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TRANSPORT EQUATIONS IN CELL POPULATION DYNAMICS
I

MOHAMED BOULANOUAR

Abstract. In this article, we study a cell proliferating model, where each cell

is characterized by its degree of maturity and its maturation velocity. The
boundary conditions in this model generalize the known biological rules. We

consider also the degenerate case corresponding to infinite maturation velocity.

Then we show that this model is governed by a strongly continuous semigroup
and give its explicit expression.

1. Introduction

We consider a cell population in which each cell is distinguished by its degree
of maturity µ and its maturation velocity v. At the birth, the degree of maturity
of each (daughter) cell is null (µ = 0) and at the division, the degree of maturity
of each (mother) cell becomes µ = 1. Between the birth and the division of each
cell, its degree of maturity is 0 < µ < 1. As each cell may not become less mature,
then its maturation velocity v must be positive (0 ≤ a < v < b ≤ ∞). So, if
f = f(t, µ, v) is the cell density with respect to degree of maturity µ and to the
maturation velocity v at time t ≥ 0, then f satisfies the following partial differential
equation

∂f

∂t
+ v

∂f

∂µ
= −σf +

∫ b

a

r(µ, v, v′)f(t, µ, v′)dv′ (1.1)

where, r(µ, v, v′) is the transition rate at which cells change their velocities from v
to v′ and

σ(µ, v) =
∫ b

a

r(µ, v′, v)dv′ (1.2)

is the rate of cell mortality or cell loss due to causes other than division.
During each cell division, we suppose there is a kernel correlation k(v, v′) between

the maturation velocity of a mother cell v′ and that of a daughter cell v. This
correlation is governed by the transition biological rule mathematically described
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by the boundary condition

vf(t, 0, v) = β

∫ b

a

k(v, v′)f(t, 1, v′)v′dv′ (1.3)

where, β ≥ 0 is the average number of daughter cells viable per mitotic.
The model (1.1)-(1.3) was introduced in [7] and only a numerical study was

made. Since then the model is rarely studied because there are no methods or
technics to study such models. For instance, before [2] one did not know whether
the model (1.1)-(1.3) was well posed for β > 1.

When 0 < a < b < ∞, we have proved, in [2], that the model (1.1)-(1.3)
is governed by a strongly continuous semigroup and we have given its explicit
expression. Moreover, in spite of the obvious non-compactness of the right hand
side of (1.1), we could describe the essential spectrum of that semigroup.

When 0 < a < b = ∞, then maturation velocities are not bounded and so
all announced results in [2] do not hold. This case corresponds to a new serious
mathematical difficulty and then the model requires other technics that we will
develop in this work. To show the extent of this new difficulty, we have shown, in [3],
that the model (1.1)-(1.3) with the perfect memory property (i.e., k(v, v′) = δv′(v)),
has a unique solution if and only if β ≤ 1. Namely, there are no solutions for the
most interesting and observed case β > 1 corresponding to an increasing cell density.

In this work, we are concerned with the case 0 < a < b = ∞ together with
the general biological rule mathematically described by the following boundary
condition

f(t, 0, v) = [Kf(t, 1, ·)] (v) (1.4)

where, K is a linear operator into suitable spaces (see section 2). To study the
general model (1.1)-(1.4) in its natural setting L1((0, 1)× (a,∞)), we organize this
work as follows: Introduction, unperturbed model (r = 0), construction of the
unperturbed semigroup (r = 0), and perturbed semigroup (1.1)-(1.4).

In Section 2, we show a generation result of a strongly continuous semigroup for
the unperturbed model (1.1)-(1.4) (i.e. r = 0). This is obtained by Hille-Yosida’s
Theorem and Pillips-Lumer’s Theorem given as follows.

Lemma 1.1 ([6, Theorem II.3.8]). Let (A,D(A)) be a linear operator on a Banach
space X and let ω ∈ R, M ≥ 1 be constants. Then the following statements are
equivalent

(1) A generates a strongly continuous semigroup (T (t))t≥0 satisfying

‖T (t)‖L(X) ≤Meωt, t ≥ 0,

(2) (A,D(A)) is closed, densely defined and for all λ > ω we have λ ∈ ρ(A)
and

‖(λ−A)−n‖L(X) ≤M(λ− ω)−n

for all n ∈ N.

Lemma 1.2 ([6, Theorem II.3.15]). Let (A,D(A)) be a densely defined linear op-
erator on a Banach space X. If A is dissipative and the range rg(λ− A) = X for
some λ > 0, then A generates a strongly continuous semigroup of contractions.

Section 3 deals with the explicit expression of the unperturbed semigroup. This
expression will be very useful to describe the asymptotic behavior which is the main
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goal of [4]. The end of this work concerns the generation theorem for the perturbed
model (1.1)-(1.4), where we have applied the following perturbation results

Lemma 1.3 ([6, Theorem III.1.3]). Let (A,D(A)) be the infinitesimal generator
of a strongly continuous semigroup (T (t))t≥0 on a Banach space X and let B be a
linear bounded operator from X into itself. Then, the operator C := A+B on the
domain D(C) := D(A) generates a strongly continuous semigroup (S(t))t≥0 given
by Trotter’s formula

S(t)x = lim
n→∞

[
e−

t
nBT

(
t
n

)]n
x t ≥ 0, (1.5)

for all x ∈ X.

Lemma 1.4 ([6, Theorem II.2.7]). Let (A,D(A)) be the generator of a strongly
continuous semigroup (T (t))t≥0 of contractions on a Banach space X and let B be
a dissipative operator satisfying D(A) ⊂ D(B) and

‖Bx‖ ≤ a‖Ax‖+ b‖x‖

for all x ∈ D(A), where, 0 ≤ a < 1 and b ≥ 0. Then, A + B is the infinitesimal
generator of a strongly continuous semigroup of contractions.

Finally, some of these results were announced in [5] and here we explicitly state
the detailed conditions and outline all the proofs. For all theoretical results used
here, we refer the reader to [6].

2. The unperturbed model (r = 0)

In this section, we are going to study the unperturbed model (1.1)-(1.4) (i.e.
r = 0). So, let us consider the following functional framework L1(Ω) whose natural
norm is

‖ϕ‖1 =
∫

Ω

|ϕ(µ, v)| dµ dv (2.1)

where, Ω = (0, 1) × (a, ∞) := I × J . We emphasize that we are only concerned
with the following important assumption

a > 0 (2.2)

until the end of this work. We consider also the partial Sobolev space

W 1(Ω) =
{
ϕ ∈ L1(Ω), v

∂ϕ

∂µ
∈ L1(Ω) and vϕ ∈ L1(Ω)

}
whose norm is

‖ϕ‖W 1(Ω) =
∥∥v ∂ϕ
∂µ

∥∥
1

+ ‖vϕ‖1.

Finally, we consider the trace space Y1 := L1(J, vdv) endowed with the norm

‖ψ‖Y1 =
∫ ∞

a

|ψ(v)|vdv.

