Electronic Journal of Differential Equations, Vol. 2010(2010), No. 147, pp. 1-11.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu

SOLUTIONS OF FRACTIONAL DIFFUSION PROBLEMS

RABHA W. IBRAHIM

ABSTRACT. Using the concept of majorant functions, we prove the existence
and uniqueness of holomorphic solutions to nonlinear fractional diffusion prob-
lems. The analytic continuation of these solutions is studied and the singularity
for two cases are posed.

1. INTRODUCTION

Fractional calculus and its applications (that is the theory of derivatives and
integrals of any arbitrary real or complex order) has importance in several widely
diverse areas of mathematical, physical and engineering sciences. It generalized the
ideas of integer order differentiation and n-fold integration. Fractional derivatives
introduce an excellent instrument for the description of general properties of vari-
ous materials and processes. This is the main advantage of fractional derivatives in
comparison with classical integer-order models, in which such effects are in fact ne-
glected. Also the advantages of fractional derivatives become apparent in modelling
mechanical and electrical properties of real materials, as well as in the description
of properties of gases, liquids and rocks, and in many other fields.

The class of fractional differential equations of various types plays important roles
and tools not only in mathematics but also in physics, control systems, dynamical
systems and engineering to create the mathematical modelling of many physical
phenomena. Naturally, such equations required to be solved. Many studies on frac-
tional calculus and fractional differential equations, involving different operators
such as Riemann-Liouville operators [4], Erdélyi-Kober operators [6], Weyl-Riesz
operators [I8], Caputo operators [2] and Griinwald-Letnikov operators [20], have
appeared during the past three decades. The existence of positive solution and
multi-positive solutions for nonlinear fractional differential equation are established
and studied [23]. Moreover, by using the concepts of the subordination and super-
ordination of analytic functions, the existence of analytic solutions for fractional
differential equations in complex domain are suggested and posed in [7 [§].

The mathematical study of fractional diffusion equations began with the work of
Kochubei [T}, [12]. Later this study followed by the work of Metzler and Klafter [16]
and Zaslavsky [22]. Recently, Mainardi et all obtained the time fractional diffusion
equation from the standard diffusion equation [I4]. Our aim in this paper is to
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consider the existence and uniqueness of nonlinear diffusion problems of fractional
order in the complex domain by employing the concept of the majorant functions.
The problems are taken in sense of Riemann-Liouville operators. Also, the analytic
continuation of solutions are studied. Finally, the singularity for two cases are
posed. In the fractional diffusion problems, we replace the first order time derivative
by a fractional derivative. Fractional diffusion problems are useful in physics [5].

2. PRELIMINARIES

One of the most frequently used tools in the theory of fractional calculus is
furnished by the Riemann-Liouville operators (see [9], 10} 17 19} 20} 21]).

Definition 2.1. The fractional (arbitrary) order integral of the function f of order
a > 0 is defined by

t a—1
250 = [ smar
When a = 0, we write IS f(t) = f(t) * ¢ (t), where (%) denotes the convolution
product (see [19]), ¢ (t) = %, t >0 and ¢n(t) =0, t <0 and ¢, — I(t) as
a — 0 where 6(t) is the delta function.

Definition 2.2. The fractional (arbitrary) order derivative of the function f of
order 0 < a < 1 is defined by

d [f(t—7)“ d
D —_ dr = —1,7°f(t).
D3f) = 5 [ ey Frr = I
Definition 2.3. The majorant relations described as: if a(x) = Y a;2" and A(z) =
ST Azt A; > 0, Vi, then we say that a(z) < A(x) if and only if |a;| < A; for each
i. Likewise, if g(t,x) = Y gir(t — &)'z* and G(t,z) = Y. G (t — €)'z*, then we say
that g(t,z) <. G(t,z) if and only if |g;x| < Gy, for all ¢ and k.

Now we define the following family of majorant functions: for each i € N, we set

n

=" =

oW (2) =) CENEEE (2] < 1). (2.1)
n=0

Note that for each i € N, the family ®(*) converges for all |z| < 1. Moreover, this

family of functions enjoys some interesting majorant relations, as is stated in the

following proposition.

