Electron. J. Diff. Eqns., Vol. 2009(2009), No. 87, pp. 1-10.

Existence of solutions to p-Laplace equations with logarithmic nonlinearity

Jing Mo, Zuodong Yang

Abstract:
This article concerns the the nonlinear elliptic equation
$$
 -\hbox{div}(|\nabla u|^{p-2}\nabla u)
 =\log u^{p-1}+\lambda f(x,u)
 $$
in a bounded domain $\Omega \subset \mathbb{R}^{N}$ with $N\geq 1$ and $u=0$ on $\partial\Omega$. By means of a double perturbation argument, we obtain a nonnegative solution.

Submitted February 23, 2009. Published July 10, 2009.
Math Subject Classifications: 35B20, 35B65, 35J65.
Key Words: Existence; logarithmic nonlinearity; supersolution; subsolution.

Show me the PDF file (225 KB), TEX file, and other files for this article.

  Jing Mo
Institute of Mathematics, School of Mathematics Science
Nanjing Normal University
Jiangsu Nanjing 210097, China
email: jingshuihailang@163.com
Zuodong Yang
Institute of Mathematics, School of Mathematics Science
Nanjing Normal University
Jiangsu Nanjing 210097, China
email: zdyang_jin@263.net

Return to the EJDE web page