

0<tk<t

S(t− tk)Ik(u(tk)).
(3.1)

Clearly, Q : [v0, w0] → PC(J,E) is continuous. By Lemma 2.2, the mild solution
of IVP(1.1) is equivalent to the fixed point of the operator Q. Since S(t)(t ≥ 0) is
a positive C0-semigroup, combine this with the assumptions (H1) and (H2), Q is
increasing in [v0, w0].

We first show v0 ≤ Qv0, Qw0 ≤ w0. Let h(t) = v′0(t) + Av0(t) + Mv0(t), by
(2.5), h ∈ PC(J,E) and h(t) ≤ f(t, v0(t), T v0(t)) + Mv0(t), t ∈ J ′. By Lemma 2.2,
we have

v0(t) = S(t)v0(0) +
∫ t

0

S(t− s)h(s)ds +
∑

0<tk<t

S(t− tk)∆v0|t=tk

≤ S(t)x0 +
∫ t

0

S(t− s)(f(s, v0(s), T v0(s)) + Mv0(s))ds

+
∑

0<tk<t

S(t− tk)Ik(v0(tk))

= Qv0(t), t ∈ J,

namely, v0 ≤ Qv0. Similarly, it can be show that Qw0 ≤ w0. So Q : [v0, w0] →
[v0, w0] is a continuously increasing operator.

Next, we show that Q : [v0, w0] → [v0, w0] is completely continuous. Let

(Wu)(t) =
∫ t

0

S(t− s)(f(s, u(s), Tu(s)) + Mu(s))ds,

(V u)(t) =
∑

0<tk<t

S(t− tk)Ik(u(tk)), u ∈ [v0, w0].
(3.2)
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On the one hand, we prove that for any 0 < t ≤ a, Y (t) = {(Wu)(t) : u ∈ [v0, w0]}
is precompact in E. For 0 < ε < t and u ∈ [v0, w0],

(Wεu)(t) =
∫ t−ε

0

S(t− s)(f(s, u(s), Tu(s)) + Mu(s))ds

= S(ε)
∫ t−ε

0

S(t− s− ε)(f(s, u(s), Tu(s)) + Mu(s))ds.

(3.3)

For any u ∈ [v0, w0], by Assumption (H1), we have

f(t, v0(t), T v0(t)) + Mv0(t) ≤ f(t, u(t), Tu(t)) + Mu(t)

≤ f(t, w0(t), Tw0(t)) + Mw0(t).

By the normality of the cone P , there exists M1 > 0 such that

‖f(t, u(t), Tu(t)) + Mu(t)‖ ≤ M1, u ∈ [v0, w0].

By the compactness of S(ε), Yε(t) = {(Wεu)(t) : u ∈ [v0, w0]} is precompact in E.
Since

‖(Wu)(t)− (Wεu)(t)‖ ≤
∫ t

t−ε

‖S(t− s)‖ · ‖f(s, u(s), Tu(s)) + Mu(s)‖ds

≤ M M1ε,

the set Y (t) is totally bounded in E. Furthermore, Y (t) is precompact in E.
On the other hand, for any 0 ≤ t1 ≤ t2 ≤ a, we have

‖(Wu)(t2)− (Wu)(t1)‖

= ‖
∫ t1

0

(S(t2 − s)− S(t1 − s))(f(s, u(s), Tu(s)) + Mu(s))ds

+
∫ t2

t1

S(t2 − s)(f(s, u(s), Tu(s)) + Mu(s))ds‖

≤ M1

∫ t1

0

‖S(t2 − s)− S(t1 − s)‖ds + M M1(t2 − t1)

≤ M1

∫ a

0

‖S(t2 − t1 + s)− S(s)‖ds + M M1(t2 − t1).

(3.4)

The right side of (3.4) depends on t2 − t1, but is independen of u. As T (·) is
compact, S(·) is also compact and therefore S(t) is continuous in the uniform
operator topology for t > 0. So, the right side of (3.4) tends to zero as t2− t1 → 0.
Hence W ([v0, w0]) is equicontinuous function of cluster in C(J,E).

