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EXISTENCE OF SOLUTIONS FOR SECOND-ORDER
DIFFERENTIAL EQUATIONS AND SYSTEMS ON INFINITE

INTERVALS

TOUFIK MOUSSAOUI, RADU PRECUP

Abstract. We study the existence of nontrivial solutions to the boundary-
value problem

−u′′ + cu′ + λu = f(x, u), −∞ < x < +∞,

u(−∞) = u(+∞) = 0

and to the system

−u′′ + c1u′ + λ1u = f(x, u, v), −∞ < x < +∞,

−v′′ + c2v′ + λ2v = g(x, u, v), −∞ < x < +∞,

u(−∞) = u(+∞) = 0, v(−∞) = v(+∞) = 0,

where c, c1, c2, λ, λ1, λ2 are real positive constants and the nonlinearities f and

g satisfy suitable conditions. The proofs are based on fixed point theorems.

1. Introduction

In this article, we consider the existence of nontrivial solutions to the boundary-
value problem

−u′′ + cu′ + λu = f(x, u), −∞ < x < +∞,

u(−∞) = u(+∞) = 0
(1.1)

and to the system

−u′′ + c1u
′ + λ1u = f(x, u, v), −∞ < x < +∞.

−v′′ + c2v
′ + λ2v = g(x, u, v), −∞ < x < +∞.

u(−∞) = u(+∞) = 0, v(−∞) = v(+∞) = 0.

(1.2)

Here c, c1, c2, λ, λ1, λ2 are positive numbers.
By a solution of Problem (1.1) we mean a function u ∈ C1(R,R) satisfying

(1.1) and by a solution of Problem (1.2) we mean a vector-valued function (u, v) ∈
C1(R,R2) := C1(R,R)× C1(R,R) satisfying (1.2).

Some of the ideas used in this paper are motivated by Djebali and Moussaoui
[1, 2] and Djebali and Mebarki [3].
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In [1], the authors study the boundary value problem (1.1). According to the
behavior of the nonlinear source term, existence results of bounded solutions, pos-
itive solutions, classical as well as weak solutions are provided. They mainly use
fixed point arguments.

Under some relations upon the real parameters and coefficients, the authors in
[2] present some existence and nonexistence results for Problem (1.1). They use a
variational method and fixed point arguments.

In [3], the authors study existence of positive nontrivial solutions for a boundary
value problem on the positive half-line arising from epidemiology. They mainly use
the fixed point theorem of cone expansion and compression of functional type.

In this paper, we study existence of nontrivial solutions for both Problems (1.1)
and (1.2). Our arguments are based on fixed point theory. So, let us recall for the
sake of completeness, Krasnosel’sk’ii-Zabreiko’s and Schauder’s fixed point theo-
rems:

Theorem 1.1 ([4]). Let (E, ‖.‖) be a Banach space, and T : E → E be completely
continuous. Assume that A : E → E is a bounded linear operator such that 1 is not
an eigenvalue of A and

lim
‖u‖→∞

‖Tu−Au‖
‖u‖

= 0.

Then T has a fixed point in E.

Theorem 1.2 ([5]). Let E be a Banach space and K ⊂ E a nonempty, bounded,
closed and convex subset of E. Let T : K → K be a completely continuous operator.
Then T has a fixed point in K.

In what follows, C0(R,R) stands for the Banach space of continuous functions
defined on the real line and vanishing at infinity, endowed with the sup-norm

‖u‖0 = sup
x∈R

|u(x)|.

Recall that L1(R,R) is the Banach space of integrable functions on R endowed with
norm

|u|1 =
∫ +∞

−∞
|u(s)| ds.

In the sequel, we put

k =
√
c2 + 4λ, k1 =

√
c21 + 4λ1, k2 =

√
c22 + 4λ2.

This paper is organized as follows. In Section 2, we state the main result con-
cerning the existence of solutions for the boundary value problem (1.1) (Theorem
2.1) by using the fixed point theorem of Krasnosel’sk’ii-Zabreiko. In Section 3, we
generalize the result obtained in Section 2 to systems of differential equations by
using the same technique (Theorem 3.1). In Section 4, we present two other results
concerning Problem (1.2) by using Schauder’s fixed point theorem (Theorem 4.1
and Theorem 4.2). Finally, in the last section, we give some examples to illustrate
our results.
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2. Existence result for a generalized Fisher-like equation

In this section, we study the boundary-value problem

−u′′ + cu′ + λu = p(x)f(u), −∞ < x < +∞,

u(−∞) = u(+∞) = 0
(2.1)

where p ∈ L1(R,R+) and f : R → R is a continuous function with f(0) 6= 0. Our
main result in this section is the following theorem.

