
Electronic Journal of Differential Equations, Vol. 2010(2010), No. 10, pp. 1–13.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

EXPLICIT ESTIMATES FOR SOME MIXED INTEGRAL
INEQUALITIES

BABURAO G. PACHPATTE

Abstract. The main objective of this paper is to establish explicit estimates
for some mixed integral inequalities, which can be used as tools in the study

of qualitative behavior of solutions to certain integral equations. Discrete

analogues and some applications of one of our results are also given.

1. Introduction

Inequalities with explicit estimates are among the most powerful and widely
used analytic tools in the study of various dynamic systems. They enable us to
obtain valuable information about solutions of equations without the need to know
in advance the solutions explicitly. Extensive surveys of such inequalities may be
found in the monographs [5, 6, 7, 10] and the references cited therein. It is easy
to see that some inequalities with explicit estimates available in the literature are
not directly applicable to study the qualitative properties of solutions of many
dynamical systems. For instance, the integral equation

u(t, x) = f(t, x) +
∫ t

0

∫ s

0

∫ α

0

G(s− τ, x, y)F (τ, y, u(τ, y)) dy dτ ds, (1.1)

for t ∈ [0, T ], x ∈ [0, α], arising in the study of partial differential equations of the
form

utt(t, x)− auxxt(t, x) = F (t, x, u(t, x)), t ∈ [0, T ], x ∈ [0, α], (1.2)
with the initial conditions

u(0, x) = φ(x), ut(0, x) = ψ(x), x ∈ [0, α], (1.3)

and the boundary conditions

u(t, 0) = u(T, α) = 0, t ∈ [0, T ], (1.4)

where G(t, x, y) is the Green’s function for the equation wt(t, x) = awxx(t, x) with
the zero Dirichlet boundary data, a is a positive constant and T > 0, α > 0 are
finite but can be arbitrarily large constants. For more details, see [1, 9]. It seems
that, in the study of certain basic results, equation (1.1) can be dealt with a more
satisfactory manner than dealing directly with (1.2)-(1.4). Indeed, one need a new
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insight to handle the equations like (1.1) for which the available inequalities in the
literature lose their direct applicability.

From the considerations such as above, it is desirable to find explicit estimates
on certain new inequalities which will be equally important to achieve a diversity of
desired goals. Motivated by the desire to widen the scope of the inequalities with
explicit estimates, in the present paper we offer new explicit estimates on some
basic integral inequalities which can be used as tools for handling the equations like
(1.1). Discrete analogues of the main results and some applications to illustrate the
usefulness of one of our results are also given. We hope that our results here will
reveal as a model for future investigations.

2. Statement of Results

Let R be the set of real numbers, N0 = {0, 1, 2, . . . }, R+ = [0,∞), R1 = [1,∞),
B =

∏m
i=1[ci, di] ⊂ Rm, (ci < di), E = R+ × B and ′ denotes the deriva-

tive. For any function u defined on B we denote by
∫

B
u(y) dy the m-fold in-

tegral
∫ d1

c1
. . .

∫ dm

cm
u(y1, . . . , ym) dym . . . dy1. Let Ni[αi, βi] = {αi, αi + 1, . . . , βi}

(αi < βi), αi, βi ∈ N0 for i = 1, 2, . . . ,m, Ω =
∏m

i=1Ni[αi, βi] ⊂ Rm, H = N0 × Ω
and for any function z defined on N0 we define the operator ∆ by ∆z(n) =
z(n+ 1)− z(n). For any function Ω we define the m-fold sum over Ω by

∑
Ω

w(y) =
β1∑

y1=α1

· · ·
βm∑

ym=αm

w(y1, . . . , ym).

Clearly
∑

Ω w(y) =
∑

Ω w(x) for x, y ∈ Ω. We denote by C(S1, S2) and D(S1, S2)
respectively the class of continuous and discrete functions from the set S1 to the
set S2. We use the usual conventions that empty sums and products are taken to
be 0 and 1 respectively and assume that all integrals, sums and products involved
exist and are finite.

Our main results are given in the following theorem.

