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EXISTENCE AND CONTINUITY OF GLOBAL ATTRACTORS
FOR A DEGENERATE SEMILINEAR PARABOLIC EQUATION

CUNG THE ANH, TRAN DINH KE

Abstract. In this article, we study the existence and the upper semiconti-

nuity with respect to the nonlinearity and the shape of the domain of global

attractors for a semilinear degenerate parabolic equation involving the Grushin
operator.

1. Introduction

Understanding the asymptotic behavior of dynamical systems is one of the most
important problems of modern mathematical physics. One way to attack this prob-
lem for dissipative dynamical systems is to consider its global attractors. A first
question is to study the existence of a global attractor. Once a global attractor
is obtained, a next natural question is to study the most important properties of
the global attractor, such as dimension, dependence on parameters, regularity of
the attractor, determining modes, etc. In the previous decades, many authors have
paid attention to these problems and obtained results for a large class of PDEs; see
[4, 8, 14, 15] and references therein. However, to the best of our knowledge, little
seems to be known for the asymptotic behavior of solutions of degenerate equations.

One of the classes of degenerate equations that has been studied widely, in recent
years, is the class of equations involving an operator of Grushin type

Gsu = ∆x1u + |x1|2s∆x2u, (x1, x2) ∈ Ω ⊂ RN1 × RN2 , s > 0.

This operator was first introduced in [7]. Noting that G0 = ∆ and Gs, when
s > 0, is not elliptic in domains in RN1 × RN2 intersecting with the hyperplane
{x1 = 0}. The local properties of Gs were investigated in [3, 7]. The existence and
nonexistence results for the elliptic equation

−Gsu + f(u) = 0, x ∈ Ω
u = 0, x ∈ ∂Ω

were proved in [16]. Furthermore, the semilinear elliptic systems with the Grushin
type operator, which are in the Hamilton form or in the potential form, were also
studied in [5, 6, 10].
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To study boundary value problems for equations involving Grushin operators,
we have usually used the natural energy space S1

0(Ω) defined as the completion of
C1

0 (Ω̄) in the norm

‖u‖S1
0(Ω) =

( ∫
Ω

(
|∇x1u|2 + |x1|2s|∇x2u|2

)
dx

)1/2

.

We have the continuous embedding S1
0(Ω) ↪→ Lp(Ω), for 2 6 p 6 2∗s = 2N(s)

N(s)−2 ,
where N(s) = N1 + (s + 1)N2. Moreover, this embedding is compact if 2 6 p < 2∗s
(for more details, see [16]).

In a recent paper [1], we considered the initial boundary value problem

ut −Gsu + f(u) + g(x) = 0, x ∈ Ω, t > 0

u(x, t) = 0, x ∈ ∂Ω, t > 0

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where Ω is a bounded domain in RN = RN1 × RN2 (N1, N2 ≥ 1) with smooth
boundary ∂Ω, u0 ∈ S1

0(Ω) is given, g ∈ L2(Ω), and f : R → R satisfies

|f(u)− f(v)| 6 C0|u− v|(1 + |u|ρ + |v|ρ), 0 6 ρ <
4

N(s)− 2
,

F (u) > −µ

2
u2 − C1,

f(u)u > −µu2 − C2,

where C0, C1, C2 > 0, F is the primitive F (y) =
∫ y

0
f(s)ds of f , µ < λ1, λ1 is the

first eigenvalue of the operator −Gs in Ω with homogeneous Dirichlet condition.
Under the above assumptions of f , we proved that problem (1.1) defines a semigroup
S(t) : S1

0(Ω) → S1
0(Ω), which possesses a compact connected global attractor A =

Wu(E) in the space S1
0(Ω). Furthermore, for each u0 ∈ S1

0(Ω), the corresponding
solution u(t) tends to the set E of equilibrium points in S1

0(Ω) as t → +∞. The
basic tool for the approach in this case is the following Lyapunov functional

Φ(u) =
1
2
‖u‖2

S1
0(Ω) +

∫
Ω

(F (u) + gu)dx.