Lemma 2.1 ([1]). The trace mappings γ0ϕ = ϕ(0, ·) and γ1ϕ = ϕ(1, ·) are linear
bounded from W 1(Ω) into Y1.

Thanks to Lemma above, it is easy to check the following useful lemma.
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Lemma 2.2. Let A0 be the following unbounded operator

A0ϕ = −v ∂ϕ
∂µ

on the domain

D(A0) = {ϕ ∈W 1(Ω), γ0ϕ = 0}.
(2.3)

(1) The operator A0 generates, on L1(Ω), a positive strongly continuous semi-
group (U0(t))t≥0 of contractions given by

U0(t)ϕ(µ, v) = χ(µ, v, t)ϕ(µ− tv, v) t ≥ 0, (2.4)

where,

χ(µ, v, t) =

{
1 if µ ≥ tv,

0 if µ < tv.
(2.5)

(2) Let λ > 0. Then, for all g ∈ L1(Ω), we have

‖v(λ−A0)−1g‖1 ≤ ‖g‖1. (2.6)

(3) t→ γ1U0(t)ϕ ∈ Y1 is a continuous mapping with respect to t ≥ 0.

Now, let us consider a linear boundary operator K from Y1 into itself until the
end of this work. This leads to write the boundary condition (1.4) as

γ0ϕ = Kγ1ϕ (2.7)

and allows us to give a sense, by Lemma 2.1, to the following unbounded operator

AKϕ = −v ∂ϕ
∂µ

on the domain

D(AK) = {ϕ ∈W 1(Ω), satisfying γ0ϕ = Kγ1ϕ}
(2.8)

To study AK , let us define the operator

Kλ := θλK, where θλ(·) = e−
λ
· (2.9)

which plays an important role in the sequel.

Lemma 2.3. Suppose K is bounded satisfying ‖K‖L(Y1) < 1. Then
(1) For all λ ≥ 0, Kλ is a linear bounded operator from Y1 into itself satisfying

‖Kλ‖L(Y1) < 1 .
(2) For all λ > 0, the resolvent operator of (2.8) is given by

(λ−AK)−1g = ελK(I −Kλ)−1γ1(λ−A0)−1g + (λ−A0)−1g (2.10)

for all g ∈ L1(Ω), where ελ(µ, v) = e−λ
µ
v .

(3) The operator defined by (2.8) generates, on L1(Ω), a strongly continuous
semigroup (UK(t))t≥0 satisfying

‖UK(t)ϕ‖1 ≤ ‖ϕ‖1 t ≥ 0, (2.11)

for all ϕ ∈ L1(Ω).

Proof. (1) This point clearly follows from ‖Kλ‖L(Y1) ≤ ‖K‖L(Y1) < 1 for all λ ≥ 0.
(2) Let λ > 0 and g ∈ L1(Ω). The general solution of

λϕ = −v ∂ϕ
∂µ

+ g (2.12)

is given by
ϕ = ελψ + (λ−A0)−1g (2.13)
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where ψ is any function of the variable v. If ψ ∈ Y1 then, by (2.6) we clearly have

‖vϕ‖1 ≤ ‖vελψ‖1 + ‖v(λ−A0)−1g‖1 ≤ ‖ψ‖Y1 + ‖g‖1 <∞

which implies, by (2.12), that∥∥v ∂ϕ
∂µ

ϕ
∥∥

1
≤ λ‖ϕ‖1 + ‖g‖1 ≤

λ

a
‖vϕ‖1 + ‖g‖1 <∞

and therefore ϕ ∈ W 1(Ω). Now, ϕ ∈ D(AK) if and only if ϕ satisfies (2.7). This
means that ψ is the unique solution of the following system

ψ = Kγ1ϕ

γ1ϕ = Kλγ1ϕ+ γ1(λ−A0)−1g.
(2.14)

As λ > 0, then the first point implies that (I−Kλ) is invertible into Y1 and therefore

ψ = K(I −Kλ)−1γ1(λ−A0)−1g

which we put in (2.13) to get (2.10).
(3) Let ϕ ∈ D(AK). Then, we have〈

sgnϕ, AKϕ
〉

= −
∫

Ω

(sgnϕ(µ, v))
(
v
∂ϕ

∂µ
(µ, v)

)
dµ dv

= −
∫ 1

0

∫ ∞

a

v
∂|ϕ|
∂µ

(µ, v) dµ dv

=
∫ ∞

a

|ϕ(0, v)|vdv −
∫ ∞

a

|ϕ(1, v)|vdv

= ‖γ0ϕ‖Y1 − ‖γ1ϕ‖Y1 .

By (2.7), it follows that

〈sgnϕ,AKϕ〉 ≤
(
‖K‖L(Y1) − 1

)
‖γ1ϕ‖Y1 ≤ 0 (2.15)

because of ‖K‖L(Y1) < 1 and hence, AK is a dissipative operator. Furthermore, AK
is densely defined because of Cc(Ω) ⊂ D(AK) ⊂ L1(Ω). Now, Lemma 1.2 completes
the proof. �

Clearly, Lemma above does not hold for the case ‖K‖L(Y1) ≥ 1 because (2.15)
can not be satisfied and therefore other ways are needed. So, according to the
compactness of the boundary operator K, we have the following result.

Lemma 2.4. Suppose K is compact satisfying ‖K‖L(Y1) ≥ 1. Then

(1) There exists λ0 = λ0(K), with λ0 > 0 if ‖K‖L(Y1) > 1 and λ0 ≥ 0 if
‖K‖L(Y1) = 1, satisfying ‖Kλ‖L(Y1) < 1 for all λ > λ0 and ‖Kλ0‖L(Y1) ≤ 1.

(2) For all λ > λ0, the resolvent operator of (2.8) is given by (2.10).
(3) The operator defined by (2.8) generates, on L1(Ω), a strongly continuous

semigroup (UK(t))t≥0 satisfying

‖UK(t)ϕ‖1 ≤ e
λ0
a etλ0‖ϕ‖1 t ≥ 0, (2.16)

for all ϕ ∈ L1(Ω).
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Proof. (1) Let λ, η ≥ 0 and let B be the unit ball in Y1. So we have

‖Kλ −Kη‖L(Y1) = sup
ψ∈B

‖Kλψ −Kηψ‖Y1

= sup
ϕ∈K(B)

‖θλϕ− θηϕ‖Y1

≤ sup
ϕ∈K(B)

‖θλϕ− θηϕ‖Y1 .