Theorem 2.1. Let u, p, q, f ∈ C(E,R+) and c ≥ 0 be a constant.
(A1) Let L ∈ C(E × R+,R+) be such that

0 ≤ L(t, x, u)− L(t, x, v) ≤M(t, x, v)(u− v), (2.1)

for u ≥ v ≥ 0, where M ∈ C(E × R+,R+). If

u(t, x) ≤ p(t, x) + q(t, x)
∫ t

0

∫ s

0

∫
B

L(τ, y, u(τ, y)) dy dτ ds, (2.2)

for (t, x) ∈ E, then for (t, x) ∈ E,

u(t, x) ≤ p(t, x) + q(t, x)
(∫ t

0

∫ s

0

∫
B

L(τ, y, p(τ, y)) dy dτ ds
)

× exp
(∫ t

0

∫ s

0

∫
B

M(τ, y, p(τ, y))q(τ, y) dy dτ ds
)
.

(2.3)

(A2) Let g ∈ C(R+,R+) be a nondecreasing function, g(u) > 0 on (0,∞). If

u(t, x) ≤ c+
∫ t

0

∫ s

0

∫
B

f(τ, y)g(u(τ, y)) dy dτ ds, (2.4)
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for (t, x) ∈ E, then for 0 ≤ t ≤ t1; t, t1 ∈ R+, x ∈ B,

u(t, x) ≤W−1
[
W (c) +

∫ t

0

∫ s

0

∫
B

f(τ, y) dy dτ ds
]
, (2.5)

where

W (r) =
∫ r

r0

dσ

g(σ)
, r > 0, (2.6)

r0 > 0 is arbitrary and W−1 is the inverse of W and t1 ∈ R+ is chosen so that

W (c) +
∫ t

0

∫ s

0

∫
B

f(τ, y) dy dτ ds ∈ Dom(W−1),

for all t ∈ R+ lying in 0 ≤ t ≤ t1 and x ∈ B.
(A3) If

u2(t, x) ≤ c+
∫ t

0

∫ s

0

∫
B

f(τ, y)u(τ, y) dy dτ ds, (2.7)

for (t, x) ∈ E, then

u(t, x) ≤
√
c+

1
2

∫ t

0

∫ s

0

∫
B

f(τ, y) dy dτ ds, (2.8)

for (t, x) ∈ E.
(A4) Let g(u) be as in part (A2). If

u2(t, x) ≤ c+
∫ t

0

∫ s

0

∫
B

f(τ, y)u(τ, y)g(u(τ, y)) dy dτ ds, (2.9)

for (t, x) ∈ E, then for 0 ≤ t ≤ t2; t, t2 ∈ R+, x ∈ B,

u(t, x) ≤W−1
[
W (

√
c) +

1
2

∫ t

0

∫ s

0

∫
B

f(τ, y) dy dτ ds
]
, (2.10)

where W,W−1 are as in part (A2) and t2 ∈ R+ is chosen so that

W (
√
c) +

1
2

∫ t

0

∫ s

0

∫
B

f(τ, y) dy dτ ds ∈ Dom(W−1),

for all t ∈ R+ lying in 0 ≤ t ≤ t2 and x ∈ B.
(A5) Suppose that u ∈ C(E,R1), c ≥ 1. If

u(t, x) ≤ c+
∫ t

0

∫ s

0

∫
B

f(τ, y)u(τ, y) log u(τ, y) dy dτ ds, (2.11)

for (t, x) ∈ E, then

u(t, x) ≤ cexp
(R t

0

R s
0

R
B

f(τ,y) dy dτ ds
)
, (2.12)

for (t, x) ∈ E.
(A6) Let u ∈ C(E,R1), c ≥ 1 and g(u) be as in (A2). If

u(t, x) ≤ c+
∫ t

0

∫ s

0

∫
B

f(τ, y)u(τ, y)g(log u(τ, y)) dy dτ ds, (2.13)

for (t, x) ∈ E, then for 0 ≤ t ≤ t3; t, t3 ∈ R+, x ∈ B,

u(t, x) ≤ exp
(
W−1

[
W (log c) +

∫ t

0

∫ s

0

∫
B

f(τ, y) dy dτ ds
])
, (2.14)
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where W , W−1 are as in part (A2) and t3 ∈ R+ be chosen so that

W (log c) +
∫ t

0

∫ s

0

∫
B

f(τ, y) dy dτ ds ∈ Dom(W−1),

for all t ∈ R+ lying in the interval 0 ≤ t ≤ t3 and x ∈ B.

