Electron. J. Diff. Equ., Vol. 2010(2010), No. 02, pp. 1-10.

Optimization in problems involving the p-Laplacian

Monica Marras

Abstract:
We minimize the energy integral $\int_\Omega |\nabla u|^p\,dx$, where $g$ is a bounded positive function that varies in a class of rearrangements, $p>1$, and $u$ is a solution of
$$\displaylines{
 -\Delta_p u=g \quad\hbox{in } \Omega\cr
 u=0\quad \hbox{on } \partial\Omega\,.
 }$$
Also we maximize the first eigenvalue $\lambda=\lambda_g$, where
$$
 -\Delta_p u=\lambda g u^{p-1}\quad\hbox{in }\Omega\,.
 $$
For both problems, we prove existence, uniqueness, and representation of the optimizers.

Submitted November 2, 2009. Published January 5, 2010.
Math Subject Classifications: 35J25, 49K20, 47A75.
Key Words: p-Laplacian; energy integral; eigenvalues; rearrangements; shape optimization

Show me the PDF file (219 KB), TEX file, and other files for this article.

Monica Marras
Dipartimento di Matematica e Informatica
Universitá di Cagliari
Via Ospedale 72, 09124 Cagliari, Italy
email: mmarras@unica.it

Return to the EJDE web page