By the compactness of the set K(B), then there exists ϕ0 ∈ K(B) (so independent
of λ and µ) satisfying

‖Kλ −Kη‖L(Y1) ≤ ‖θλϕ0 − θηϕ0‖Y1

which implies

lim
λ→η

‖Kλ −Kη‖L(Y1) ≤ lim
λ→η

‖θλϕ0 − θηϕ0‖Y1 = 0

and therefore, the continuity of the mapping

λ→ ‖Kλ‖L(Y1) (2.17)

follows, for λ ≥ 0. Furthermore, proceeding as previously we obtain

‖Kλ‖L(Y1) = sup
ψ∈B

‖Kλψ‖Y1 ≤ sup
ϕ∈K(B)

‖θλϕ‖Y1 = ‖θλϕ0‖Y1

and therefore
lim
λ→∞

‖Kλ‖L(Y1) = 0. (2.18)

On the other hand, if η > λ ≥ 0 then for all ψ ∈ Y1 we have

|Kηψ| = θη|Kψ| = θη−λθλ|Kψ| = θη−λ|Kλψ| < |Kλψ|
which implies

‖Kη‖L(Y1) ≤ ‖Kλ‖L(Y1)

and therefore the mapping (2.17) is decreasing.
Now, if ‖K‖L(Y1) > 1, then ‖K0‖L(Y1) = ‖K‖L(Y1) > 1 together with (2.18)

imply that the equation ‖Kλ‖L(Y1) = 1 has at least one strictly positive solution
(λ1 > 0) and therefore the closed set

E := {λ ≥ 0, ‖Kλ‖L(Y1) = 1} (2.19)

is not empty and bounded. Now, it suffices to set

λ0 := maxE ≥ λ1 > 0

Next. If ‖K‖L(Y1) = 1 then ‖K0‖L(Y1) = ‖K‖L(Y1) = 1 implies that λ = 0 is
obviously a solution of ‖Kλ‖L(Y1) = 1 and therefore the closed set (2.19) is not
empty and bounded. Now, it suffices again to set

λ0 := maxE ≥ 0.

Finally, in both cases we have ‖Kλ‖L(Y1) < 1 if λ > λ0 and ‖Kλ0‖L(Y1) ≤ 1.
(2) Following the proof of the second point of Lemma 2.3, we have only to

solve (2.14). This clearly follows from the first point, and therefore (I −Kλ) is an
invertible operator into Y1.

(3) First, let us introduce on, L1(Ω), the following norm

|||ϕ|||1 =
∫

Ω

|ϕ(µ, v)|h(µ, v) dµ dv (2.20)
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where h(µ, v) = e−λ0
(1−µ)

v . The norms (2.20) and (2.1) are clearly equivalent be-
cause of

e−λ0/a‖ϕ‖1 ≤ |||ϕ|||1 ≤ ‖ϕ‖1 (2.21)
for all ϕ ∈ L1(Ω).

Next, let λ > λ0 and g ∈ L1(Ω). So, the second point means that (2.13) is
the unique solution of (2.12) satisfying (2.7). Multiplying (2.12) by (sgnϕ)h and
integrating it over Ω, we obtain

λ|||ϕ|||1 = −
∫

Ω

v
∂|ϕ|
∂µ

h(µ, v) dµ dv +
∫

Ω

(sgnϕ)hg(µ, v) dµ dv = I + J. (2.22)

For the term J , we obviously have

J ≤ |||g|||1. (2.23)

Integrating by parts and using (2.7) and (2.9), the term I becomes

I =
∫ ∞

a

e−
λ0
v |ϕ(0, v)|vdv −

∫ ∞

a

|ϕ(1, v)|vdv + λ0

∫
Ω

|ϕh|(µ, v) dµ dv

=
∫ ∞

a

e−
λ0
v |Kγ1ϕ(v)|vdv −

∫ ∞

a

|γ1ϕ(v)|vdv + λ0|||ϕ|||1

= ‖Kλ0γ1ϕ‖Y1 − ‖γ1ϕ‖Y1 + λ0|||ϕ|||1
≤

(
‖Kλ0‖L(Y1) − 1

)
‖γ1ϕ‖Y1 + λ0|||ϕ|||1

and by the first point, we are led to

I ≤ λ0|||ϕ|||1. (2.24)

Putting (2.24) and (2.23) in (2.22), we obtain

|||ϕ|||1 = |||(λ−AK)−1g|||1 ≤
|||g|||1

(λ− λ0)
.

Moreover, AK is a closed operator (because of ρ(AK) 6= ∅) and densely defined
(because of Cc(Ω) ⊂ D(AK) ⊂ L1(Ω)). Therefore, Lemma 1.1 leads to the existence
of a strongly continuous semigroup (UK(t))t≥0 satisfying

|||UK(t)g|||1 ≤ etλ0 |||g|||1, t ≥ 0. (2.25)

Then (2.21) completes the proof. �

Lemmas 2.3 and 2.4 suggest to set the following definition.

Definition 2.5. K is said to be an admissible operator if (K is bounded and
‖K‖L(Y1) < 1) or (K is compact and ‖K‖L(Y1) ≥ 1).

In this case, the number

ω0 =

{
0, if K bounded and ‖K‖L(Y1) < 1;
λ0, if K compact and ‖K‖L(Y1) ≥ 1.

(2.26)

is called the abscissa of the admissible operator K.

Lemmas 2.3 and 2.4 together with the definition above clearly lead to the main
result of this section.

Theorem 2.6. Let K be an admissible operator whose abscissa is ω0. Then
(1) ‖Kλ‖L(Y1) < 1 for all λ > ω0 and ‖Kω0‖L(Y1) ≤ 1.
(2) For all λ > ω0, the resolvent operator of (2.8) is given by (2.10).
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(3) The operator defined by (2.8) generates, on L1(Ω), a strongly continuous
semigroup (UK(t))t≥0 satisfying

‖UK(t)ϕ‖1 ≤ e
ω0
a etω0‖ϕ‖1, t ≥ 0, (2.27)

for all ϕ ∈ L1(Ω).

3. Construction of the unperturbed semigroup (r = 0)

In this section, we are going to give the expression of the unperturbed semi-
group (UK(t))t≥0. This expression is very useful to describe the behavior as-
ymptotic which is the main goal of [4]. So, let us consider the Banach space
Z1
ω := L1((−∞, 0)× J, hω) (ω ≥ 0) whose norm is

‖f‖Z1
ω

=
∫ ∞

a

∫ 0

−∞
|f(x, v)|e−ω

(1−x)
v dx dv.

In this context we have the following result.

Lemma 3.1. Let K be an admissible operator whose abscissa is ω0 and let BK(t)
be the operator

BK(t)ϕ(µ, v) = ξ(µ, v, t)(I −HK)−1VKϕ(µ− tv, v) t ≥ 0 (3.1)

for almost all (µ, v) ∈ Ω, where, the operators HK and VK are defined as

HKf(x, v) =
(
K

(
ξ(1, ·,−xv−1)f(1 + xv−1·, ·)

))
(v),

VKϕ(x, v) =
(
K

(
γ1U0(−xv−1)ϕ

) )
(v),

with

ξ(µ, v, t) =

{
1 if µ < tv;
0 if µ ≥ tv.

(3.2)

Then

(1) HK and VK are bounded operators respectively from Z1
ω (ω ≥ 0) and L1(Ω)

into Z1
ω. Furthermore, we have

‖HK‖L(Z1
ω) ≤ ‖Kω‖L(Y1), (3.3)

‖VK‖L(L1(Ω),Z1
ω) ≤ ‖Kω‖L(Y1). (3.4)

(2) Let ω > ω0. Then, for all t ≥ 0, the operator BK(t) is linear and bounded
from L1(Ω) into itself.