The discrete analogues of the inequalities in Theorem 2.1 are given as follows.

Theorem 2.2. Let u, p, q, f ∈ D(H,R+) and c ≥ 0 is a constant.
(B1) Let L ∈ D(H × R+,R+) be such that

0 ≤ L(n, x, u)− L(n, x, v) ≤M(n, x, v)(u− v), (2.15)

for u ≥ v ≥ 0, where M ∈ D(H × R+,R+). If

u(n, x) ≤ p(n, x) + q(n, x)
n−1∑
s=0

s−1∑
τ=0

∑
Ω

L(τ, y, u(τ, y)), (2.16)

for (n, x) ∈ H, then for (n, x) ∈ H,

u(n, x) ≤ p(n, x) + q(n, x)
(n−1∑

s=0

s−1∑
τ=0

∑
Ω

L(τ, y, p(τ, y))
)

×
n−1∏
s=0

[
1 +

s−1∑
τ=0

∑
Ω

M(τ, y, p(τ, y))q(τ, y)
]
.

(2.17)

(B2) Let g(u) be as in Theorem 2.1 part (A2). If

u(n, x) ≤ c+
n−1∑
s=0

s−1∑
τ=0

∑
Ω

f(τ, y)g(u(τ, y)), (2.18)

for (n, x) ∈ H, then for 0 ≤ n ≤ n1; n, n1 ∈ N0, x ∈ Ω,

u(n, x) ≤W−1
[
W (c) +

n−1∑
s=0

s−1∑
τ=0

∑
Ω

f(τ, y)
]
, (2.19)

where W , W−1 are as in Theorem 2.1 part (A2) and n1 ∈ N0 be chosen so that

W (c) +
n−1∑
s=0

s−1∑
τ=0

∑
Ω

f(τ, y) ∈ Dom(W−1),

for all n ∈ N0 lying in 0 ≤ n ≤ n1 and x ∈ Ω.
(B3) If

u2(n, x) ≤ c+
n−1∑
s=0

s−1∑
τ=0

∑
Ω

f(τ, y)u(τ, y), (2.20)

for (n, x) ∈ H, then

u(n, x) ≤
√
c+

1
2

n−1∑
s=0

s−1∑
τ=0

∑
Ω

f(τ, y), (2.21)

for (n, x) ∈ H.
(B4) Let g(u) be as in Theorem 2.1 part (A2). If

u2(n, x) ≤ c+
n−1∑
s=0

s−1∑
τ=0

∑
Ω

f(τ, y)u(τ, y)g(u(τ, y)), (2.22)
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for (n, x) ∈ H, then for 0 ≤ n ≤ n2; n, n2 ∈ N0, x ∈ Ω,

u(n, x) ≤W−1[W (
√
c) +

1
2

n−1∑
s=0

s−1∑
τ=0

∑
Ω

f(τ, y)], (2.23)

where W , W−1 are as in Theorem 2.1 part (A2) and n2 ∈ N0 be chosen so that

W (
√
c) +

1
2

n−1∑
s=0

s−1∑
τ=0

∑
Ω

f(τ, y) ∈ Dom(W−1),

for all n ∈ N0 lying in 0 ≤ n ≤ n2 and x ∈ Ω.
(B5) Suppose that u ∈ D(H,R1), c ≥ 1. If

u(n, x) ≤ c+
n−1∑
s=0

s−1∑
τ=0

∑
Ω

f(τ, y)u(τ, y) log u(τ, y), (2.24)

for (n, x) ∈ H, then

u(n, x) ≤ c
Qn−1

s=0 [1+
Ps−1

τ=0
P

Ω f(τ,y)], (2.25)

for (n, x) ∈ H.
(B6) Let u ∈ D(H,R1), c ≥ 1 and g(u) be as in Theorem 2.1 part (A2). If

u(n, x) ≤ c+
n−1∑
s=0

s−1∑
τ=0

∑
Ω

f(τ, y)u(τ, y)g(log u(τ, y)), (2.26)

for (n, x) ∈ H, then for 0 ≤ n ≤ n3; n, n3 ∈ N0, x ∈ Ω,

u(n, x) ≤ exp(W−1[W (log c) +
n−1∑
s=0

s−1∑
τ=0

∑
Ω

f(τ, y)]), (2.27)

where W , W−1 are as in Theorem 2.1 part (A2) and n3 ∈ N0 is chosen so that

W (log c) +
n−1∑
s=0

s−1∑
τ=0

∑
Ω

f(τ, y) ∈ Dom(W−1),

for all n ∈ N0 lying in 0 ≤ n ≤ n3 and x ∈ Ω.