Theorem 2.1. Assume that

lim
u→∞

f(u)
u

= f∞ with |f∞| <
k

|p|1
. (2.2)

Then Problem (2.1) has at least one nontrivial solution u ∈ C0(R,R).

Proof. It is clear that Problem (2.1) is equivalent to the integral equation

u(x) =
∫ +∞

−∞
G(x, s)p(s)f(u(s)) ds

with the Green function

G(x, s) =
1

ρ1 − ρ2

{
eρ1(x−s) if x ≤ s

eρ2(x−s) if x ≥ s

and characteristic roots

ρ1 =
c+

√
c2 + 4λ
2

, ρ2 =
c−

√
c2 + 4λ
2

.

Notice that
0 < G(x, s) ≤ 1

k
for all x, s ∈ R.

Define the mapping T : C0(R,R) → C0(R,R) by

Tu(x) =
∫ +∞

−∞
G(x, s)p(s)f(u(s)) ds.

In view of Krasnosel’sk’ii-Zabreiko’s fixed point theorem, we look for fixed points
of the operator T in the Banach space C0(R,R). The proof is split into four steps.

Claim 1: The mapping T is well defined; indeed, for any u ∈ C0(R,R), by
Assumption (2.2), we obtain the following estimates:

|Tu(x)| ≤
∫ +∞

−∞
G(x, s)|p(s)f(u(s))| ds ≤ 1

k
|p|1 max

|y|≤‖u‖0
|f(y)|.

The convergence of the integral defining (Tu)(x) is then established. In addition
for any s ∈ R, G(±∞, s) = 0, and then, taking the limit in (Tu)(x), we obtain
Tu(±∞) = 0. Therefore, the mapping T : C0(R,R) → C0(R,R) is well defined.

Claim 2: The operator T is continuous. Let (un)n ⊂ C0(R,R) be a sequence
which converges uniformly to u0 on each compact subinterval of R. For some fixed
a > 0, we will prove the uniform convergence of (Tun)n to Tu0 on the interval
[−a, a]. Let ε > 0 and choose some b > a large enough. By the uniform convergence
of the sequence (un)n on [−b, b], there exists an integer N = N(ε, b) satisfying

I1 := sup
x∈R

∫ +b

−b

G(x, s)|p(s)||f(un(s))− f(u0(s))| ds <
ε

2
for all n ≥ N.
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For x ∈ [−a, a], we have that |(Tun)(x)− (Tu0)(x)| ≤ I1 + I2 + I3, where

I2 := sup
x∈R

∫
R−[−b,+b]

G(x, s)|p(s)f(u0(s))| ds ≤
ε

4

(by the Cauchy Convergence Criterion and lim|s|→+∞ p(s)f(u0(s)) = 0),

I3 := sup
x∈R

∫
R−[−b,+b]

G(x, s)|p(s)f(un(s))| ds ≤ ε

4

(by the Lebesgue Dominated Convergence Theorem). This proves the uniform
convergence of the sequence (Tun)n to Tu0 on [−a, a].

Claim 3: For any M > 0, the set {Tu, ‖u‖0 ≤ M} is relatively compact
in C0(R,R). By the Ascoli-Arzela Theorem, it is sufficient to prove that all the
functions of this set are equicontinuous on every subinterval [−a, a] and that there
exists a function γ ∈ C0(R,R) such that for any x ∈ R, |Tu(x)| ≤ γ(x). Let
x1, x2 ∈ [−a, a]. We have successively the estimates

|Tu(x2)− Tu(x1)| ≤
∫ +∞

−∞
|G1(x2, s)−G1(x1, s)||p(s)f(u(s))| ds

≤ max
y∈[−M,M ]

|f(y)|
∫ +∞

−∞
|G1(x2, s)−G1(x1, s)||p(s)| ds.