(3) For all ϕ ∈ L1(Ω), the mapping t ∈ R+ → BK(t)ϕ is continuous at : t = 0+

and BK(0) = 0.
(4) For all ϕ ∈W 1(Ω) and for all t ≥ 0 we have

γ0BK(t)ϕ−Kγ1BK(t)ϕ = Kγ1U0(t)ϕ. (3.5)

(5) Let K ′ be an admissible operator whose abscissa is ω′0. Then, for all ω >
max{ω0, ω

′
0}, we have

‖BK(t)−BK′(t)‖L(L1(Ω)) ≤
eω( 1

a +t)‖K −K ′‖L(Y1)

(1− ‖Kω‖L(Y1))(1− ‖K ′
ω‖L(Y1))

. (3.6)
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Proof. (1) For all f ∈ Z1
ω (ω ≥ 0), we have

‖HKf‖L(Z1
ω) =

∫ ∞

a

∫ 0

−∞
|
[
Kξ

(
1, ·,−x

v

)
f
(
1 + x

v ·, ·
)]

(v)|e−ω
(1−x)

v dx dv

=
∫ ∞

a

∫ ∞

0

| [Kξ(1, ·, t)f(1− t·, ·)] (v)|e−ω( 1
v +t)v dt dv

which leads, by (2.9), to

‖HKf‖L(Z1
ω) =

∫ ∞

0

[∫ ∞

a

| [Kωξ(1, ·, t)f(1− t·, ·)] (v)|vdv
]
e−ωtdt

≤ ‖Kω‖L(Y1)

∫ ∞

0

[ ∫ ∞

a

|ξ(1, v, t)f(1− tv, v)|vdv
]
e−ωtdt

≤ ‖Kω‖L(Y1)

∫ ∞

a

∫ 0

−∞
|ξ

(
1, v, 1−x

v

)
f(x, v)|e−ω

(1−x)
v dx dv

≤ ‖Kω‖L(Y1)‖f‖Z1
ω

and therefore (3.3) holds. A similar calculation implies that

‖VKϕ‖Z1
ω
≤ ‖Kω‖L(Y1)‖ϕ‖1

for all ϕ ∈ L1(Ω) and therefore (3.4) holds.
(2) Let ω > ω0 and t ≥ 0. Due to the first point of Theorem 2.6 together with

(3.3), we obtain (I−HK) is an invertible operator into Z1
ω. So, the operator BK(t)

given by (3.1) is well defined and its linearity follows from those of (I−HK)−1 and
VK . For its boundedness, we have

‖BK(t)ϕ‖1 =
∫

Ω

ξ(µ, v, t)|(I −HK)−1VKϕ(µ− tv, v)| dµ dv

≤
∫ ∞

a

∫ tv

0

eω
µ
v |(I −HK)−1VKϕ(µ− tv, v)| dµ dv

=
∫ ∞

a

∫ 0

−tv
eω(

x
v +t)|(I −HK)−1VKϕ(x, v)| dx dv

for all ϕ ∈ L1(Ω) and therefore

‖BK(t)ϕ‖1 ≤ eω(
1
a +t)

∫ ∞

a

∫ 0

−tv
e−ω

(1−x)
v |(I −HK)−1VKϕ(x, v)| dx dv. (3.7)

This implies

‖BK(t)ϕ‖1 ≤ eω(
1
a +t)‖(I −HK)−1VKϕ‖Z1

ω
(3.8)

and by (3.3) and (3.4), we clearly have

‖BK(t)ϕ‖1 ≤ eω(
1
a +t)‖(I −HK)−1VKϕ‖Z1

ω

= eω(
1
a +t)‖

∑
n≥0

Hn
K‖Z1

ω
‖VKϕ‖Z1

ω

≤ eω(
1
a +t) 1

1− ‖Kω‖L(Y1)
‖Kω‖L(Y1)‖ϕ‖1

which leads to the boundedness of BK(t) from L1(Ω) into itself.
(2) This point obviously follows from (3.7).
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(3) Let ϕ ∈W 1(Ω). Using (3.1), we obtain∫ ∞

a

∫ ∞

0

∣∣Kγ1U0(t)ϕ(v)− γ0BK(t)ϕ(v)−Kγ1BK(t)ϕ(v)
∣∣v dt dv

=
∫ ∞

a

∫ ∞

0

∣∣∣VKϕ(−tv, v)− (I −HK)−1VK(−tv, v)

−K
[
ξ(1, ·, t)(I −HK)−1VKϕ(1− t·, ·)

]
(v)

∣∣∣v dt dv.
The change x = −tv with dx = −vdt infers that∫ ∞

a

∫ ∞

0

∣∣Kγ1U0(t)ϕ(v)− γ0BK(t)ϕ(v)−Kγ1BK(t)ϕ(v)
∣∣v dt dv

=
∫ ∞

a

∫ 0

−∞

∣∣∣VKϕ(x, v)− (I −HK)−1VK(x, v)

−K
[
ξ(1, ·,−xv−1)(I −HK)−1VKϕ(1 + xv−1·, ·)

]
(v)

∣∣∣ dx dv
=

∫ ∞

a

∫ 0

−∞

∣∣∣VKϕ(x, v)− (I −HK)−1VK(x, v)

−HK(I −HK)−1VKϕ(x, v)
∣∣∣ dx dv = 0

and therefore (3.5) holds for almost all t ∈ R+. Now, thanks to the third point of
Lemma 2.2, we obtain (3.5) holds for all t ≥ 0.

(4) Let ω > sup{ω0, ω
′
0}. A simple calculation, like the proof of (3.8), infers

that

‖BK(t)ϕ−BK′(t)ϕ‖1 ≤ eω(
1
a +t)‖(I −HK)−1VKϕ− (I −HK′)−1VK′ϕ‖Z1

ω

As

(I −HK)−1VK − (I −HK′)−1VK′

= (I −HK′)−1[VK − VK′ ] + (I −HK)−1[HK −HK′ ](I −HK′)−1VK ,

we clearly have

‖BK(t)ϕ−BK′(t)ϕ‖1

≤ eω(
1
a +t)‖(I −HK′)−1‖‖VKϕ− VK′ϕ‖

+ eω(
1
a +t)‖(I −HK)−1‖‖HK −HK′‖‖(I −HK′)−1‖‖VKϕ‖

and therefore, by (3.3) and (3.4), we are lead to

‖BK(t)ϕ−BK′(t)ϕ‖1

≤ eω(
1
a +t) 1

1− ‖K ′
ω‖L(Y1)

‖VKϕ− VK′ϕ‖Z1
ω

+ eω(
1
a +t) 1

(1− ‖Kω‖L(Y1))
‖HK −HK′‖ 1

(1− ‖K ′
ω‖L(Y1))

‖Kω‖L(Y1)‖ϕ‖1.