The same idea can be used to prove the compactness of V .
For 0 ≤ t ≤ a, since {Qu(t) : u ∈ [v0, w0]} = {S(t)x0 + (Wu)(t) + (V u)(t) : u ∈

[v0, w0]}, and Qu(0) = x0 is precompact in E. Hence, Q([v0, w0]) is precompact
in C(J,E) by the Arzela-Ascoli theorem. So Q : [v0, w0] → [v0, w0] is completely
continuous. Hence, Q has minimal and maximal fixed points u and u in [v0, w0],
and therefore, they are the minimal and maximal mild solutions of the IVP(1.1) in
[v0, w0], respectively. �

Theorem 3.2. Let E be an ordered Banach space, whose positive cone P is normal,
A : D(A) ⊂ E → E be a closed linear operator and −A generates a positive C0-
semigroup T (t)(t ≥ 0) in E, f ∈ C(J×E×E,E) and Ik ∈ C(E,E), k = 1, 2, . . . ,m.
If the IVP(1.1) has a lower solution v0 ∈ PC(J,E) ∩ C1(J ′, E) ∩ C(J ′, E1) and
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an upper solution w0 ∈ PC(J,E) ∩C1(J ′, E) ∩C(J ′, E1) with v0 ≤ w0, conditions
(H1) and (H2) hold, and satisfy

(H3) There exist a constant L > 0 such that for all t ∈ J ,

α({f(t, un, vn)}) ≤ L(α({un}) + α({vn})),

and increasing or decreasing sequences {un} ⊂ [v0(t), w0(t)] and {vn} ⊂
[v0(t), w0(t)].

Then the IVP(1.1) has minimal and maximal mild solutions between v0 and w0,
which can be obtained by a monotone iterative procedure starting from v0 and w0

respectively.

Proof. From Theorem 3.1, we know that Q : [v0, w0] → [v0, w0] is a continuously
increasing operator. Now, we define two sequences {vn} and {wn} in [v0, w0] by
the iterative scheme

vn = Qvn−1, wn = Qwn−1, n = 1, 2, . . . . (3.5)

Then from the monotonicity of Q, it follows that

v0 ≤ v1 ≤ v2 ≤ · · · ≤ vn ≤ · · · ≤ wn ≤ · · · ≤ w2 ≤ w1 ≤ w0. (3.6)

We prove that {vn} and {wn} are convergent in J . For convenience, letB = {vn :
n ∈ N} and B0 = {vn−1 : n ∈ N}. Then B = Q(B0). Let J ′1 = [0, t1], J ′k =
(tk−1, tk], k = 2, 3, . . . m+1. From B0 = B

⋃
{v0} it follows that α(B0(t)) = α(B(t))

for t ∈ J . Let ϕ(t) := α(B(t)), t ∈ J , Going from J ′1 to J ′m+1interval by interval we
show that ϕ(t) ≡ 0 in J .

For t ∈ J , there exists a J ′k such that t ∈ J ′k. By (1.2) and Lemma 2.1, we have
that

α(T (B0)(t)) = α
({∫ t

0

K(t, s)vn−1(s)ds : n ∈ N
})

≤
k−1∑
j=1

α
({∫ tj

tj−1

K(t, s)vn−1(s)ds : n ∈ N
})

+ α
({ ∫ t

tk−1

K(t, s)vn−1(s)ds : n ∈ N
})

≤ 2K0

k−1∑
j=1

∫ tj

tj−1

α(B0(s))ds + 2K0

∫ t

tk−1

α(B0(s))ds

= 2K0

k−1∑
j=1

∫ tj

tj−1

ϕ(s)ds + 2K0

∫ t

tk−1

ϕ(s)ds

= 2K0

∫ t

0

ϕ(s)ds,

and therefore, ∫ t

0

α(T (B0)(s))ds ≤ 2aK0

∫ t

0

ϕ(s)ds. (3.7)
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For t ∈ J ′1, from (3.1), using Lemma 2.1, assumption (H3) and (3.7), we have

ϕ(t) = α(B(t)) = α(Q(B0)(t))

= α
({

S(t)x0 +
∫ t

0

S(t− s)(f(s, vn−1(s), T vn−1(s)) + Mvn−1(s))ds
})

≤ 2M

∫ t

0

α({f(s, vn−1(s), T vn−1(s)) + Mvn−1(s)})ds

≤ 2M

∫ t

0

(L(α(B0(s)) + α(Q(B0)(s))) + Mα(B0(s)))ds

≤ 2M(L + M + 2aLK0)
∫ t

0

ϕ(s)ds.

Hence by the Bellman inequality, ϕ(t) ≡ 0 in J ′1. In particular, α(B(t1)) =
α(B0(t1)) = ϕ(t1) = 0, this implies that B(t1) and B0(t1) are precompact in
E. Thus I1(B0(t1)) is precompact in E, and α(I1(B0(t1))) = 0.