Proposition 2.4. The following relations hold.
(1) 2©(2)20(2) < O (2 )
(i) @O (2) > &M (2 )>> @ (2) >
(il) 5420 V(2) < &L <I>< )(2) < - ( ),
A0 (2) « L 00 (2) < -2(2), .. ;
(iv) $O(:)0)(2) < BO)(2);
(v) 2520 (2) < G120 (2), (0<e <1, Cic > 0);

l—ez
)

ol o
(vi) gﬂ)3(LEr2)) < D¢ i )( ),

for sufficient large p > 1.
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Proof. The first two relations are verified using the definition of ®(*)(z). Since

n+1 n -+ 2 1 1

— < — = — < -
4272 S (n+2)%2  (n+2)7 = (nt 1)t

then we obtain (iii). Similarly for (iv). To prove (v), by arbitrary choice of ¢ we
consider
Ci,s
S e
which implies
1
1—ez

= Zanz" < 009 (2).
n=0

But this is equivalent to saying that for all n

1

d@ D ().
T (2) < C; 2 (2)

Finally, by using the approximation

) s F(TL+ 1) -
DR = —t"" (0<t<1
S ;F(n+1—a)(n+1)z+2 , (0<t<1)
we obtain the desired relation (vi) for sufficient large p > 1. O

Similarly we can verify the following property.

Proposition 2.5. If f(z) is holomorphic in a neighborhood of |z| < rg, then f(2)
is majorized by

< x @ (2) <« MC; D (2,
= r r
for any 0 <r <erg.

3. FRACTIONAL DIFFUSION PROBLEMS
Let F(t,z,u,v), t € J = [a, A] be a function which is holomorphic in a neigh-
borhood of the point (a,b,c,d) € J x C3, and let ¢(z) be a function which is
2

holomorphic in a neighborhood of z = b and satisfies ¢(b) = ¢ and %(b) =d.

Consider the initial value problem:
0%ult,z) 0%u
ota _F(tazvuaﬁ)a (31)
u(a,z) = ¢(2), in a neighborhood of z = b.
For 0 < a < 1, problem ({3.1)) is called sub-diffusion problem [I5] and for 1 < o < 2,

it is called intermediate processes (see [3, 13]).
Then we have the following unique solvability result.

Theorem 3.1. Initial value problem (3.1) has one and only one solution u(t, z)
which is holomorphic in a neighborhood of (a,b) € J x C.

Proof. Translating the setting from the point (a,b) into the origin (0,0). Also we
perform a change of variable by setting w(t, z) = u(t, z) — ¢(z), where w(t, z) is the
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new unknown function. Then the initial value problem (3.1) is equivalent to the
problem
0*w(t, z) 0w
- 77— Gt -
ot ( ) 2, W, 822 )a (32)
w(0,0) =0, in a neighborhood of z = 0.
Here, the function G(t, z,w, %) is holomorphic in a neighborhood of the origin
€I xC? tel=101] and G(0,2,0,0) = 0 near z = 0. Thus it is sufficient to
consider the reduced initial value problem (3.2)). Equation 3.2 has a unique solution

takes the form
o0

w(t,z) = Zwk(z)tk, (tel).
k=0
The uniqueness comes from the idea given in [I]; Solutions to fractional Cauchy
problems are obtained by subordinating the solution to the original Cauchy prob-
lem.

We proceed to prove that w(t, z) converges. Let rq > 0 and p > 0 be small enough
and suppose that the function G(t, z, w, v) is holomorphic in a neighborhood of the
set {(t,z,w,v) € I x C3;t <1 < 1,|2] < 7o, |w| < pand |v] < p}. Suppose further
that G is bounded by M in this domain. Since G is holomorphic, we may expand
it into

G(t, z,w,v) = Z ap,q.5(2)Pw°, (t el, (w,v) € (Cx (C))
p.4,8

By Cauchy’s inequality and the fact that the coefficient ay 4 s(2) is holomorphic in
a neighborhood of {z € C;0 < |z| < 7¢}, we have

M 1
TPpats 1 — (£)2°

To

p,q,s(2) < (3.3)

Now the problem returns to find a function g(t, z) satisfying the majorant relations
2
9g(t, 2) Z L\Ltp q(@)s7
ote TPpdts 1 — (%)2

022 (3.4)
9(0,0) >0,

p.q,s

then the function g(t, z) majorizes the formal solution w(t, z). Assume 0 < r < 7
and define

glt,2) = Lo® (1 + (%)2), (L > 0). (3.5)

By taking the fractional derivative for both sides of (3.5 with respect to ¢ we obtain

d%g(t, z) 970 (t + (2)?)