By the continuity of the Green function G, the last term tends to 0, as x2 tends
to x1, whence comes the equicontinuity of the functions from {Tu; ‖u‖0 ≤ M}.
Analogously we have

|Tu(x)| ≤
∫ +∞

−∞
G(x, s)|p(s)f(u(s))| ds

≤ max
y∈[−M,M ]

|f(y)|
∫ +∞

−∞
G(x, s)|p(s)| ds := γ(x).

Clearly, γ ∈ C0(R,R).
Now, we consider the boundary-value problem

−u′′ + cu′ + λu = f∞p(x)u(s), −∞ < x < +∞
u(−∞) = u(+∞) = 0,

(2.3)

and define operator A by

Au(x) = f∞

∫ +∞

−∞
G(x, s)p(s)u(s) ds.

Obviously, A is a bounded linear operator. Furthermore, any fixed point of A is a
solution of Problem (2.3), and conversely.

We now claim that 1 is not an eigenvalue of A. In fact, if f∞ = 0, then Problem
(2.3) has no nontrivial solutions. Let f∞ 6= 0 and assume that Problem (2.3) has a
nontrivial solution u. Then

|Au(x)| ≤ |f∞|
∫ +∞

−∞
G(x, s)|p(s)u(s)| ds

≤ 1
k
|f∞||p|1‖u‖0

< ‖u‖0.
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Hence ‖Au‖0 < ‖u‖0. This contradiction means that Problem (2.3) has no non-
trivial solution. Thus 1 is not an eigenvalue of A.

Finally, we prove that

lim
‖u‖0→∞

‖Tu−Au‖0
‖u‖0

= 0.

According to limu→∞ f(u)/u = f∞, for any ε > 0, there exists R > 0 such that

|f(u)− f∞u| < ε|u|, |u| > R.

Set R∗ = max|u|≤R |f(u)| and select M > 0 such that R∗ + |f∞|R < εM . Denote

I1 = {x ∈ R : |u(x)| ≤ R}, I2 = {x ∈ R : |u(x)| > R}.
Thus for any u ∈ C0(R,R) with ‖u‖0 > M , when x ∈ I1, we have

|f(u(x))− f∞u(x)| ≤ |f(u(x))|+ |f∞||u(x)| ≤ R∗ + |f∞|R < εM < ε‖u‖0.
Similarly, we conclude that for any u ∈ C0(R,R) with ‖u‖0 > M , when x ∈ I2, we
also have that

|f(u(x))− f∞u(x)| < ε‖u‖0.
We conclude that for any u ∈ C0(R,R) with ‖u‖0 > M , we have

|f(u(x))− f∞u(x)| < ε‖u‖0.
Then for any u ∈ C0(R,R) with ‖u‖0 > M , one has

|f(u(x))| ≤ |f(u(x))− f∞u(x)|+ |f∞u(x)|
≤ ε‖u‖0 + |f∞|‖u‖0
≤ (f∞|+ ε)‖u‖0.

Hence we obtain

|Tu(x)| =
∣∣∣ ∫ +∞

−∞
G(x, s)p(s)f(u(s)) ds− f∞

∫ +∞

−∞
G(x, s)p(s)u(s) ds

∣∣∣
≤ 1
k

∫ +∞

−∞
|p(s)||f(u(s))− f∞u(s)| ds

<
1
k
|p|1ε‖u‖0.

Then we have

lim
‖u‖0→∞

‖Tu−Au‖0
‖u‖0

= 0.

Theorem 1.1 now guarantees that Problem (2.1) has a nontrivial solution. This
completes the proof. �

3. Existence result for a generalized Fisher-like system

In this section, we study the system

−u′′ + c1u
′ + λ1u = p(x)f(u, v), −∞ < x < +∞,

−v′′ + c2v
′ + λ2v = q(x)g(u, v), −∞ < x < +∞,

u(−∞) = u(+∞) = 0, v(−∞) = v(+∞) = 0.

(3.1)

where p, q ∈ L1(R,R+), f, g : R×R → R are continuous functions with f(0, 0) 6= 0
or g(0, 0) 6= 0.

Our main theorem in this section reads as follows.