Now, for t ∈ J ′2, by (3.1) and the above argument for t ∈ J ′1, we have

ϕ(t) = α(B(t)) = α(Q(B0)(t))

= α
({

S(t)x0 +
∫ t

0

S(t− s)(f(s, vn−1(s), T vn−1(s)) + Mvn−1(s))ds

+ S(t− t1)I1(vn−1(t1))
})

≤ 2M(L + M + 2aLK0)
∫ t

0

ϕ(s)ds

= 2M(L + M + 2aLK0)
∫ t

t1

ϕ(s)ds.

Again by Bellman inequality, ϕ(t) ≡ 0 in J ′2, from which we obtain that α(B0(t2)) =
0 and α(I2(B0(t2))) = 0.

Continuing such a process interval by interval up to J ′m+1, we can prove that
ϕ(t) ≡ 0 in every J ′k, k = 1, 2, . . . ,m+1. Hence, for any t ∈ J, {vn(t)} is precompact,
and {vn(t)} has a convergent subsequence. Combing this with the monotonicity
(3.6), we easily prove that {vn(t)} itself is convergent, i.e., limn→∞ vn(t) = u(t),
t ∈ J . Similarly, limn→∞ wn(t) = u(t), t ∈ J .

Evidently {vn(t)} ∈ PC(J,E), so u(t) is bounded integrable in every Jk, k =
1, 2, . . . ,m + 1. Since for any t ∈ Jk,

vn(t) = Qvn−1(t)

= S(t)x0 +
∫ t

0

S(t− s)(f(s, vn−1(s), T vn−1(s)) + Mvn−1(s))ds

+
∑

0<ti<t

S(t− ti)Ii(vn−1(ti)),

letting n → ∞, by the Lebesgue dominated convergence theorem, for all t ∈ Jk,
k = 1, 2, . . . ,m + 1, we have

u(t) = S(t)x0 +
∫ t

0

S(t− s)(f(s, u(s), Tu(s))+Mu(s))ds+
∑

0<ti<t

S(t− ti)Ii(u(ti)),



EJDE-2010/149 MONOTONE ITERATIVE METHOD 9

and u(t) ∈ C(Jk, E), k = 1, 2, . . . ,m + 1. So, for t ∈ J , we have

u(t) = S(t)x0+
∫ t

0

S(t−s)(f(s, u(s), Tu(s))+Mu(s))ds+
∑

0<tk<t

S(t−tk)Ik(u(tk)).

Therefore, u(t) ∈ PC(J,E), and u = Qu. Similarly, u(t) ∈ PC(J,E), and u = Qu.
Combing this with monotonicity (3.6), we see that v0 ≤ u ≤ u ≤ w0. By the
monotonicity of Q, it is easy to see that u and u are the minimal and maximal
fixed points of Q in [v0, w0]. Therefore, u and u are the minimal and maximal mild
solutions of the IVP(1.1) in [v0, w0], respectively. �

Corollary 3.3. Let E be an ordered Banach space, whose positive cone P is regular,
A : D(A) ⊂ E → E be a closed linear operator and −A generates a positive
C0-semigroup T (t)(t ≥ 0) in E, f ∈ C(J × E × E,E) and Ik ∈ C(E,E), k =
1, 2, . . . ,m. If the IVP(1.1) has a lower solution v0 ∈ PC(J,E) ∩ C1(J ′, E) ∩
C(J ′, E1) and an upper solution w0 ∈ PC(J,E) ∩ C1(J ′, E) ∩ C(J ′, E1) with v0 ≤
w0, and conditions (H1) and (H2) are satisfied, then the IVP(1.1) has minimal and
maximal mild solutions between v0 and w0, which can be obtained by a monotone
iterative procedure starting from v0 and w0 respectively.

Now we discuss the uniqueness of the mild solution to IVP(1.1) in [v0, w0]. If we
replace the assumption (H3) by the assumption:

(H4) There exist positive constants C and L such that

f(t, u2, v2)− f(t, u1, v1) ≤ C(u2 − u1) + L(v2 − v1),

for any t ∈ J , and v0(t) ≤ u1 ≤ u2 ≤ w0(t), Tv0(t) ≤ v1 ≤ v2 ≤ Tw0(t),

We have the following unique existence result.

Theorem 3.4. Let E be an ordered Banach space, whose positive cone P is normal,
A : D(A) ⊂ E → E be a closed linear operator and −A generates a positive C0-
semigroup T (t)(t ≥ 0) in E, f ∈ C(J×E×E,E) and Ik ∈ C(E,E), k = 1, 2, . . . ,m.
If the IVP(1.1) has a lower solution v0 ∈ PC(J,E) ∩ C1(J ′, E) ∩ C(J ′, E1) and
an upper solution w0 ∈ PC(J,E) ∩ C1(J ′, E) ∩ C(J ′, E1) with v0 ≤ w0, such that
conditions (H1), (H2), (H4) hold, then the IVP(1.1) has a unique mild solution
between v0 and w0, which can be obtained by a monotone iterative procedure starting
from v0 or w0.