=L L . .
o ) w0 (3
Then by Proposition (vi) we have
0%g(t, z) L z
Z Iy, 30 232 )
o~ C, (1+ 7). (3.7)
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where C,, := (2u)'2. For a constant Ky > 0 again in view of Proposition (ii)
and (iii) we realize that

Z M 1 1 gq(@)s
pq+s 1- (i)2 1—L17 1022

<<§ at+s 1 _ 71)2 _ é{L(I)(Q) (t—f— (;)2)} {QL@(O)( t+ (;)2)}3 .
<X o (o G GEe (b4 )

MK() (0)
< 1—L/p—2L/p7“2CI) (t+(r) )

if % pTQ < 1. Comparing (3.7)) and (3.8]), if the relation

L S MK,

C, ~1—-L/p—2L/pr?
holds then the majorant relations in will be satisfied by ¢(t,z) defined in
1' Note that relation (3.9)) holds by choosing a sufficiently small L, the condition

S+ pTQ < 11is satisfied. Hence g(t, z) in (3.5) majorizes the formal solution w(t, z).
ThlS now implies that w(t, z) converges in a domain containing {(¢,z) € I x C; |t +

()% <1}

(3.9)

4. ANALYTIC CONTINUATION OF SOLUTION

Let Q be a neighborhood of the origin (0,0). Let F(t,z,u,v), t € I, be a
holomorphic function in 2 x C, x C, and consider the nonlinear fractional partial
differential equation

0“u 32u
Then we may expand it into the convergent series
F(t,z,u,v) Za”,tzu]vp (4.2)

Let So = {(4,p) € N%a;,(t,2z) # 0} and S = {(j,p) € So;j +p > 2}. Note that F
is linear if and only if S = (; it is nonlinear otherwise. Assume henceforth that F
is nonlinear, that is S is nonempty. In the following, we will write the coefficients
as

a;p(t,z) = 7&’“-7"”173-@(757 2), (4.3)

where k;, is a nonnegative integer and b;,(0,z) = 0. Using (4.1) may now be
written as

Z thip (@)p (4.4)
8t°‘ 0227 " ’
For k € R we define the quantlty

§(k) = inf @Om+1+ﬁ(+pf1ﬁ (4.5)

J:p€S
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Note that when x = 0, then §(x) > 1. Moreover, if

ks sup —(kgp) + 1)’
(Jp)eS j+p—1
then §(k) is positive.
In this section, our aim is to show that any solution u(t, z) = O(t") of the problem
(4.4) which is holomorphic in €2, is analytically continued up to some neighborhood
of the origin.

Theorem 4.1. Suppose u(t,z) is a solution of (4.4]) which is holomorphic in €.
If for some k € R satisfying 6(k) > 0, we have

Ztgmlﬂ(lf ,2)[=0(t7), (t—0),

then the solution u(t, z) can be extended analytically as a holomorphic solution of
(4.4) up to a neighborhood of the origin.

Proof. Assume that u(t, z) is a solution for the problem (4.4)) which is holomorphic
in . Furthermore, we suppose that expansion (4.2 is valid in the domain D where

D :={(t z,u,v) : t <27, |z| < 2r, Ju| < p,|v| < p},

such that 7 < 1, 2r < 1 and p is positive number. Let M be a bound of F' in D.
Now we consider the following initial value problem in w(t, z) := > - o wi(2)(t—
e)*
t, 2
0*w(t, z) Ztk“’b 8wp, tel

oot w( 072 ) (4.6)

w(s, z) = u(e, 2).
Our aim is to show that the formal solution w(t, z) converges in some domain
containing the origin. This then poses that u(t, z) is analytically continued by
w(t, z) up to some neighborhood of the origin. First, since u(t, z) = O(t") ast — 0,
there exists a constant N such that |u(e, z)| < Ne® uniformly in z. Hence in view
of Proposition for some constant C7, we have
t —
u(e, z) < Ne®C 3 (—— + (2)?). (4.7
cT T
Assume that £ < 1 (without lose generality). To construct an inequality to be
satisfied by the majorant function, we will first majorize the expression tkirb; (¢, 2)
by using ®© (z). Let
t—e¢ z
+(2)?