Noting that the critical exponent of the embedding S1
0(Ω) ↪→ Lp(Ω) is 2∗s = 2N(s)

N(s)−2 ,
so the condition 0 6 ρ < 4

N(s)−2 is necessary to prove the existence of a mild solution
by the fixed point method and to ensure the existence of the Lyapunov functional
Φ.

In this article, we continue studying the long-time behavior of solutions to prob-
lem (1.1) by removing the restrictions on the growth of the nonlinearity f . More
precisely, we assume that the initial data u0 ∈ L2(Ω) and the nonlinearity f : R → R
is a C1 function that satisfies the following conditions:

C1|u|p − C0 6 f(u)u 6 C2|u|p + C0, p > 2, (1.2)

f ′(u) > −C3, for all u ∈ R, (1.3)

where C0, C1, C2 and C3 are positive constants. A typical example of the nonlin-
earity f satisfying (1.2)-(1.3) is the following

f(u) =
2p+1∑
j=0

bju
j , where bj ∈ R, b2p+1 > 0.
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It is clear that the fixed point method for proving the existence of solutions is not
valid here, and the system is no longer a gradient system. However, thanks to the
structure of the nonlinearity, we may use the compactness method [11] to prove the
global existence of a weak solution and use a priori estimates to show the existence
of an absorbing set B0 in the space S1

0(Ω) for the semigroup S(t) generated by the
solutions of the problem (1.1). By the compactness of the embedding S1

0(Ω) ↪→
L2(Ω), the semigroup S(t) is asymptotically compact in L2(Ω). This implies the
existence of a compact global attractor A = ω(B0) for S(t) in L2(Ω).

Besides the problem of existence of the global attractor, the dependence of the
global attractor on the parameters is also an important object of study (see [14]
for an excellent review of the subject). In particular, the problem of continuity of
the global attractor with respect to variations of the domain where the problem
is posed has been studied recently for the reaction-diffusion equation with various
boundary conditions. In [12, 13], the authors assume that Ω is a small regular
perturbation of a fixed smooth domain Ω0 and use the approach suggested by
Henry [9]. This approach is simple, but quite limited since it requires that Ω0 is
C2 and Ω is only a Ck (k > 2) small perturbation of Ω, i.e. there exists a Ck-
diffeomorphic h : Ω0 → RN such that Ω = h(Ω0) and ‖h − idΩ0‖Ck is small. In
[2], the authors used a different method based on the spectral convergence which
allows more irregular perturbations. However, as indicated in [12], this approach is
quite technical and gives less detailed results for the regular case.

In this paper, we use another approach to study the upper semicontinuity of
the global attractor with respect to the shape of the domain, which allows us to
consider the more general situations and requires less smoothness of the domain
than one used in [12, 13], and it is simpler than one used in [2]. We can also use
this method to study the upper semicontinuity of the global attractor with respect
to the nonlinear term when taking the nonlinearity as a parameter. However, the
more delicate question of the lower semicontinuity of global attractor is not treated
in the present paper.

The rest of the paper is organized as follows. In Section 2, we prove first the
existence and uniqueness of a weak solution of the problem by using the compactness
method, and then the existence of a compact global attractor A in L2(Ω) for the
semigroup S(t) generated by (1.1). In Section 3, we study the upper semicontinuity
of the global attractor with respect to the nonlinearity. In the last section, the
upper-continuous dependence of the global attractors on the shape of the domain
is investigated.

Notation. The L2(Ω)-norm will be denoted as ‖ · ‖, and the S1
0(Ω)-norm will be

denoted by ‖ · ‖S1
0(Ω). By S−1(Ω) we denote the dual space of S1

0(Ω). Let (X, d) be
a metric space, we usually use the semi-distance δX(., .) defined on the subsets of
X by

δX(A,B) = sup
a∈A

inf
b∈B

d(a, b), ∀A,B ⊂ X.

Denote by QT = Ω× (0, T ) the cylinder with the base Ω.
Let X1, X2 be two Banach spaces and Z be a topological vector space such that

X1 ↪→ Z,X2 ↪→ Z. Then X1 ∩ X2 and X1 + X2 are two Banach spaces equipped
with the norms

‖u‖X1∩X2 = ‖u‖X1 + ‖u‖X2 ,
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‖u‖X1+X2 = inf{‖u1‖X1 + ‖u2‖X2 : u = u1 + u2}.
It is known that if X1∩X2 is dense both in X1 and X2 then (X1∩X2)∗ = X∗

1 +X∗
2 .