6 T. MOUSSAOUI, R. PRECUP EJDE-2009/94

Theorem 3.1. Assume that

lim
u+v→∞

f(u, v)
u+ v

= f∞ with |f∞| <
k1

α|p|1
, (3.2)

lim
u+v→∞

g(u, v)
u+ v

= g∞ with |g∞| <
k2

β|q|1
, (3.3)

for some positive real numbers α and β satisfying 1
α + 1

β = 1. Then Problem (3.1)
has at least one nontrivial solution (u, v) ∈ C0(R,R2).

Proof. Let the Banach space C0(R,R2) := C0(R,R) × C0(R,R) be endowed with
the norm ‖(., .)‖ given by

‖(u, v)‖ = ‖u‖0 + ‖v‖0.

It is clear that Problem (3.1) is equivalent to the integral equation:(
u(x), v(x)

)
=

( ∫ +∞

−∞
G1(x, s)p(s)f(u(s), v(s)) ds,

∫ +∞

−∞
G2(x, s)q(s)g(u(s), v(s)) ds

)
with Green functions

G1(x, s) =
1

r1 − r′1

{
er1(x−s) if x ≤ s

er′
1(x−s) if x ≥ s

and

G2(x, s) =
1

r2 − r′2

{
er2(x−s) if x ≤ s

er′
2(x−s) if x ≥ s

and characteristic roots

r1 =
c1 +

√
c21 + 4λ1

2
, r′1 =

c1 −
√
c21 + 4λ1

2
,

r2 =
c2 +

√
c22 + 4λ2

2
, r′2 =

c2 −
√
c22 + 4λ2

2
.

Define the mapping T : C0(R,R2) → C0(R,R2) by T = (T1, T1) where

T1(u, v)(x) =
∫ +∞

−∞
G1(x, s)p(s)f(u(s), v(s)) ds ,

T2(u, v)(x) =
∫ +∞

−∞
G2(x, s)q(s)g(u(s), v(s)) ds.

In view of Krasnosel’sk’ii-Zabreiko’s fixed point theorem, we look for fixed points
for the operator T in the Banach space C0(R,R2). The proof is split in four steps.

Claim 1: The mapping T = (T1, T2) is well defined; indeed, for any (u, v) ∈
C0(R,R2), we get, by Assumptions (3.2), (3.3), the following estimate

|T1(u, v)(x)| ≤
∫ +∞

−∞
G1(x, s)|p(s)f(u(s), v(s))| ds

≤ 1
k1
|p|1 max

|y|≤‖u‖0,|z|≤‖v‖0
|f(y, z)|.
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In the same way, we find that

|T2(u, v)(x)| ≤
1
k2
|q|1 max

|y|≤‖u‖0,|z|≤‖v‖0
|g(y, z)|.

The convergence of the integrals defining T1(u, v)(x) and T2(u, v)(x) is then estab-
lished. In addition, for any s ∈ R, G1(±∞, s) = 0, G2(±∞, s) = 0, and then, taking
the limit in T1(u, v)(x) and T2(u, v)(x), we get

T (u, v)(±∞) =
(
T1(u, v)(±∞), T2(u, v)(±∞)

)
= (0, 0).

Therefore, the mapping T : C0(R,R2) → C0(R,R2) is well defined.
Claim 2: The operator T is continuous. It suffices to prove that both T1 and

T1 are continuous. Let
(
(un, vn)

)
n
⊂ C0(R,R2) be a sequence which converges

uniformly to (u0, v0) on each compact subinterval of R. For some fixed a > 0,
we will prove the uniform convergence of (T (un, vn))n to T (u0, v0) on [−a, a]. Let
ε > 0 and choose some b > a large enough. By the uniform convergence of the
sequence

(
(un, vn)

)
n

on [−b, b], there exists an integer N = N(ε, b) satisfying

I1 : = sup
x∈R

∫ +b

−b

G1(x, s)|p(s)f(un(s), vn(s))− p(s)f(u0(s), v0(s))| ds

<
ε

2
for n ≥ N.