EJDE-2010/144 TRANSPORT EQUATION 11

Thanks to the obvious linearity of the mappings K → HK and K → VK , (3.3) and
(3.4) imply

‖BK(t)ϕ−BK′(t)ϕ‖1 ≤ eω(
1
a +t) ‖Kω −K ′

ω‖L(Y1)‖ϕ‖1

1− ‖K ′
ω‖L(Y1)

+ eω(
1
a +t) ‖Kω −K ′

ω‖L(Y1)‖Kω‖L(Y1)‖ϕ‖1

(1− ‖Kω‖L(Y1))(1− ‖K ′
ω‖L(Y1))

≤ eω(
1
a +t) ‖Kω −K ′

ω‖L(Y1)

(1− ‖Kω‖L(Y1))(1− ‖K ′
ω‖L(Y1))

‖ϕ‖1

≤ eω(
1
a +t) ‖K −K ′‖L(Y1)

(1− ‖Kω‖L(Y1))(1− ‖K ′
ω‖L(Y1))

‖ϕ‖1

and therefore (3.6) holds. The proof is complete. �

Theorem 3.2. Let K be an admissible operator whose abscissa is ω0. Then, the
semigroup (UK(t))t≥0 is given by

UK(t)ϕ = U0(t)ϕ+BK(t)ϕ t ≥ 0, (3.9)

for all ϕ ∈ L1(Ω) . Furthermore, the operator BK(t) satisfies

BK(t)ϕ(µ, v) = ξ(µ, v, t)Kγ1

(
UK

(
t− µ

v

)
ϕ
)
(v), t ≥ 0, (3.10)

for almost all (µ, v) ∈ Ω.

Proof. Let t ≥ 0 and ϕ ∈ L1(Ω) and let SK(t) be the following operator

SK(t) = U0(t) +BK(t), t ≥ 0, (3.11)

where, BK(t) is given by (3.1). In the sequel, we are going to prove that (SK(t))t≥0

is a strongly continuous semigroup into L1(Ω). At the end of this proof, we will
show that UK(t) = SK(t) for all t ≥ 0. Then, let us divide the proof in several
steps.

Step one. This step deals with a useful expression of the operator BK(t) like
(3.10). So, for all ϕ ∈W 1(Ω) and for almost all (µ, v) ∈ Ω, (3.11) implies that

SK
(
t− µ

v

)
ϕ(0, v) = U0

(
t− µ

v

)
ϕ(0, v) +BK

(
t− µ

v

)
ϕ(0, v)

which leads, by (2.4), to

ξ(µ, v, t)SK
(
t− µ

v

)
ϕ(0, v) = ξ(µ, v, t)BK

(
t− µ

v

)
ϕ(0, v).

Using (3.1) we obtain

ξ(µ, v, t)SK
(
t− µ

v

)
ϕ(0, v)

= ξ(µ, v, t)ξ
(
0, v,

(
t− µ

v

))
(I −HK)−1VKϕ

(
0−

(
t− µ

v

)
v, v

)
= ξ(µ, v, t)(I −HK)−1VKϕ(µ− tv, v)

and therefore

ξ(µ, v, t)γ0

(
SK

(
t− µ

v

)
ϕ
)
(v) = BK(t)ϕ(µ, v). (3.12)

On the other hand, (3.11) implies

γ0SK(t)ϕ−Kγ1SK(t)ϕ = γ0U0(t)ϕ+ γ0BK(t)ϕ

−Kγ1U0(t)ϕ−Kγ1BK(t)ϕ

= γ0BK(t)ϕ−Kγ1U0(t)ϕ−Kγ1BK(t)ϕ.
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According to (3.5), we obtain

γ0SK(t)ϕ = Kγ1SK(t)ϕ

and hence

ξ(µ, v, t)γ0

(
SK

(
t− µ

v

)
ϕ
)
(v) = ξ(µ, v, t)Kγ1

(
SK

(
t− µ

v

)
ϕ
)
(v). (3.13)

Now, combining (3.12) and (3.13), we obtain the following useful relation

BK(t)ϕ(µ, v) = ξ(µ, v, t)Kγ1

(
SK

(
t− µ

v

))
ϕ(v). (3.14)

Finally, the density of W 1(Ω) in L1(Ω), implies that (3.14) holds again for all
ϕ ∈ L1(Ω).

Step two. In this step, we are going to prove that (SK(t))t≥0 is a strongly
continuous semigroup into L1(Ω). So, Lemma 2.2 together with the second and the
third points of Lemma 3.1 clearly lead to the linearity and the boundedness of the
operator SK(t) from L1(Ω) into itself and SK(0) = U0(0) +BK(0) = I + 0 = I and

lim
t→0+

‖SK(t)ϕ− ϕ‖1 ≤ lim
t→0+

‖U0(t)ϕ− ϕ‖1 + lim
t→0+

‖BK(t)ϕ‖1 = 0.

Now, in order to state that the family operators (SK(t))t≥0 is a strongly continuous
semigroup into L1(Ω), it suffices to prove that

G(t, s) := SK(t)SK(s)− SK(t+ s) = 0 (3.15)

for all t ≥ 0 and all s ≥ 0. So, by (3.11) and (3.14), a simple calculation shows that

G(t, s)ϕ(µ, v)

= ξ(µ, v, t)Kγ1

(
UK

(
t− µ

v

)
SK(s)ϕ

)
(v)

+
(
χ(µ, v, t)ξ

(
t+ s− µ

v

)
− ξ

(
t+ s− µ

v

) )
Kγ1

(
SK

(
t+ s− µ

v , s
)
ϕ
)
(v)

for almost all (µ, v) ∈ Ω. Furthermore, (2.5) and (3.2) allow to reduce the relation
above to

G(t, s)ϕ(µ, v) = ξ(µ, v, t)Kγ1

(
G(t− µ

v , s)ϕ
)
(v). (3.16)

Next, let ω > ω0. On one hand, (3.16) implies∫ ∞

0

e−ωt‖γ1G(t, s)ϕ‖Y1dt =
∫ ∞

0

e−ωt
∫ ∞

a

|γ1G(t, s)ϕ(v)|v dv dt

=
∫ ∞

a

∫ ∞

0

e−ωtξ(1, v, t)|Kγ1

(
G(t− 1

v , s)ϕ
)
(v)|v dt dv

=
∫ ∞

a

∫ ∞

1
v

e−ωt|Kγ1

(
G(t− 1

v , s)ϕ
)
(v)|v dt dv

=
∫ ∞

a

∫ ∞

0

e
−ω

“
x+

1
v

”
|Kγ1G(x, s)ϕ(v)|v dx dv

which leads, by (2.9), to∫ ∞

0

e−ωt‖γ1G(t, s)ϕ‖Y1dt =
∫ ∞

0

∫ ∞

a

e−ωx|Kωγ1G(x, s)ϕ(v)|vdvdx

=
∫ ∞

0

e−ωx‖Kωγ1G(x, s)ϕ‖Y1dx
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and therefore,∫ ∞