2. Existence of the Global Attractor

In this section, we prove the global existence of a weak solution and of a global
attractor of problem (1.1), under the assumptions u0 ∈ L2(Ω), g ∈ L2(Ω) given,
and f satisfying the conditions (1.2)-(1.3). First, we give the definition of the weak
solution to the problem (1.1).

Definition 2.1. Let T > 0 and u0 ∈ L2(Ω) be given. A function u is called a weak
solution of the problem (1.1) on (0, T ) if u ∈ W0,T = Lp(QT ) ∩ L2(0, T ;S1

0(Ω)) ∩
C([0, T ];L2(Ω)), ∂u

∂t ∈ L2(0, T ;S−1(Ω)) + Lq(QT ), u(0) = u0, and∫ T

0

〈ut, ϕ〉dt +
∫ T

0

∫
Ω

(∇x1u∇x1ϕ + |x1|2s∇x2u∇x2ϕ) dx dt

+
∫ T

0

∫
Ω

f(u)ϕ dx dt +
∫ T

0

∫
Ω

g(x)ϕ dx dt = 0

for all test functions ϕ ∈ Lp(QT ) ∩ L2(0, T ;S1
0(Ω)), where q is the conjugate of p

(i.e. 1
p + 1

q = 1).

We remark that under condition (1.2), one can prove that f(u) ∈ Lq(QT ) if
u ∈ W0,T (see the proof of Theorem 2.4 below). Thus, the integral

∫ T

0

∫
Ω

f(u)ϕ dx dt
is well-defined.

To prove the existence of solutions by the compactness method, we need the
following Compactness Lemma (see e.g. [11, p. 58]).

Lemma 2.2. Let X0, X, and X1 be three Banach spaces such that X0 ↪→ X ↪→ X1,
the injection of X into X1 is continuous, the injection of X0 into X is compact,
and X0, X1 are reflexive. Let 1 < α0, α1 < ∞, we set

E =
{

u ∈ Lα0(0, T ;X0),
du

dt
∈ Lα1(0, T ;X1)

}
equipped with the norm

‖u‖E = ‖u‖Lα0 (0,T ;X0) + ‖du

dt
‖Lα1 (0,T ;X1).

Then the inclusion E ↪→ Lα0(0, T ;X) is compact.

The following lemma shows the continuity of solutions.

Lemma 2.3. If u ∈ L2(0, T ;S1
0(Ω))∩Lp(QT ) and ∂u

∂t ∈ L2(0, T ;S−1(Ω))+Lq(QT )
then u ∈ C([0, T ];L2(Ω)).

Proof. We select a sequence un ∈ C1([0, T ];S1
0(Ω)) such that

un → u in L2(0, T ;S1
0(Ω)) ∩ Lp(QT )

∂un

∂t
→ ∂u

∂t
in L2(0, T ;S−1(Ω)) + Lq(QT ).

Then, for all t, t0 ∈ [0, T ], we have

‖un(t)− um(t)‖2 = ‖un(t0)− um(t0)‖2 + 2
∫ t

t0

〈u′n(s)− u′m(s), un(s)− um(s)〉ds.
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We choose t0 so that

‖un(t0)− um(t0)‖2 =
1
T

∫ T

0

‖un(t)− um(t)‖2dt.

Setting X(t1, t2) = L2(t1, t2;S1
0(Ω))∩Lp(QT ) and X∗(t1, t2) = L2(t1, t2;S−1(Ω))+

Lq(QT ), we have∫
Ω

|un(t)− um(t)|2dx

=
1
T

∫
Ω

∫ T

0

|un(t)− um(t)|2dtdx + 2
∫

Ω

∫ t

t0

(u′n(s)− u′m(s))(un(s)− um(s))dsdx

6
1
T

∫
Ω

∫ T

0

|un(t)− um(t)|2dtdx + 2‖u′n − u′m‖X∗(t0,t)‖un − um‖X(t0,t)

6
1
T

∫
Ω

∫ T

0

|un(t)− um(t)|2dtdx + 2‖u′n − u′m‖X∗(0,T )‖un − um‖X(0,T ).