For x ∈ [−a, a], we have that |T1(un, vn)(x)− T1(u0, v0)(x)| ≤ I1 + I2 + I3 with

I2 := sup
x∈R

∫
R−[−b,+b]

G1(x, s)|p(s)f(u0(s), v0(s))| ds ≤
ε

4

(by the Cauchy Convergence Criterion and lim|s|→+∞ p(s)f(u0(s), v0(s)) = 0) and

I3 := sup
x∈R

∫
R−[−b,+b]

G1(x, s)|p(s)f(un(s), vn(s))| ds ≤ ε

4

(by the Lebesgue Dominated Convergence Theorem). This proves the uniform
convergence of (T1(un, vn))n to T1(u0, v0) on [−a, a]. Similarly, one can prove the
uniform convergence of (T2(un, vn))n to T2(u0, v0) on [−a, a].

Claim 3: For any M > 0, the set {T (u, v); ‖(u, v)‖ ≤M} is relatively compact
in C0(R,R2). By the Ascoli-Arzela Theorem, it is sufficient to prove that the
functions of this set are equicontinuous on every subinterval [−a, a] and that there
exist functions γ1, γ2 ∈ C0(R,R) such that for any x ∈ R, |T1(u, v)(x)| ≤ γ1(x) and
|T2(u, v)(x)| ≤ γ2(x). Let x1, x2 ∈ [−a, a]. Then

|T1(u, v)(x2)− T1(u, v)(x1)|

≤
∫ +∞

−∞
|G1(x2, s)−G1(x1, s)||p(s)f(u(s), v(s))| ds

≤ max
y+z∈[−M,M ]

|f(y, z)|
∫ +∞

−∞
|G1(x2, s)−G1(x1, s)||p(s)| ds.
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By the continuity of the Green function G1, the last term tends to 0, as x2 tends
to x1. Similarly,

|T2(u, v)(x2)− T2(u, v)(x1)|

≤ max
y+z∈[−M,M ]

|g(y, z)|
∫ +∞

−∞
|G2(x2, s)−G2(x1, s)||q(s)| ds.

By the continuity of the Green function G2, the last term tends to 0, as x2 tends
to x1, whence comes the equicontinuity of {T (u, v); ‖(u, v)‖ ≤M}. Now, we check
analogously the second statement:

|T1(u, v)(x)| ≤
∫ +∞

−∞
G1(x, s)|p(s)f(u(s), v(s))| ds

≤ max
y+z∈[−M,M ]

|f(y, z)|
∫ +∞

−∞
G1(x, s)|p(s)| ds := γ1(x)

and γ1 ∈ C0(R,R). Also

|T2(u, v)(x)| ≤ max
y+z∈[−M,M ]

|g(y, z)|
∫ +∞

−∞
G2(x, s)|q(s)| ds := γ2(x)

and γ2 ∈ C0(R,R).
Now we consider the boundary-value problem

−u′′ + c1u
′ + λ1u = p(x)(u(x) + v(x)), −∞ < x < +∞,

−v′′ + c2v
′ + λ2v = q(x)(u(x) + v(x)), −∞ < x < +∞,

u(−∞) = u(+∞) = 0, v(−∞) = v(+∞) = 0.

(3.4)

Define the operator A = (A1, A2) by

A1(u, v)(x) = f∞

∫ +∞

−∞
G1(x, s)p(s)(u(s) + v(x)) ds,

A2(u, v)(x) = g∞

∫ +∞

−∞
G2(x, s)q(s)(u(s) + v(x)) ds.

Obviously, A is a bounded linear operator. Furthermore, any fixed point of A is a
solution of the Problem (3.4), and conversely.

We now assert that 1 is not an eigenvalue of A. In fact, if f∞ = 0 and g∞ = 0,
then the Problem (3.4) has no nontrivial solutions. If f∞ 6= 0 or g∞ 6= 0, suppose
that the Problem (3.4) has a nontrivial solution (u, v). Then

|A1(u, v)(x)| ≤ |f∞|
∫ +∞

−∞
G1(x, s)|p(s)(u(s) + v(s))| ds

≤ 1
k1
|f∞||p|1(‖u‖0 + ‖v‖0)

=
1
k1
|f∞||p|1‖(u, v)‖

<
1
α
‖(u, v)‖
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and

|A2(u, v)(x)| ≤ |g∞|
∫ +∞

−∞
G2(x, s)|q(s)(u(s) + v(s))| ds

≤ 1
k2
|g∞||q|1(‖u‖0 + ‖v‖0)

=
1
k2
|g∞||q|1‖(u, v)‖

<
1
β
‖(u, v)‖.