Remark 2.3. We note that the inequalities given in Theorems 2.1 and 2.2 can
be considered as new variants of the similar inequalities given in [5, 6, 7] and they
can be used as tools in certain situations in which the earlier inequalities are not
directly applicable.

3. Proofs of Theorems 2.1 and 2.2

The proofs resemble one another, we give the details for (A1)–(A4) and (B5)–
(B6) only. The proofs of (A5), (A6) and (B1)–(B4) can be completed by following
the proofs of the above noted inequalities and closely looking at the similar results
given in [5, 6]. To prove (A1)–(A4), it is sufficient to assume that c > 0, since the
standard limiting argument can be used to treat the remaining case, see [5, p. 108].

Prof of (A1). Setting

e(τ) =
∫

B

L(τ, y, u(τ, y)) dy, (3.1)
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the inequality (2.2) can be restated as

u(t, x) ≤ p(t, x) + q(t, x)
∫ t

0

∫ s

0

e(τ) dτ ds. (3.2)

Define

z(t) =
∫ t

0

∫ s

0

e(τ) dτ ds, (3.3)

then, it is easy to see that z(0) = 0, z′(0) = 0 and

u(t, x) ≤ p(t, x) + q(t, x)z(t). (3.4)

From (3.3), (3.1), (3.4) and (2.1), we observe that

z′′(t) = e(t) =
∫

B

L(t, y, u(t, y)) dy

≤
∫

B

{L(t, y, p(t, y) + q(t, y)z(t))− L(t, y, p(t, y))} dy +
∫

B

L(t, y, p(t, y)) dy

≤ z(t)
∫

B

M(t, y, p(t, y))q(t, y) dy +
∫

B

L(t, y, p(t, y)) dy.

(3.5)
From (3.5) and using the fact that z(t) is nondecreasing in t ∈ R+, it is easy to see
that

z(t) ≤
∫ t

0

∫ s

0

∫
B

L(τ, y, p(τ, y)) dy dτ ds

+
∫ t

0

z(s)
{∫ s

0

∫
B

M(τ, y, p(τ, y))q(τ, y) dy dτ
}
ds.

(3.6)

Clearly, the first term on the right hand side in (3.6) is nonnegative and nonde-
creasing in t ∈ R+. Now a suitable application of the inequality in [5, Theorem
1.3.1] to (3.6) yields

z(t) ≤
( ∫ t

0

∫ s

0

∫
B

L(τ, y, p(τ, y)) dy dτ ds
)

× exp
( ∫ t

0

∫ s

0

∫
B

M(τ, y, p(τ, y))q(τ, y) dy dτ ds
)
.

(3.7)

Using (3.7) in (3.4), we get the required inequality in (2.3).
Proof of (A2). Setting

ē(τ) =
∫

B

f(τ, y)g(u(τ, y)) dy, (3.8)

the inequality (2.4) can be restated as

u(t, x) ≤ c+
∫ t

0

∫ s

0

ē(τ) dτ ds. (3.9)

Defining z(t) by the right hand side of (3.9) and following the proof part (A1) given
above, we get

z′′(t) = ē(t) =
∫

B

f(t, y)g(u(t, y)) dy ≤ g(z(t))
∫

B

f(t, y) dy. (3.10)
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From (3.10) and using the fact that z(t) is nondecreasing in t ∈ R+, it is easy to
see that

z(t) ≤ c+
∫ t

0

g(z(s))
{∫ s

0

∫
B

f(τ, y) dy dτ
}
ds. (3.11)

Now a suitable application of the inequality in [5, Theorem 2.3.1] to (3.11) yields

z(t) ≤W−1[W (c) +
∫ t

0

∫ s

0

∫
B

f(τ, y) dy dτ ds]. (3.12)