Hence, {un} is a Cauchy sequence in C([0, T ];L2(Ω)) thanks to the choosing of the
sequence un. Thus the sequence {un} converges in C([0, T ];L2(Ω)) to a function
v ∈ C([0, T ];L2(Ω)). Since un(t) −→ u(t) ∈ L2(Ω) for a.e. t ∈ [0, T ], we deduce
that u = v a.e. It implies that u ∈ C([0, T ];L2(Ω)) (after possibly being redefined
on a set of measure zero). �

Theorem 2.4. Under the conditions (1.2)-(1.3), problem (1.1) has a unique weak
solution u(t) satisfying

u ∈ C([0,∞);L2(Ω)) ∩ L2
loc(0,∞;S1

0(Ω)) ∩ Lp
loc(0,∞;Lp(Ω)),

∂u

∂t
∈ L2

loc(0,∞;S−1(Ω)) + Lq
loc(0,∞;Lq(Ω)),

where q is the conjugate of p. Moreover, the mapping u0 7→ u(t) is continuous on
L2(Ω).

Proof. (i) Existence. We will use the compactness method for showing the exis-
tence of a weak solution to the problem (1.1).

We look for an approximate solution un(t) that belongs to the finite-dimensional
space spanned by the first n eigenfunctions of −Gs such that

un(t) =
n∑

j=1

unj(t)ej ,

and solves the problem

〈∂un

∂t
, ej〉 − 〈Gsun, ej〉+ 〈 f(un), ej〉+ (g, ej) = 0, 1 6 j 6 n,

(un(0), ej) = (u0, ej).
(2.1)

Hence we have a system of first-order ordinary differential equations for the func-
tions un1, un2, . . . , unn,

u′nj + λjunj + 〈f(un), ej〉+ (g, ej) = 0, j = 1, n

unj(0) = (u0, ej).
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According to theory of ODEs, we obtain the existence of approximate solutions
un(t). We now establish some a priori estimates for un. Since

1
2

d

dt
‖un‖2 + ‖un‖2

S1
0(Ω) +

∫
Ω

f(un)undx +
∫

Ω

gundx = 0,

it follows from (1.2) that

1
2

d

dt
‖un(t)‖2 + ‖un(t)‖2

S1
0(Ω) + C1

∫
Ω

|un(t)|pdx

− C0|Ω| −
1

2λ1
‖g‖2 − λ1

2
‖un(t)‖2 6 0,

(2.2)

where λ1 > 0 is the first eigenvalue of −Gs in Ω with the homogeneous Dirichlet
condition (noting that ‖u‖2

S1
0(Ω)

≥ λ1‖u‖2 for all u ∈ S1
0(Ω)). Hence

d

dt
‖un(t)‖2 6 −λ1‖un(t)‖2 + C4,

where C4 = 1
λ1
‖g‖2 + 2C0|Ω|. Using the Gronwall inequality, we obtain

‖un(t)‖2 6 e−λ1t‖un(0)‖2 +
C4

λ1
(1− e−λ1t). (2.3)

This estimate implies that the solution un(t) of (2.1) can be extended to +∞.
From (2.2), we have

d

dt
‖un(t)‖2 + ‖un(t)‖2

S1
0(Ω) + 2C1

∫
Ω

|un(t)|pdx 6 C4.

Let T be an arbitrary positive number, integrating both sides of the above inequality
from 0 to T , we obtain

‖un(T )‖2 +
∫ T

0

‖un(t)‖2
S1

0(Ω)dt + 2C1

∫ T

0

∫
Ω

|un|p dx dt 6 ‖un(0)‖2 + C4T.

This inequality yields {un} is bounded in L∞(0, T ;L2(Ω)), in L2(0, T ;S1
0(Ω)), and

in Lp(QT ).
We first use the boundedness of {un} in Lp(QT ) to prove the boundedness of

{f(un)} in Lq(QT ), where q is conjugate of p. Indeed, the condition (1.2) implies

|f(u)| 6 C5

(
1 + |u|p−1

)
.