Proof. We firstly prove that (H1) and (H4) imply (H3). For t ∈ J , let {un} ⊂
[v0(t), w0(t)] and {vn} ⊂ [Tv0(t), Tw0(t)] be two increasing sequences. For m,n ∈ N
with m > n, by (H1) and (H4),

θ ≤ f(t, um, vm)− f(t, un, vn) + M(um − un)

≤ (M + C)(um − un) + L(vn − vm).

By this and the normality of cone P , we have

‖f(t, um, vm)− f(t, un, vn)‖
≤ N‖(M + C)(um − un) + L(vn − vm)‖+ M‖um − un‖
≤ (N(M + C) + M)‖um − un‖+ NL‖vn − vm‖.
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From this inequality and the definition of the measure of noncompactness, it follows
that

α({f(t, un, vn)}) ≤ (N(M + C) + M)α({un}) + NLα({vn})
≤ L1(α({un}) + α({vn})),

where L1 = max{(N(M + C) + M), NL}. If {un} and {vn} are two decreasing
sequences, the above inequality is also valid. Hence (H3) holds. Therefore, by
Theorem 3.2, the IVP(1.1) has minimal and maximal mild solutions u andu between
v0 and w0. By the proof of Theorem 3.2, (3.5) and (3.6) are valid. Going from J ′1
to J ′m+1 interval by interval we show that u(t) ≡ u(t) in every J ′k.

For t ∈ J ′1, by (3.1) and assumption (H4), we have

θ ≤ u(t)− u(t) = Qu(t)−Qu(t)

=
∫ t

0

S(t− s)
[
f(s, u(s), Tu(s))− f(s, u(s), Tu(s)) + M(u(s)− u(s))

]
ds

≤ M(M + C + aLK0)
∫ t

0

(u(s)− u(s))ds.

From this and the normality of cone P it follows that

‖u(t)− u(t)‖ ≤ NM(M + C + aLK0)
∫ t

0

‖u(s)− u(s)‖ds.

By this and Bellman inequality, we obtained that u(t) ≡ u(t) in J ′1.
For t ∈ J ′2, since I1(u(t1)) = I1(u(t1)), using (3.1) and completely the same

argument as above for t ∈ J ′1, we can prove that

‖u(t)− u(t)‖ ≤ NM(M + C + aLK0)
∫ t

0

‖u(s)− u(s)‖ds

= NM(M + C + aLK0)
∫ t

t1

‖u(s)− u(s)‖ds.

Again, by the Bellman inequality, we obtain that u(t) ≡ u(t) in J ′2.
Continuing such a process interval by interval up to J ′m+1, we see that u(t) ≡ u(t)

over the whole of J . Hence, ũ := u = u is the unique mild solution of the IVP(1.1)
in [v0, w0], which can be obtained by the monotone iterative procedure (3.6) starting
from v0 or w0. �

If lower solution and upper solutions for the IVP(1.1) do not exist, then we have
the following result.

Theorem 3.5. Let E be an ordered Banach space, whose positive cone P is normal,
A : D(A) ⊂ E → E be a closed linear operator and −A generates a positive C0-
semigroup T (t)(t ≥ 0) in E, f ∈ C(J×E×E,E) and Ik ∈ C(E,E), k = 1, 2, . . . ,m.
If there exist a > 0, x0 ∈ D(A), x0 ≥ θ, yk ∈ D(A), yk ≥ θ, k = 1, 2, . . . ,m,
h ∈ PC(J,E) ∩ C1(J ′, E) and h(t) ≥ θ, such that

f(t, x, Tx) ≤ ax + h(t), Ik(x) ≤ yk, x ≥ θ;

f(t, x, Tx) ≥ ax− h(t), Ik(x) ≥ −yk, x ≤ θ.

Then we have:
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(i) If the C0-semigroup T (t)(t ≥ 0) generated by −A is compact in E, and
conditions (H1) and (H2) are satisfied, then the IVP(1.1) has minimal and
maximal mild solutions.

(ii) If conditions (H1), (H2), (H3) are satisfied, then the IVP(1.1) has minimal
and maximal mild solutions.

(iii) If the positive cone P is regular, and conditions (H1) and (H2) are satisfied,
then the IVP(1.1) has minimal and maximal mild solutions.