0

e−ωt‖γ1G(t, s)ϕ‖Y1dt ≤ ‖Kω‖
∫ ∞

0

e−ωt‖γ1G(t, s)ϕ‖Y1dt. (3.17)

This obviously means that∫ ∞

0

e−ωt‖γ1G(t, s)ϕ‖Y1dt = 0 (3.18)

because of the first point of Theorem 2.6. On the other hand, (3.16) implies

‖G(t, s)ϕ‖1 =
∫

Ω

ξ(µ, v, t)|Kγ1

(
G

(
t− µ

v , s
)
ϕ
)
(v)| dµ dv

=
∫ ∞

a

∫ tv

0

|Kγ1

(
G

(
t− µ

v , s
)
ϕ
)
(v)| dµ dv

=
∫ ∞

a

∫ t

0

|Kγ1G(x, s)ϕ(v)|v dx dv

=
∫ t

0

‖Kγ1G(x, s)ϕ‖Y1dx

≤ ‖K‖L(Y1)

∫ t

0

‖γ1G(x, s)ϕ‖Y1dx

and therefore,

‖G(t, s)ϕ‖1 ≤ ‖K‖L(Y1)

∫ ∞

0

‖γ1G(x, s)ϕ‖Y1dx. (3.19)

Now, (3.18) and (3.19) obviously imply G(t, s) = 0 and therefore (3.15) holds for
all t ≥ 0 and all s ≥ 0. Hence, (SK(t))t≥0 is well a strongly continuous semigroup
satisfying

SK(t)ϕ(µ, v) = U0(t)ϕ(µ, v) + ξ(µ, v, t)Kγ1

(
SK

(
t− µ

v

)
ϕ
)
(v) (3.20)

because of (3.11) and (3.14).
Step three. Let λ > ω0 and ϕ ∈ L1(Ω) and let B be the generator of the

semigroup (SK(t))t≥0. Then, by (3.20) we obtain

(λ−B)−1ϕ(µ, v)

=
∫ ∞

0

e−λtSK(t)ϕ(µ, v)dt

=
∫ ∞

0

e−λtU0(t)ϕ(µ, v)dt+
∫ ∞

0

e−λtξ(µ, v, t)Kγ1

(
SK

(
t− µ

v

)
ϕ
)
(v)dt

= (λ−A0)−1ϕ(µ, v) + e−λ
µ
v

∫ ∞

0

e−λtKγ1SK(t)ϕ(v)dt

= (λ−A0)−1ϕ(µ, v) + e−λ
µ
vKγ1

[ ∫ ∞

0

e−λtSK(t)ϕdt
]
(v)

= (λ−A0)−1ϕ(µ, v) + e−λ
µ
vKγ1(λ−B)−1ϕ(v)

for almost all (µ, v) ∈ Ω, and therefore

(λ−B)−1ϕ = ελKγ1(λ−B)−1ϕ+ (λ−A0)−1ϕ (3.21)
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where, ελ = e−λ
µ
v . Applying γ1 to (3.21), we infer that

γ1(λ−B)−1ϕ = Kλγ1(λ−B)−1ϕ+ γ1(λ−A0)−1ϕ

and thanks to the first point of Theorem 2.6, it follows that

γ1(λ−B)−1ϕ = (I −Kλ)−1γ1(λ−A0)−1ϕ (3.22)

because of λ > ω0. Now, putting (3.22) in (3.21), we finally obtain

(λ−B)−1ϕ = ελK(I −Kλ)−1γ1(λ−A0)−1ϕ+ (λ−A0)−1ϕ. (3.23)

Step four. By (2.10) and (3.23), we have (λ−AK)−1 = (λ−B)−1 and hence,
UK(t) = SK(t) for all t ≥ 0 because of the uniqueness of the generated semigroup.
Moreover, (3.10) holds because of (3.14). Now, the proof is complete. �

Corollary 3.3. Let K be an admissible operator whose abscissa is ω0. Then we
have ∫ ∞

a

∫ t

0

e−ωx|γ1 (UK(x)ϕ) (v)|v dx dv ≤ ‖ϕ‖1

1− ‖Kω‖L(Y1)
, t ≥ 0, (3.24)

for all ϕ ∈ L1(Ω).

Proof. The corollary is obvious for t = 0. So, let t > 0 and ω > ω0 be a given real
and let ψ ∈W 1(Ω). Applying γ1 to (3.9) and (3.10) we obtain

γ1(UK(x)ψ)(v) = γ1(U0(x)ψ)(v) + ξ(1, v, x)
[
Kγ1

(
UK

(
x− 1

v

)
ψ

)]
(v)

for all x ≥ 0 and for almost all v ∈ J . Multiplying the relation above by e−ωx and
integrating it over (0, t)× J , we infer that∫ ∞

a

∫ t

0

e−ωx|γ1(UK(x)ψ)(v)|v dx dv

≤
∫ ∞

a

∫ t

0

e−ωxχ(1, v, x)|ψ(1− xv, v)|v dx dv

+
∫ ∞

a

∫ t

0

e−ωxξ(1, v, x)|Kγ1

(
UK

(
x− 1

v

)
ψ

)
(v)|v dx dv

where we have used (2.4). A suitable change of variables leads to∫ ∞

a

∫ t

0

e−ωx|γ1(UK(x)ψ)(v)|v dx dv

≤
∫ ∞

a

∫ 1

1−tv
e−ω

(1−µ)
v χ

(
1, v, 1−µ

v

)
|ψ(µ, v)| dµ dv

+
∫ ∞

a

∫ t

0

e−ωye−ω
1
v |Kγ1 (UK(y)ψ) (v)|vdydv

≤
∫

Ω

|ψ(µ, v)| dµ dv +
∫ t

0

e−ωx‖Kωγ1 (UK(x)ψ) ‖Y1dx

which implies∫ ∞

a

∫ t

0

e−ωx|γ1(UK(x)ψ)(v)|v dx dv

≤ ‖ψ‖1 + ‖Kω‖L(Y1)

∫ ∞

a

∫ t

0

e−ωx|γ1(UK(x)ψ)(v)|v dx dv.
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Therefore, ∫ ∞

a

∫ t

0

e−ωx|γ1(UK(x)ψ)(v)|v dx dv ≤ 1
1− ‖Kω‖L(Y1)

‖ψ‖1

because of the first point of Theorem2.6. Now, the density of W 1(Ω) in L1(Ω) leads
to (3.24) for all ϕ ∈ L1(Ω). �

Note that a rank one or a compact boundary operator is admissible and therefore
Theorem 2.6 holds. Accordingly, we give three important results very useful for the
results in [4]. The first one is as follows.

Theorem 3.4. Let K and K ′ be two compact operators. Then, we have

‖UK(t)− UK′(t)‖L(L1(Ω)) ≤ 4eω( 1
a +t)‖K −K ′‖L(Y1), t ≥ 0 (3.25)

for all ω big enough.