Using (3.12) in u(t, x) ≤ z(t), we get the required inequality in (2.5).
Proof of (A3). Setting

E(τ) =
∫

B

f(τ, y)u(τ, y) dy, (3.13)

the inequality (2.7) can be restated as

u2(t, x) ≤ c+
∫ t

0

∫ s

0

E(τ) dτ ds. (3.14)

Define z(t) by the right hand side of (3.14), then z(0) = c, z′(0) = 0 and u(t, x) ≤√
z(t). Following the proof of part (A1), we get

z′′(t) = E(t) =
∫

B

f(t, y)u(t, y) dy ≤
√
z(t)

∫
B

f(t, y) dy. (3.15)

By taking t = τ in (3.15) and integrating it over τ from 0 to t and using the fact
that z(t) is nondecreasing in t ∈ R+, we get

z′(t) ≤
√
z(t)

∫ t

0

∫
B

f(τ, y) dy dτ. (3.16)

The inequality (3.16) implies (see [5, p. 233])√
z(t) ≤

√
c+

1
2

∫ t

0

∫ s

0

∫
B

f(τ, y) dy dτ ds. (3.17)

The required inequality in (2.8) follows by using (3.17) in u(t, x) ≤
√
z(t).

Proof of (A4). Setting

Ē(τ) =
∫

B

f(τ, y)u(τ, y)g(u(τ, y)) dy, (3.18)

the inequality (2.9) can be restated as

u2(t, x) ≤ c+
∫ t

0

∫ s

0

Ē(τ) dτ ds. (3.19)

Defining z(t) by the right hand side of (3.19) and following the proof of part (A1),
we get

z′′(t) = Ē(t) ≤
√
z(t)g(

√
z(t))

∫
B

f(t, y) dy, (3.20)

from which, it is easy to observe that

z′(t)√
z(t)

≤ g(
√
z(t))

∫ t

0

∫
B

f(t, y) dy. (3.21)
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From (3.21), we get√
z(t) ≤

√
c+

1
2

∫ t

0

g(
√
z(s))

{∫ s

0

∫
B

f(τ, y) dy dτ
}
ds. (3.22)

Now a suitable application of the inequality in [5, Theorem 2.3.1] to (3.22) yields√
z(t) ≤W−1

[
W (

√
c) +

1
2

∫ t

0

∫ s

0

∫
B

f(τ, y) dy dτ ds
]
. (3.23)

Using (3.23) in u(t, x) ≤
√
z(t), we get (2.10).

Proof of (B5). Setting

r(τ) =
∑
Ω

f(τ, y)u(τ, y) log u(τ, y), (3.24)

the inequality (2.24) can be restated as

u(n, x) ≤ c+
n−1∑
s=0

s−1∑
τ=0

r(τ). (3.25)

Define

z(n) = c+
n−1∑
s=0

s−1∑
τ=0

r(τ), (3.26)

then z(0) = c,∆z(0) = 0 and

u(n, x) ≤ z(n). (3.27)

From (3.26), (3.24), (3.27), we observe that

∆2z(n) = r(n) =
∑
Ω

f(n, y)u(n, y) log u(n, y) ≤ z(n) log z(n)
∑
Ω

f(n, y). (3.28)

From the above inequality and using the fact that z(n) is nondecreasing in n ∈ N0,
we get

∆z(n) ≤
n−1∑
τ=0

z(τ) log z(τ)
∑
Ω

f(τ, y) ≤ z(n){log z(n)
n−1∑
τ=0

∑
Ω

f(τ, y)}. (3.29)

Now a suitable application of the inequality in [6, Theorem 1.2.1] to (3.29) yields

z(n) ≤ c
n−1∏
s=0

[1 + log z(s)
s−1∑
τ=0

∑
Ω

f(τ, y)]

≤ c exp(
n−1∑
s=0

log z(s)
s−1∑
τ=0

∑
Ω

f(τ, y)).