(iv) If conditions (H1), (H2), (H4) are satisfied, then the IVP(1.1) has a unique
mild solution.

Proof. Firstly, we consider the IVP of linear impulsive evolution equation in E

u′(t) + Au(t)− au(t) = h(t), t ∈ J ′,

∆u|t=tk
= yk, k = 1, 2, . . . ,m,

u(0) = x0.

(3.8)

Since −A+aI generates a positive C0-semigroup S(t) = eatT (t)(t ≥ 0) in E. So, by
[11, Chapter 4, Theorem 2.9] and Lemma 2.2, we know that IVP(3.8) has a unique
positive classical solution ũ ∈ PC(J,E) ∩ C1(J ′, E) ∩ C(J ′, E1). Let v0 = −ũ,
w0 = ũ, it is easy to see that v0 and w0 are lower solution and upper solution of
the IVP(1.1) respectively. So, our conclusions (i), (ii), (iii) and (iv) follow from the
Theorem 3.1, Theorem 3.2, Corollary 3.3 and Theorem 3.4 respectively. �

4. Applications

Consider the IVP of impulsive parabolic partial differential equation

∂u

∂t
+ A(x,D)u(t) = f(x, t, u(t), Tu(t)), x ∈ Ω, t ∈ J, t 6= tk,

∆u|t=tk
= Ik(u(x, tk)), x ∈ Ω, k = 1, 2, . . . ,m,

Bu = 0, (x, t) ∈ ∂Ω× J,

u(x, 0) = ϕ(x), x ∈ Ω,

(4.1)

where J = [0, a], 0 < t1 < t2 < · · · < tm < a, integer N ≥ 1, Ω ⊂ RN is a bounded
domain with a sufficiently smooth boundary ∂Ω,

A(x,D) = −
N∑

i=1

N∑
j=1

aij(x)
∂2

∂xi∂yj
+

N∑
i=1

ai(x)
∂

∂xi
+ a0(x)

is a strongly elliptic operator of second order, coefficient functions aij(x), ai(x)
and a0(x) are Hölder continuous in Ω, Bu = b0(x)u + δ ∂u

∂n is a regular boundary
operator on ∂Ω, f : Ω×J×R×R → R is continuous, Ik : R → R are also continuous,
k = 1, 2, . . . ,m.

Let E = Lp(Ω) with p > N + 2, P = {u ∈ Lp(Ω) : u(x) ≥ 0, a.e. x ∈ Ω}, and
define the operator A as follows:

D(A) = {u ∈ W 2,p(Ω) : Bu = 0}, Au = A(x, D)u.

Then E is a Banach space, P is a regular cone of E, and −A generates a positive
and analytic C0-semi-group T (t)(t ≥ 0) in E (see [8, 9, 11]). So, the problem
(4.1) can be transformed into the IVP (1.1). To solve the IVP(4.1), we also need
following assumptions:
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(a) Let f(x, t, 0, 0) ≥ 0, Ik(0) ≥ 0, ϕ(x) ≥ 0, x ∈ Ω, and there exists a function
w = w(x, t) ∈ PC(J,E) ∩ C2,1(Ω× J), such that

∂w

∂t
+ A(x, D)w ≥ f(x, t, w, Tw), (x, t) ∈ Ω× J, t 6= tk,

∆w|t=tk
≥ Ik(w(x, tk)), x ∈ Ω, k = 1, 2, . . . ,m,

Bw = 0, (x, t) ∈ ∂Ω× J,

w(x, 0) ≥ ϕ(x), x ∈ Ω.

(b) There exists a constant M > 0 such that

f(x, t, x2, y2)− f(x, t, x1, y1) ≥ −M(x2 − x1),

for any t ∈ J , and 0 ≤ x1 ≤ x2 ≤ w(x, t), 0 ≤ y1 ≤ y2 ≤ Tw(x, t).
(c) For any u1, u2 ∈ [0, w(x, t)] with u1 ≤ u2, we have

Ik(u1(x, tk)) ≤ Ik(u2(x, tk)), x ∈ Ω, k = 1, 2, . . . ,m.

Assumption (a) implies that v0 ≡ 0 and w0 ≡ w(x, t) are lower and upper
solutions of the IVP(1.1) respectively, and from (b) and (c), it is easy to verify
that conditions (H1) and (H2) are satisfied. So, from Corollary 3.3, we have the
following result.

Theorem 4.1. If the assumptions (a), (b) and (c) are satisfied, then the IVP(4.1)
has minimal and maximal mild solutions between 0 and w(x, t), which can be ob-
tained by a monotone iterative procedure starting from 0 and w(x, t) respectively.
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