CT r

Z =

then ¢ is majorized by

t—e¢
= — - (0)
t=c+ (t—¢) <e (5 + 407) (1 + ior ) <, (5 +4CT)<I> (Z). (4.8)
Now, we may expand the function b; ,(t, z) as follows

o0

bip(t,2) =3 b (),

m=0
where each bgz) is holomorphic in a neighborhood of {|z| < 2r} and satisfies

(m) M
10" (2)] < pIP(27) MR
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This estimate implies

MC100)(Z)
ijFP(QT)mﬂij-,p
where C is the same constant as in (4.7). Combining relations (4.8) and (4.9) and
by using Proposition (i), we obtain

(m)
by (2) < (4.9)

o

| mtkipr MO0 (2)
thrrb; o (t,2) < Y [(e + 407)@0)(2)} [W}
72’:() - (410)
M .
<. p;ﬂ? 3 (7) Z:O(zlc) +hip

by choosing e = 5 and 0 < ¢ < 1 and fixing 7 so that der < 1, 0 < ¢ < 1, we
finally have the relation

. 201 M
tkj’pijp(t, Z) < W(ﬁ(o)(Z)
Thus, any function W (t, z) found to satisfy the majorant relations
oW 201 M _ (o) L O0PW
o >y s SN W (5P, tel
ip (4.11)

W(e, z) >, Ne®C, 82 (Z)

is one majorant function for the formal solution w(t, z). In the similar manner of
the proof of Theorem and by choosing suitable values for p > 0 and ¢ > 0, and

CT

setting € = <, the function
W(t, z) =e"NC1®?(Z)

satisfies the majorant relations given in (4.11). Hence W (¢, z) is holomorphic in a
domain containing the origin; consequently must be true for w(t, z). O

5. SINGULARITY
Again, we state our assumptions in studying the equation

0%w(t,z) 0w
tT = G(t, zZ, W, ﬁ)

Let G be a function holomorphic in some neighborhood of the origin in I x C? and
suppose G(0, z,0,0) is identically zero near z = 0. In this section, our aim is to seek
a holomorphic solution w(t, z) of for special case, which satisfies w(0, z) = 0.
First we write G as

(5.1)

2 2 2

0% w 0*w 0*w
) = ~— ~—— 2
G(t, z,w, 5.2 ) =a(z)t + b(z)w + c(z) 5.2 + R(t, z,w, 5.2 ), (5.2)
where R is the remainder of the Taylor expansion of G. Then we have the following
result.

Theorem 5.1. Assume that the coefficient ¢(z) = 0 in (5.2). If b(z) does not
take values in NU {0} at the origin, then (5.1) has a unique holomorphic solution
satisfying w(0, z) = 0.
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Proof. Consider a formal solution of the form w(t,z) = Y, wi(2)t*. Then we
expand G(t, z,w, %277;’) as follows
0%w 0*w
Gt 2w, S5) = a(2)t + b(z)w + > s “’q(azz) :
ptq+i=2
Suppose that this expansion is convergent in a neighborhood of the set

2 2

0*w 0*w
S={(t, 2w, t<T\Z|<r07|w|<p7|82|<p}

022 )
and that G is bounded in & by M. Since b(z) does not take values in N U {0} at
the origin then there exists a constant B such that

———| <B <rg.
|k:fb(z)‘_ . forall ke NU{0} and |z| < g

Then any function w(t,z) satisfying the following relations is a majorant of the
formal solution:

0%w(t, BM t BM tPwi 0%w
! giaZ)>>1 2ot D pq+a‘1wz ait;))j
T T pygrgz2 P T 97 (5.3)
(U|t:() =0.
Let 0 < r < rg. Assume that
w(t, 2) = Ltd®) (t + (5)2), (L >0), (5.4)
T

yields

0°w(t, z) Laaﬂb@) (t+2?) Lo
ot ot . (L>0)
Applying the Leibniz rule for fractional differentiation [20, Eq. 2.202] and using
the relation (vi), the left hand side of (5.3]) becomes

9%w(t, Z) 2‘D(O) (t) Q o) (t) (0) 2
= <O>Lt c, +{ )2t c, > Co L)1 +1).  (5.5)