(3.30)

From (3.30), we observe that

log z(n) ≤ log c+
n−1∑
s=0

log z(s)
s−1∑
τ=0

∑
Ω

f(τ, y). (3.31)

Now an application of the inequality in [6, Theorem 1.2.2] to (3.31) yields

log z(n) ≤ (log c)
n−1∏
s=0

[1 +
s−1∑
τ=0

∑
Ω

f(τ, y)] = log c
Qn−1

s=0 [1+
Ps−1

τ=0
P

Ω f(τ,y)]. (3.32)
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From (3.32), we observe that

z(n) ≤ c
Qn−1

s=0

[
1+

Ps−1
τ=0

P
Ω f(τ,y)

]
. (3.33)

Using (3.33) in (3.27), we get the required inequality in (2.25).
Proof of (B6). The proof can be completed by setting

r̄(τ) =
∑
Ω

f(τ, y)u(τ, y)g(log u(τ, y)), (3.34)

and following the proof of (B5) and closely looking at the proof of the inequality
in [6, Theorem 3.5.3]. Here, we omit the details.

4. Some applications

Inspired by equation (1.1), we consider the general integral equation

u(t, x) = h(t, x) +
∫ t

0

∫ s

0

∫
B

F (t, x, τ, y, u(τ, y)) dy dτ ds, (4.1)

where h, F are given functions and u is the unknown function to be found. We
assume that h ∈ C(E,R), F ∈ C(E2 ×R,R). The problem of existence of solu-
tions for (4.1) can be dealt with the method employed in [8], see also [1, 2, 3, 4, 10]
for similar results. In this section, by using a particular case of the inequality in
Theorem 2.1 part (A1), we offer the conditions for the error evaluation of approx-
imate solutions of equation (4.1) by establishing some new estimates on solutions
of approximate problems. We also study the dependency of solutions of equations
of the form (4.1) on parameters.

We use the following special form of the inequality in Theorem 2.1 part (A1)
when L(t, x, u) = f(t, x)u in the proofs of our results.

Corollary 4.1. Let u, p, q, f ∈ C(E,R). If

u(t, x) ≤ p(t, x) + q(t, x)
∫ t

0

∫ s

0

∫
B

f(τ, y)u(τ, y) dy dτ ds, (4.2)

for (t, x) ∈ E, then for (t, x) ∈ E,

u(t, x) ≤ p(t, x) + q(t, x)
(∫ t

0

∫ s

0

∫
B

f(τ, y)p(τ, y) dy dτ ds
)

× exp
(∫ t

0

∫ s

0

∫
B

f(τ, y)q(τ, y) dy dτ ds
)
.

(4.3)

We call the function u ∈ C(E,R) an ε-approximate solution to (4.1) if there
exists a constant ε ≥ 0 such that∣∣∣u(t, x)− {

h(t, x) +
∫ t

0

∫ s

0

∫
B

F (t, x, τ, y, u(τ, y)) dy dτ ds
}∣∣∣ ≤ ε, (4.4)

for (t, x) ∈ E.
The following theorem deals with the estimate on the difference between the two

approximate solutions of (4.1).

Theorem 4.2. Let ui(t, x)(i = 1, 2) be respectively εi-approximate solutions of
(4.1) on E. Suppose that the function F in equation (4.1) satisfies the condition

|F (t, x, τ, y, u)− F (t, x, τ, y, v)| ≤ q(t, x)f(τ, y)|u− v|, (4.5)
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where q, f ∈ C(E,R+). Then

|u1(t, x)− u2(t, x)| ≤ (ε1 + ε2)
[
1 + q(t, x)

(∫ t

0

∫ s

0

∫
B

f(τ, y) dy dτ ds
)

× exp
(∫ t

0

∫ s

0

∫
B

f(τ, y)q(τ, y) dy dτ ds
)]
,

(4.6)

for (t, x) ∈ E.

Proof. Since ui(t, x)(i = 1, 2) for (t, x) ∈ E are respectively εi-approximate solu-
tions of (4.1), we have∣∣∣ui(t, x)−

{
h(t, x) +

∫ t

0

∫ s

0

∫
B

F (t, x, τ, y, ui(τ, y)) dy dτ ds
}∣∣∣ ≤ εi. (4.7)