Proof. Let ω be a positive real and let t ≥ 0. First, (3.9) and (3.6) clearly lead to

‖UK(t)− UK′(t)‖L(L1(Ω)) ≤
eω( 1

a +t)‖K −K ′‖L(Y1)

(1− ‖Kω‖L(Y1))(1− ‖K ′
ω‖L(Y1))

(3.26)

Next, let B be the unit ball in Y1. So we have

‖Kω‖L(Y1) = sup
ψ∈B

‖Kωψ‖Y1 = sup
ϕ∈K(B)

‖θωϕ‖Y1 ≤ sup
ϕ∈K(B)

‖θωϕ‖Y1 .

By the compactness of the set K(B), then there exists ϕ0 ∈ K(B) (independent of
ω) satisfying

‖Kω‖L(Y1) ≤ ‖θωϕ0‖Y1

and hence
lim
ω→∞

‖Kω‖L(Y1) = lim
ω→∞

‖θωϕ0‖Y1 = 0.

Therefore, there exists ω1 > 0 such that

ω > ω1 =⇒ ‖Kω‖L(Y1) <
1
2
. (3.27)

The same calculation above holds for the compact operator K ′ and therefore there
exists ω′1 > 0 such that

ω > ω′1 =⇒ ‖K ′
ω‖L(Y1) <

1
2
. (3.28)

Finally, if ω > sup{ω1, ω
′
1} then (3.26) and (3.27) and (3.28) clearly lead to (3.25).

The proof is complete. �

Let us end this section by the following result.

Lemma 3.5. Let K be a rank one operator in Y1; i.e.,

Kψ = h

∫ ∞

a

k(v′)ψ(v′)v′dv′, h ∈ Y1, k ∈ L∞(J).

Then, for all ϕ ∈ L1(Ω), we have

UK(t)ϕ =
∞∑
m=0

Um(t)ϕ, t ≥ 0,
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where, U0(t) is given by (2.4) and

U1(t)ϕ(µ, v) = ξ(µ, v, t)h(v)
∫ ∞

a

k(v1)χ
(
1, v1, t− µ

v

)
ϕ

(
1−

(
t− µ

v

)
v1, v1

)
v1dv1

and, for m ≥ 2, by

Um(t)ϕ(µ, v) = ξ(µ, v, t)h(v)
∫ ∞

a

· · ·
∫ ∞

a︸ ︷︷ ︸
m times

m−1∏
j=1

h(vj)
m∏
j=1

k(vj)

× ξ
(
1, vm−1, t−

µ

v
−

(m−2)∑
i=1

1
vi

)
χ
(
1, vm, t−

µ

v
−

(m−1)∑
i=1

1
vi

)
× ϕ

(
1−

(
t− µ

v
−
m−1∑
i=1

1
vi

)
vm, vm

)
v1v2 · · · vm dv1 · · · dvm.

Furthermore, for all t ≥ 0,

lim
N→∞

∥∥UK(t)−
N∑
m=0

Um(t)
∥∥
L(L1(Ω))

= 0. (3.29)

Proof. Let ϕ ∈ L1(Ω) and let ω be a large real. By Theorem 3.2, it is easy to check,
by induction, that for all integer N ≥ 1 we have

UK(t) = U0(t) +
N∑
m=1

Um(t) +RN (t)

where RN (t) is given by

RN (t)ϕ(µ, v)

= ξ(µ, v, t)h(v)
∫ ∞

a

· ·
∫ ∞

a︸ ︷︷ ︸
(N + 1) times

N∏
j=1

h(vj)
N+1∏
j=1

k(vj)ξ
(
1, vN , t−

µ

v
−

(N−1)∑
i=1

1
vi

)

× γ1

(
UK

(
t− µ

v
−

N∑
i=1

1
vi

)
ϕ
)
(vN+1)v1 · ·vN+1 dv1 · ·dvN+1.

As 1 = eω
(1−µ)

v e−ω
(1−µ)

v ≤ eω/ae−ω
(1−µ)

v for all (µ, v) ∈ Ω, then

‖RN (t)ϕ‖1

≤ eω/a
∫

Ω

∣∣∣e−ω (1−µ)
v ξ(µ, v, t)h(v)

∫ ∞

a

· · ·
∫ ∞

a︸ ︷︷ ︸
(N + 1) times

×
N∏
j=1

h(vj)
N+1∏
j=1

k(vj)ξ
(
1, vN , t−

µ

v
−

(N−1)∑
i=1

1
vi

)

× γ1

(
UK

(
t− µ

v
−

N∑
i=1

1
vi

)
ϕ
)
(vN+1)v1v2 · · · vN+1 dv1 · · · dvN+1

∣∣∣ dµ dv.
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By the change of variables x = t− µ
v −

∑N
i=1

1
vi

with vdx = −dµ, we infer that

‖RN (t)ϕ‖1

≤ eω/a
∫ ∞

a

∫ t

0

∣∣∣e−ω(x−t+ 1
v )h(v)

∫ ∞

a

· · ·
∫ ∞

a︸ ︷︷ ︸
(N + 1) times

e
−ω

“PN
i=1

1
vi

” N∏
j=1

h(vj)

×
N+1∏
j=1

k(vj)γ1

(
UK(x)ϕ

)
(vN+1)v1v2 · · · vNdv1 · · · dvN+1

∣∣∣v dx dv
≤ eω/aeωt

[ ∫ ∞

a

e−
ω
v |h(v)|vdv

][ ∫ ∞

a

e−
ω
v |h(v)||k(v)|vdv

]N
×

∫ t

0

e−ωx
∫ ∞

a

|k(vN+1)||γ1 (UK(x)ϕ) (vN+1)vN+1| dvN+1 dx.

As k ∈ L∞(J), then we obtain

‖RN (t)ϕ‖1 ≤ eω/aeωt
(
‖k‖∞

∫ ∞

a

e−
ω
v |h(vi)|v dv

)N+1

×
∫ t

0

e−ωx
∫ ∞

a

|γ1 (UK(x)ϕ) (vN+1)|vN+1 dvN+1 dx

= eω/aeωt‖Kω‖N+1
L(Y1)

∫ ∞

a

∫ t

0

e−ωx|γ1 (UK(x)ϕ) (vN+1)|vN+1 dx dvN+1

which, by (3.24), implies

‖RN (t)ϕ‖1 ≤ eω/aeωt
‖Kω‖N+1

L(Y1)

1− ‖Kω‖L(Y1)
‖ϕ‖1

and therefore

lim
N→∞

‖UK(t)−
N∑
m=0

Um(t)‖L(L1(Ω)) = lim
N→∞

‖RN (t)‖L(L1(Ω)) = 0

because of the first point of Theorem 2.6. The proof is now complete. �

4. The perturbed semigroup (1.1)-(1.4)

In this section, we are going to prove that the perturbed model (1.1)-(1.4) is
governed by a strongly continuous semigroup like a linear perturbation of the un-
perturbed semigroup (UK(t))t≥0 already studied. So, let us define the following
two perturbation operators

Rϕ(µ, v) =
∫ ∞

a

r(µ, v, v′)ϕ(µ, v′)dv′,

Sϕ(µ, v) = −σ(µ, v)ϕ(µ, v),

where σ is given by (1.2). Let us impose the following hypothesis
(H1) r is measurable positive, and σ ∈ L∞(Ω).