Meanwhile, the right hand side becomes

BM t BM tPw? Pw .
— J
1,(1)27— + Z Tpqurj 1,(%)2(322)

ro p+q+j>2
< BM t
1—(&)2r
S BM t p{Ltfb(Q)(t—i—(f)Q)}q{QLt d2q>(2)(t+(f)2)}j
_(z)2\~ 2 2
pta+i>2 ! (’“0) ’ P e dz
> BM  t_ rLt19(2Lt13 z
<<Z s > j(*)p[*} [T] O (t +(2)?).
) T } ) 1—(£)2'r p r2p r
TD (p+q+5>2,9+5>1) ro
(5.6)
But
>~. BM BM t BMC
Yo )<< — ()W) < Lo (0) (1) (5.7)
p:11 (%) 1—(Z)2-1'7 T
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and
BM t. rLtyar2Lt73 z
_ 7 Iy |22 22 (0) Z)2
Z ‘ 1—(1)2(7') [p] [7"2/)] @ (t+(r))
(p+q+i>2,q+5>1) o
t Lt 2Lt\2 BM
<(z+Z+57 e (1) (5.8)
2 _(2)2 _t _ Lt _ 2Lt
(7’ P r p) 1 (TZO) ; =
t Lt 2Lt\2
< (z+ =+ 20 ) cBMRO (1),
T P r2p
where

1 L 2L 1
—+-—<-.
T p rp T T
Comparing the majorant relations (5.7)) and (5.8) to the one in relation (5.6) that
w(t, z) satisfies (5.3)) if we could force

BMC,

L>
TCop

and
Lo Grg %)2C2BM.
> Co
The last two conditions in are satisfied by choosing L large enough, fixing it, and
then choosing a sufficiently small value for Cy,Cs and Cy ;. We thus have shown
that the function w(t, z) defined in majorizes the formal solution w(¢, z). This
implies that the formal solution converges in some neighborhood of the origin. [

If ¢(z) is not identically zero in (5.2)), then we write
c(z) = 2Pe(z), (5.9)
where p is a nonnegative integer and ¢(z) # 0. We now state the following result.
Theorem 5.2. Supposep =1 in . If a positive constant v exists such that
|k —b(0) —c(z)f| >v(k+v+1), (k¢ e€NU{0}xN, (5.10)
then has one and only one holomorphic solution satisfying w(0, z) = 0.
Proof. Equation may be written as

0%w O%w

t 500 b(0)w — E(O)(zﬁ)

8211) 8211) ) (5.11)

= 2B(2)w + (=) (25 5) +a(=)t + > g, (0 (55 ),

ptg+j=>2
where
b(z) =b(0) + z8(z) and ¢(z) =¢(0) + zy(2).
Suppose that this expansion is convergent in a neighborhood of the set
0? 0?

8= {(tzw. 55) £ <70 <r <[] <ro.fol < ] 551 < o}
and that G is bounded in & by M. Moreover, assume that a(z),3(z) and 7(z)
are bounded by A, B and C respectively. Consider a formal solution of the form
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w(t,z) =Y pe wi(2)t*. Now, it can be shown that this formal solution is majorized
by any function W (¢, z) satisfying these relations:

o~ 0?
BzW + At Cz O*W M trwe  OPW .
RS s eariCr DD T2 y (612
1-— (E)Q 1-— (E)Z 822 pHaty>2 Tppq+] 1-— (E)Q 82’2
Wli=o =0
such that W can be found in the form
W(t,z) = Ltd®) (t + (;)2), (L >0), (5.13)

The summation in (5.12)) is estimated as in Theorem Our aim is to estimate
the terms

BzW—I—At+ Cz ( 32W) and (32W)
nd vz(——
1T (Z)2 "1-(2) 022 022
in (5.12)). We thus have, for some constant K > 0,
BzW + At Cz 0*wW
1—(2)2 Tz (L)Q(z 022 )
T0 T0
O (¢4 (%2 2250 (14 (%2 (5.14)
< BLK zt® (t—i—(T) )+CLKth2<I>M (t+(r) )

< (BLK +2CLK)=t0 (¢ + (2)2).

On the other hand, the left-hand side is estimated by using Proposition (iii) as
follows:
28 (2) z)2

*wW oLty &P (t +(3) ) vtz z

3(© (t z 2). 5.15
022 ) > dz? > 8r * (r) ( )
Therefore, in order for W (¢, z) to satisfy the majorant relations in (5.12]) we must
impose the condition

vz(

v
K(B+2C)< —.

(B+20) < o
This completes the proof. O
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