Hence

‖A(u, v)‖ = ‖A1(u, v)‖0 + ‖A2(u, v)‖0 < (
1
α

+
1
β

)‖(u, v)‖ = ‖(u, v)‖.

This contradiction proves that Problem (3.4) has no nontrivial solution. Thus, 1 is
not an eigenvalue of A.

Finally, we prove that

lim
‖(u,v)‖→∞

‖T (u, v)−A(u, v)‖
‖(u, v)‖

= 0

which is equivalent to

lim
‖u‖0+‖v‖0→∞

‖T1(u, v)−A1(u, v)‖0
‖u‖0 + ‖v‖0

+ lim
‖u‖0+‖v‖0→∞

‖T2(u, v)−A2(u, v)‖0
‖u‖0 + ‖v‖0

= 0.

According to limu+v→∞
f(u,v)
u+v = f∞ and limu+v→∞

g(u,v)
u+v = g∞, for any ε > 0,

there exists R > 0 such that

|f(u, v)− f∞(u+ v)| < ε|u+ v|, for |u+ v| > R,

|g(u, v)− g∞(u+ v)| < ε|u+ v|, for |u+ v| > R.

Set R∗ = max
{

max|u+v|≤R |f(u, v)|,max|u+v|≤R |g(u, v)|
}

and select M > 0 such
that R∗ + max{|f∞|, |g∞|}R < εM . Denote

I1 = {x ∈ R : |u(x) + v(x)| ≤ R}, I2 = {x ∈ R : |u(x) + v(x)| > R}.

Thus for any (u, v) ∈ C0(R,R2) with ‖(u, v)‖ > M , when x ∈ I1, we have

|f(u(x), v(x))− f∞(u(x) + v(x))| ≤ |f((u(x), v(x))|+ |f∞||u(x) + v(x)|
≤ R∗ + |f∞|R
< εM < ε‖(u, v)‖.

Similarly, we conclude that for any (u, v) ∈ C0(R,R2) with ‖(u, v)‖ > M , when
x ∈ I2, we also have that

|f(u(x), v(x))− f∞(u(x) + v(x)| < ε‖(u, v)‖.

We conclude that for any (u, v) ∈ C0(R,R2) with ‖(u, v)‖ > M , one has

|f(u(x), v(x))− f∞(u(x) + v(x))| < ε‖(u, v)‖.
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Then for any (u, v) ∈ C0(R,R2) with ‖(u, v)‖ > M , we have

|f(u(x), v(x))| ≤ |f(u(x), v(x))− f∞(u(x) + v(x))|+ |f∞(u(x) + v(x))|
≤ ε‖(u, v)‖+ |f∞|‖(u, v)‖
≤ (|f∞|+ ε)‖(u, v)‖.

In the same way, we find that for any (u, v) ∈ C0(R,R2) with ‖(u, v)‖ > M , we
have

|g(u(x), v(x))| ≤ (|g∞|+ ε)‖(u, v)‖.

Hence we obtain

|T1(u, v)(x)−A1(u, v)(x)|

= |
∫ +∞

−∞
G1(x, s)p(s)f(u(s), v(s)) ds− f∞

∫ +∞

−∞
G1(x, s)p(s)(u(s) + v(s)) ds|

≤ 1
k1

∫ +∞

−∞
|p(s)||f(u(s), v(s)))− f∞(u(s) + v(s))| ds

<
1
k1
|p|1ε‖(u, v)‖

=
1
k1
|p|1ε(‖u‖0 + ‖v‖0).

Similarly,

|T2(u, v)(x)−A2(u, v)(x)| <
1
k2
|q|1ε(‖u‖0 + ‖v‖0).

Then we have

lim
‖u‖0+‖v‖0→∞

‖T1(u, v)−A1(u, v)‖0
‖u‖0 + ‖v‖0

= 0,

lim
‖u‖0+‖v‖0→∞

‖T2(u, v)−A2(u, v)‖0
‖u‖0 + ‖v‖0

= 0

and hence

lim
‖u+v‖→∞

‖T (u, v)−A(u, v)‖
‖u+ v‖

= 0.