Therefore,

‖f(un)‖q
Lq(QT ) =

∫ T

0

∫
Ω

|f(un)|q dx dt

6 C

∫ T

0

∫
Ω

(
1 + |un|q(p−1)

)
dx dt

6 C

∫ T

0

∫
Ω

(
1 + |un|p

)
dx dt.

Hence {f(un)} is bounded in Lq(QT ).
Next, we show that {∂un

∂t } is bounded in the space Lq(0, T ;S−1(Ω)). Indeed,
since

∂un

∂t
= Gsun − f(un)− g
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we have ∂un

∂t ∈ L2(0, T ;S−1(Ω)) + Lq(QT ). Combining this with the fact that
L2(0, T ;S−1(Ω)) and Lq(QT ) are continuously embedded into Lq(0, T ;S−1(Ω)),
we obtain the boundedness of {∂un

∂t } in Lq(0, T ;S−1(Ω)). Hence, by choosing a
subsequence, we can assume that ∂un

∂t ⇀ ∂u
∂t in Lq(0, T ;S−1(Ω)).

From the above results, we can assume that

un ⇀ u in L2(0, T ;S1
0(Ω)),

un ⇀ u in Lp(QT ),

f(un) ⇀ η in Lq(QT ).

From the fact that u ∈ L2(0, T ;S1
0(Ω)) ∩ Lp(QT ) and ut ∈ L2(0, T ;S−1(Ω)) +

Lq(QT ), by Lemma 2.3, we infer that u ∈ C([0, T ];L2(Ω)) and thus u ∈ W0,T .
It remains to be shown that η = f(u) and u(0) = u0. Since {un} is bounded

in L2(0, T ;S1
0(Ω)) and {∂un

∂t } is bounded in Lq(0, T ;S−1(Ω)), it follows from the
Compactness Lemma that

un → u in L2(0, T ;L2(Ω)).

Hence we can choose a subsequence {unk
} such that

unk
(t, x) → u(t, x) for a.e. (t, x) ∈ QT .

It follows from the continuity of the function f that

f(unk
(t, x)) → f(u(t, x)) for a.e. (t, x) ∈ QT .

In view of the boundedness of {f(unk
)} in Lq(QT ), by [11, Lemma 1.3], we conclude

that
f(unk

) ⇀ f(u) in Lq(QT ).
Taking into account the uniqueness of a weak limit, we get η = f(u).

We are in a position to show that u(0) = u0. Choosing a test function ϕ ∈
C1([0, T ];S1

0(Ω)∩Lp(Ω)) with ϕ(T ) = 0, we see that ϕ ∈ Lp(QT )∩L2(0, T ;S1
0(Ω)).

Taking integration by parts in the t variable, we have∫ T

0

−(u, ϕ′) +
∫ T

0

∫
Ω

(∇x1u∇x1ϕ + |x1|2s∇x2u∇x2ϕ) +
∫ T

0

∫
Ω

(f(u) + g)ϕ

= (u(0), ϕ(0)).

Doing the same in the Galerkin approximations yields∫ T

0

−(un, ϕ′) +
∫ T

0

∫
Ω

(∇x1un∇x1ϕ + |x1|2s∇x2un∇x2ϕ) +
∫ T

0

∫
Ω

(f(un) + g)ϕ

= (un(0), ϕ(0)).

Taking limits as n →∞ we conclude that∫ T

0

−(u, ϕ)′ +
∫ T

0

∫
Ω

(∇x1u∇x1ϕ + |x1|2s∇x2u∇x2ϕ) +
∫ T

0

∫
Ω

(f(u) + g)ϕ

= (u0, ϕ(0))

since un(0) → u0. Thus, u(0) = u0.
We now prove existence of a global solution u. Analogously to (2.3) we have

‖u(t)‖2 6 e−λ1t‖u(0)‖2 +
C4

λ1
(1− e−λ1t). (2.4)

This implies that the solution u exists globally in time.
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(ii) Uniqueness and continuous dependence. Let u0, v0 ∈ L2(Ω). Denote
by u, v two corresponding solutions of the problem (1.1) with initial data u0, v0.
Then w = u− v satisfies

wt −Gsw + f(u)− f(v) = 0,

w|∂Ω = 0

w(0) = u0 − v0.