From (4.7) and using the elementary inequalities,

|v − z| ≤ |v|+ |z|, |v| − |z| ≤ |v − z|, (4.8)

we observe that

ε1 + ε2 ≥
∣∣∣u1(t, x)−

{
h(t, x) +

∫ t

0

∫ s

0

∫
B

F (t, x, τ, y, u1(τ, y)) dy dτ ds
}∣∣∣

+
∣∣∣u2(t, x)−

{
h(t, x) +

∫ t

0

∫ s

0

∫
B

F (t, x, τ, y, u2(τ, y)) dy dτ ds
}∣∣∣

≥
∣∣∣{u1(t, x)−

{
h(t, x) +

∫ t

0

∫ s

0

∫
B

F (t, x, τ, y, u1(τ, y)) dy dτ ds
}}

−
{
u2(t, x)−

{
h(t, x) +

∫ t

0

∫ s

0

∫
B

F (t, x, τ, y, u2(τ, y)) dy dτ ds
}}∣∣∣

≥ |u1(t, x)− u2(t, x)| −
∣∣∣ ∫ t

0

∫ s

0

∫
B

{
F (t, x, τ, y, u1(τ, y))

− F (t, x, τ, y, u2(τ, y))
}
dy dτ ds

∣∣∣.
(4.9)

Let w(t, x) = |u1(t, x)− u2(t, x)|, (t, x) ∈ E. From (4.9) and using (4.5), we observe
that

w(t, x)

≤ (ε1 + ε2) +
∫ t

0

∫ s

0

∫
B

|F (t, x, τ, y, u1(τ, y))− F (t, x, τ, y, u2(τ, y))| dy dτ ds

≤ (ε1 + ε2) + q(t, x)
∫ t

0

∫ s

0

∫
B

f(τ, y)w(τ, y) dy dτ ds.

(4.10)
Now an application of Corollary 4.1 yields (4.6). �

Remark 4.3. When u1(t, x) is a solution of (4.1), we have ε1 = 0 and from (4.6),
we see that u2(t, x) → u1(t, x) as ε2 → 0. Furthermore, if we put ε1 = ε2 = 0 in
(4.6), then the uniqueness of solutions of (4.1) is established.

Consider the equation (4.1) with

v(t, x) = h̄(t, x) +
∫ t

0

∫ s

0

∫
B

F̄ (t, x, τ, y, v(τ, y)) dy dτ ds, (4.11)
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where h̄ ∈ C(E,R), F̄ ∈ C(E2 ×R,R).

In the next theorem we provide conditions concerning the closeness of solutions
of (4.1) and (4.11).

Theorem 4.4. Suppose that F in equation (4.1) satisfies (4.5) and there exist
constants δi ≥ 0 (i = 1, 2) such that

|h(t, x)− h̄(t, x)| ≤ δ1, (4.12)∫ t

0

∫ s

0

∫
B

∣∣F (t, x, τ, y, z)− F̄ (t, x, τ, y, z)
∣∣ dy dτ ds ≤ δ2, (4.13)

where F, h and F̄ , h̄ are given as in (4.1) and (4.11). Let u(t, x) and v(t, x), for
(t, x) ∈ E, be solutions of (4.1) and (4.11), respectively. Then for (t, x) ∈ E,

|u(t, x)− v(t, x)| ≤ (δ1 + δ2)
[
1 + q(t, x)

∫ t

0

∫ s

0

∫
B

f(τ, y) dy dτ ds

× exp
(∫ t

0

∫ s

0

∫
B

f(τ, y)q(τ, y) dy dτ ds
)]
.

(4.14)

Proof. Let r(t, x) = |u(t, x)− v(t, x)|, (t, x) ∈ E. Using the facts that u(t, x), v(t, x)
are solutions of equations (4.1), (4.11) and the hypotheses, we have

r(t, x) ≤
∣∣h(t, x)− h̄(t, x)

∣∣
+

∫ t

0

∫ s

0

∫
B

|F (t, x, τ, y, u(τ, y))− F (t, x, τ, y, v(τ, y))| dy dτ ds

+
∫ t

0

∫ s

0

∫
B

|F (t, x, τ, y, v(τ, y))− F̄ (t, x, τ, y, v(τ, y))| dy dτ ds

≤ (δ1 + δ2) + q(t, x)
∫ t

0

∫ s

0

∫
B

f(τ, y)r(τ, y) dy dτ ds.

(4.15)

Now an application of Corollary 4.1 yields (4.14). �

Remark 4.5. The result given in Theorem 4.4 relates the solutions of (4.1) and
(4.11) in the sense that if F is close to F̄ and h is close to h̄, then the solutions of
(4.1) and of (4.11) are also close to each other.