Theorem 1.1 now guarantees that Problem (3.1) has at least one nontrivial solution.
This completes the proof. �

4. Further results

In this section, we study the system

−u′′ + c1u
′ + λ1u = f(x, u, v), −∞ < x < +∞,

−v′′ + c2v
′ + λ2v = g(x, u, v), −∞ < x < +∞,

u(−∞) = u(+∞) = 0, v(−∞) = v(+∞) = 0.

(4.1)

where f, g : R×R2 → R are continuous functions with f(x, 0, 0) 6≡ 0 or g(x, 0, 0) 6≡ 0.
The main existence result of this section is as follows.
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Theorem 4.1. Assume that there exist two functions ϕ,ψ : R+ × R+ → R+

continuous and nondecreasing with respect to their two variables and there exist
two positive continuous functions p, q : R → R+ and M0 > 0 such that

|f(x, u, v)| ≤ p(x)ϕ(|u|, |v|), for (x, u, v) ∈ R3,

|g(x, u, v)| ≤ q(x)ψ(|u|, |v|), for (x, u, v) ∈ R3,

max
{ 1
k1
|p|1ϕ(M0,M0),

1
k2
|q|1ψ(M0,M0)

}
≤M0.

(4.2)

Then Problem (4.1) admits at least one nontrivial solution (u, v) ∈ C0(R,R2).

Proof. Define the mapping T : C0(R,R2) → C0(R,R2) by T = (T1, T1) where

T1(u, v)(x) =
∫ +∞

−∞
G1(x, s)f(s, u(s), v(s)) ds,

T2(u, v)(x) =
∫ +∞

−∞
G2(x, s)g(s, u(s), v(s)) ds.

In view of Schauder’s fixed point theorem, we look for fixed points of T in the
Banach space C0(R,R2). The proof is split into four steps.

Claim 1: The mapping T is well defined. Indeed, for any (u, v) ∈ C0(R,R2),
we get, by Assumptions (4.2), the estimate

|T1(u, v)(x)| ≤
∫ +∞

−∞
G1(x, s)|f(s, u(s), v(s))| ds

≤
∫ +∞

−∞
G1(x, s)p(s)ϕ(|u(s)|, |v(s)|) ds

≤ ϕ(‖u‖, ‖v‖)
∫ +∞

−∞
G1(x, s)p(s) ds, ∀x ∈ R

≤ 1
k1
|p|1ϕ(‖u‖, ‖v‖).

In the same way, one can prove that

|T2(u, v)(x) ≤
1
k2
|q|1ψ(‖u‖, ‖v‖).

The convergence of the integrals defining T (u, v)(x) is then established. In addition
for any s ∈ R, G1(±∞, s) = 0, G1(±∞, s) = 0, and then, taking the limit in
T (u, v)(x) = (T1(u, v)(x), T2(u, v)(x)), we obtain T (u, v)(±∞) = 0. Therefore, the
mapping T : C0(R,R2) → C0(R,R2) is well defined.

Claim 2: As in Section 3, one can prove easily that the operator T = (T1, T2)
is continuous.

Claim 3: As in Section 3, one can prove easily that for any M > 0, the set
{T (u, v) = (T1(u, v), T2(u, v)); ‖(u, v)‖ ≤M} is relatively compact in C0(R,R2).

Claim 4: There exists a nonempty closed bounded convex K such that T maps
K into itself. Let

K =
{
(u, v) ∈ C0(R,R2) : ‖u‖0 ≤M0, ‖v‖0 ≤M0

}
.

From assumption (4.2), we know that
1
k1
|p|1ϕ(M0,M0) ≤ 1,

1
k2
|q|1ψ(M0,M0) ≤ 1.
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If ‖u‖ ≤M0 and ‖v‖ ≤M0, then

‖T1(u, v)‖0 ≤ sup
x∈R

∫ +∞

−∞
G1(x, s)p(s)ϕ(|u(s)|, |v(s)|) ds

≤ 1
k1
|p|1ϕ(M0,M0)

≤M0.