Denoting

σ := ess inf(µ,v)∈Ω σ(µ, v) and σ := ess sup(µ,v)∈Ω σ(µ, v),

we have the following result.
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Lemma 4.1. Suppose that (H1) holds. Then, S and R are linear bounded operators
from L1(Ω) into itself. Furthermore, S +R is a dissipative operator.

Proof. Let ϕ ∈ L1(Ω). The boundedness of the operators S and R clearly follows
from

‖Rϕ‖1 ≤
∫ 1

0

∫ ∞

a

∫ ∞

a

r(µ, v, v′)|ϕ(µ, v′)|dv′dvdµ

=
∫ 1

0

∫ ∞

a

[ ∫ ∞

a

r(µ, v, v′)dv
]
|ϕ(µ, v′)|dv′dµ

=
∫ 1

0

∫ ∞

a

σ(µ, v′)|ϕ(µ, v′)|dv′dµ = ‖Sϕ‖1

and
‖Sϕ‖1 =

∫
Ω

σ(µ, v)|ϕ(µ, v)| dµ dv ≤ σ‖ϕ‖1.

Furthermore, we have

〈sgnϕ, (S +R)ϕ〉

=
∫

Ω

sgnϕ(µ, v) (Rϕ(µ, v) + Sϕ(µ, v)) dµ dv

≤
∫ 1

0

∫ ∞

a

[ ∫ ∞

a

r(µ, v, v′)dv
]
|ϕ(µ, v′)|dv′dµ−

∫
Ω

σ(µ, v)|ϕ(µ, v)| dµ dv

=
∫

Ω

σ(µ, v′)|ϕ(µ, v′)| dµ dv′ −
∫

Ω

σ(µ, v)|ϕ(µ, v)| dµ dv

and therefore
〈sgnϕ, (S +R)ϕ〉 ≤ 0.

The proof is complete. �

Let us define the perturbed operators LK and TK as follows
LK := AK + S,

D(LK) = D(AK)
(4.1)

and
TK := LK +R = AK + S +R,

D(TK) = D(AK)
(4.2)

for which we have the following generation results.

Lemma 4.2. Assume (H1) and let K be a bounded operator with ‖K‖L(Y1) < 1.
Then

(1) The operator defined by (4.1) generates, on L1(Ω), a strongly continuous
semigroup (VK(t))t≥0 satisfying

‖VK(t)ϕ‖1 ≤ e−tσ‖ϕ‖1, t ≥ 0, (4.3)

for all ϕ ∈ L1(Ω).
(2) The operator defined by (4.2) generates, on L1(Ω), a strongly continuous

semigroup (WK(t))t≥0 satisfying

‖WK(t)ϕ‖1 ≤ ‖ϕ‖1, t ≥ 0, (4.4)

for all ϕ ∈ L1(Ω).
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Proof. (1). First, LK = AK + S is a bounded linear perturbation of the generator
AK and therefore, Lemma 1.3 implies that LK is a generator of a strongly con-
tinuous semigroup which we denote as (VK(t))t≥0. Next, Trotter’s formula (1.5)
implies

VK(t)ϕ = lim
t→∞

[
e−σt/nUK

( t
n

)]n
ϕ, t ≥ 0, (4.5)

for all ϕ ∈ L1(Ω). By (2.11), we obtain

‖VK(t)ϕ‖1 ≤ lim
t→∞

[
e−σt/n · 1

]n
‖ϕ‖1 ≤ e−tσ‖ϕ‖1 t ≥ 0,

and therefore (4.3) holds.
(2) By the third point of Lemma 2.3, the operator AK generates, on L1(Ω), a

strongly continuous semigroup of contractions. Furthermore, Lemma 4.1 implies
that S +R is a bounded and dissipative operator. As we have, D(AK) ⊂ L1(Ω) =
D(S +R) and

‖(S +R)ϕ‖1 ≤ ‖S +R‖‖ϕ‖1 = 0.‖AKϕ‖1 + ‖S +R‖‖ϕ‖1

for all ϕ ∈ D(AK) then, all conditions of Lemma 1.4 are clearly satisfied. The proof
is complete. �

Lemma 4.3. Assume (H1) and let K be a compact operator with ‖K‖L(Y1) ≥ 1.
(1) The operator defined by (4.1) generates, on L1(Ω), a strongly continuous

semigroup (VK(t))t≥0 satisfying

‖VK(t)ϕ‖1 ≤ e
λ0
a et(λ0−σ)‖ϕ‖1 t ≥ 0, (4.6)

for all ϕ ∈ L1(Ω).
(2) The operator defined by (4.2) generates, on L1(Ω), a strongly continuous

semigroup (WK(t))t≥0.

Proof. (1) Following the proof of Lemma 4.2, it suffices to show (4.6). So, applying
the norm (2.20) to Trotter’s formula (4.5), we obtain

|||VK(t)ϕ|||1 ≤ lim
t→∞

[
e−σt/ne

t
nλ0

]n
|||ϕ|||1 ≤ et(λ0−σ)|||ϕ|||1, t ≥ 0

for all ϕ ∈ L1(Ω), where we have used (2.25). Now, (2.21) completes this part of
the proof.

(2) Clearly, TK = LK +R is a bounded linear perturbation of the generator LK
and therefore, Lemma 1.3 implies that TK is a generator too. The proof is now
complete. �

We can summarize Lemmas 4.2 and 4.3 as follows.

Theorem 4.4. Suppose that (H1) holds and let K be an admissible operator whose
abscissa is ω0.

(1) The operator defined by (4.1) generates, on L1(Ω), a strongly continuous
semigroup (VK(t))t≥0 satisfying

‖VK(t)ϕ‖1 ≤ e
ω0
a et(ω0−σ)‖ϕ‖1 t ≥ 0, (4.7)

for all ϕ ∈ L1(Ω).
(2) The operator defined by (4.2) generates, on L1(Ω), a strongly continuous

semigroup (WK(t))t≥0.

Let us finish this work with the following Remarks
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Remark 4.5. Inequality a > 0 has been used in many places in this work. So the
open question is: What happens when a = 0?

Remark 4.6. According to Theorem 4.4, we can say that the model (1.1)-(1.4)
is well-posed. However, the case corresponding to ‖K‖L(Y1) < 1 in Lemma 4.2 is
biologically uninteresting because the cell density is decreasing. Indeed, for all t
and s with t > s we have

‖WK(t)ϕ‖1 = ‖WK(t− s)WK(s)ϕ‖1 ≤ e−(t−s)σ‖WK(s)ϕ‖1 ≤ ‖WK(s)ϕ‖1

for all initial data ϕ ∈ L1(Ω) . However, the case corresponding to ‖K‖L(Y1) > 1
in Lemma 4.3 means that the cell density is increasing during each mitotic. This
corresponds to the most observed and biologically interesting case for which we ask
the following natural question: What happens when the cell density is increasing?
The answer is given in [4].
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