A slight variation of Theorem 4.4 is embodied in the following theorem.

Theorem 4.6. Suppose that F and F̄ in (4.1) and (4.11) satisfy the condition∣∣F (t, x, τ, y, u)− F̄ (t, x, τ, y, v)
∣∣ ≤ q̄(t, x)f̄(τ, y)|u− v|, (4.16)

where q̄, f̄ ∈ C(E,R+) and (4.12) holds. Let u(t, x) and v(t, x) be solutions of (4.1)
and (4.11), respectively, on E. Then for (t, x) ∈ E,

|u(t, x)− v(t, x)| ≤ δ1

[
1 + q̄(t, x)

(∫ t

0

∫ s

0

∫
B

f̄(τ, y) dy dτ ds
)

× exp
(∫ t

0

∫ s

0

∫
B

f̄(τ, y)q̄(τ, y) dy dτ ds
)]
.

(4.17)
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The proof of the above theorem is similar to that of Theorem 4.4, with suitable
modifications, and hence we omit the details.
We next consider the equations

u(t, x) = h(t, x) +
∫ t

0

∫ s

0

∫
B

F (t, x, τ, y, u(τ, y), µ) dy dτ ds, (4.18)

u(t, x) = h(t, x) +
∫ t

0

∫ s

0

∫
B

F (t, x, τ, y, u(τ, y), µ0) dy dτ ds, (4.19)

for (t, x) ∈ E, where h ∈ C(E,R), F ∈ C(E ×R×R,R) and µ, µ0 are parameters.
The following theorem shows the dependency of solutions of (4.18) and (4.19) on
parameters.

Theorem 4.7. Suppose that F in (4.18), (4.19) satisfies the conditions

|F (t, x, τ, y, u, µ)− F (t, x, τ, y, ū, µ)| ≤ q0(t, x)f0(τ, y)|u− ū|, (4.20)

|F (t, x, τ, y, u, µ)− F (t, x, τ, y, u, µ0)| ≤ N |µ− µ0|, (4.21)

where q0, f0 ∈ C(E,R+) and N ≥ 0 is a constant. Let u1(t, x) and u2(t, x) be the
solutions of (4.18) and (4.19) respectively. Then for (t, x) ∈ E,

|u1(t, x)− u2(t, x)| ≤ N |µ− µ0|
[
1 + q0(t, x)

(∫ t

0

∫ s

0

∫
B

f0(τ, y) dy dτ ds
)

× exp
(∫ t

0

∫ s

0

∫
B

f0(τ, y)q0(τ, y) dy dτ ds
)]
.

(4.22)

Proof. Let z(t, x) = |u1(t, x)− u2(t, x)|, (t, x) ∈ E. Using the facts that u1(t, x)
and u2(t, x) are respectively the solutions of (4.18) and (4.19), and the hypotheses,
we have

z(t, x) ≤
∫ t

0

∫ s

0

∫
B

|F (t, x, τ, y, u1(τ, y), µ)− F (t, x, τ, y, u2(τ, y), µ)| dy dτ ds

+
∫ t

0

∫ s

0

∫
B

|F (t, x, τ, y, u2(τ, y), µ)− F (t, x, τ, y, u2(τ, y), µ0)| dy dτ ds

≤ N |µ− µ0|+ q0(t, x)
∫ t

0

∫ s

0

∫
B

f0(τ, y)z(τ, y) dy dτ ds.

(4.23)
Now an application of Corollary 4.1 yields (4.22), which shows the dependency of
solutions of (4.18) and (4.9) on parameters. �

Remark 4.8. We can use the special version of the inequality in Theorem 2.2 part
(B1) (as in Corollary 4.1) to establish results similar to those given above for the
solutions of sum-difference equation of the form

u(n, x) = h(n, x) +
n−1∑
s=0

s−1∑
τ=0

∑
Ω

F (n, x, τ, y, u(τ, y)), (4.24)

where h ∈ D(H,R), F ∈ D(H2 ×R,R). We also note that, many generalizations,
extensions, variants and applications of the inequalities given in this paper are
possible. However, we shall not pursue the detailed treatment here.
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