Similarly, ‖T2(u, v)‖0 ≤ M0. Therefore, the operator T maps K into itself. The
proof of Theorem 3.1 then follows from Schauder’s fixed point theorem. �

Using of Schauder’s theorem, one can also prove the existence of a positive
solution under some integral conditions on the nonlinear terms:

Theorem 4.2. Suppose that the functions f and g are positive with f(x, 0, 0) 6≡ 0
or g(x, 0, 0) 6≡ 0, and satisfy the following two mean growth assumptions:

|f(x, u, v)| ≤ ϕ(x, |u|, |v|),
|g(x, u, v)| ≤ ψ(x, |u|, |v|)

where ϕ,ψ : R×R+×R+ → R+ are continuous, nondecreasing with respect to their
two last arguments and verify∫ +∞

−∞
ϕ(x,M0,M0) dx ≤ k1M0,

∫ +∞

−∞
ψ(x,M0,M0) dx ≤ k2M0 (4.3)

for some constant M0 > 0. Then Problem (4.1) has a positive solution (u, v) ∈
C0(R,R+ × R+).

Proof. To prove Theorem 4.2, we proceed as in Theorem 4.1 by taking the closed
convex subset K of C0(R,R2) defined by:

K = {(u, v) ∈ C0(R,R2) : 0 ≤ u(x) ≤M0, 0 ≤ v(x) ≤M0 on R}.
Using Assumption (4.3) and the fact that the mapping ϕ and ψ are nondecreasing
with respect to their two last arguments, we find that T maps K into itself. Indeed,
we derive the estimates:

0 ≤ T1(u, v)(x) ≤
∫ +∞

−∞
G1(x, s)ϕ(s, |u(y)|, |v(y)|) ds

≤ 1
k1

∫ +∞

−∞
ϕ(s,M0,M0) ds ≤M0

and
0 ≤ T2(u, v)(x) ≤M0.

In addition, the mapping T is continuous as can easily be seen and one can check
that T (K) is relatively compact. Then the claim of Theorem 4.2 follows. �

5. Examples

In this section, we give some examples to illustrate our results.
(1) Consider the boundary-value problem

−u′′ + u′ + 2u =
1

π(x2 + 1)
[2u+ 1 + lg(1 + |u|)],

u(−∞) = u(+∞) = 0.
(5.1)
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Here p(x) = 1
π(x2+1) and f(u) = 2u+1+lg(1+ |u|). Notice that k = 3, |p|1 = 1 and

f∞ = 2. Thus, by Theorem 2.1, Problem (5.1) has at least one nontrivial solution
u ∈ C0(R,R).

(2) Consider the boundary-value system

−u′′ + u′ + 2u =
1

2π(x2 + 1)
[
2(u+ v) + 1 + lg(1 + |u+ v|)

]
,

−v′′ +
√

5v′ + v =
1

2
√
π
e−x2[

2(u+ v) + 1 +
√

1 + |u+ v|
]
,

u(−∞) = u(+∞) = 0, v(−∞) = v(+∞) = 0.

(5.2)

Set p(x) = 1
2π(x2+1) , q(x) = 1

2
√

π
e−x2

, f(u, v) = 2(u + v) + 1 + lg(1 + |u + v|),
and g(u, v) = 2(u + v) + 1 +

√
1 + |u+ v|. Notice that k1 = k2 = 3, α = β = 2,

|p|1 = |q|1 = 1
2 , and f∞ = g∞ = 2. Thus, by Theorem 3.1, Problem (5.3) has at

least one nontrivial solution (u, v) ∈ C0(R,R2).
(3) Consider the boundary-value system

−u′′ + u′ + 2u =
1

π(x2 + 1)
(
|v|µ + 1

)
,

−v′′ +
√

5v′ + v =
1√
π

exp−x2 (
|u|ν + 1

)
,

u(−∞) = u(+∞) = 0, v(−∞) = v(+∞) = 0.

(5.3)

where µ and ν are real numbers such that 0 < µ < 1 and 0 < ν < 1. Set
p(x) = 1

π(x2+1) , q(x) = 1√
π
e−x2

, ϕ(y, z) = zµ +1, and ψ(y, z) = yν +1. Notice that
k1 = k2 = 3, |p|1 = |q|1 = 1 and if we choose any M0 large enough, then condition
(4.2) is satisfied. Thus, by Theorem 4.1, Problem (5.3) has at least one nontrivial
solution (u, v) ∈ C0(R,R2).
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