Hence
1
2

d

dt
‖w‖2 + ‖w‖2

S1
0(Ω) +

∫
Ω

(u− v)(f(u)− f(v))dx = 0, for a.e. t ∈ [0, T ].

Using (1.3), we have
d

dt
‖w‖2 + 2‖w‖2

S1
0(Ω) 6 2C3‖w‖2, for a.e. t ∈ [0, T ].

Applying the Gronwall inequality, we obtain ‖w(t)‖ 6 ‖w(0)‖e2C3t. This implies
the uniqueness (if u0 = v0) and the continuous dependence of solutions. �

Note that Theorem 2.4 allows us to define a continuous semigroup

S(t) : u0 ∈ L2(Ω) 7→ u(t) ∈ L2(Ω)

associated with problem (1.1). We now prove that the semigroup S(t) possesses a
compact connected global attractor A in L2(Ω).

First, from (2.4) we deduce the existence of an absorbing set in L2(Ω): There is
a constant R and a time t0(‖u0‖) such that, for the solution u(t) = S(t)u0,

‖u(t)‖ 6 R for all t > t0(‖u0‖).
Multiplying (1.1) by u and using (1.2), we obtain

1
2

d

dt
‖u(t)‖2 + ‖u(t)‖2

S1
0(Ω) + C1

∫
Ω

|u(t)|pdx− C0|Ω|+
∫

Ω

gu dx 6 0.

Integrating between t and t + 1, we obtain∫ t+1

t

[1
2
‖u(s)‖2

S1
0

+ C1

∫
Ω

|u(s)|pdx +
∫

Ω

gu dx
]
ds 6 C0|Ω|+

1
2
‖u(t)‖2.

This shows that∫ t+1

t

[1
2
‖u(s)‖2

S1
0

+ C1

∫
Ω

|u(s)|pdx +
∫

Ω

gudx
]
ds 6 C0|Ω|+

1
2
R2, ∀t > t0(‖u0‖).

Noting that
C5(|u|p − 1) 6 F (u) 6 C6(|u|p + 1), (2.5)

where F (u) =
∫ u

0
f(σ)dσ, we obtain∫ t+1

t

[1
2
‖u(s)‖2

S1
0

+
∫

Ω

(F (u) + gu)dx
]
ds 6 C7, for all t > t0(‖u0‖). (2.6)

In what follows, we shall formally derive an a priori estimate in S1
0(Ω) ∩ Lp(Ω) on

the solutions which holds for smooth functions and will become rigorous by using a
Galerkin truncation and a limiting process. Taking the inner product of (1.1) with
ut, we obtain

d

dt

[1
2
‖u‖2

S1
0

+
∫

Ω

(F (u) + gu)dx
]

= −2‖ut‖2 6 0. (2.7)
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To deduce the existence of an absorbing set in S1
0(Ω), we need the uniform Gronwall

inequality that we recall (see e.g. [15, p. 91]).

Lemma 2.5. Let g, h, y be three locally integrable functions on (t0,+∞) which
satisfy

dy

dt
∈ L1

loc(t0,+∞) and
dy

dt
6 gy + h, for t > t0,∫ t+r

t

g(s)ds 6 a1,

∫ t+r

t

h(s)ds 6 a2,

∫ t+r

t

y(s)ds 6 a3, for t > t0,

where r, a1, a2, a3 are positive constants. Then

y(t) 6 (
a3

r
+ a2)ea1 , for all t > t0 + r.

Combining (2.6), (2.7) and using the above lemma, we obtain

1
2
‖u‖2

S1
0

+
∫

Ω

(F (u) + gu)dx 6 C7, for all t > t0(‖u0‖) + 1.

Using (2.5), the Cauchy inequality and the fact that ‖u‖2
S1

0(Ω)
> λ1‖u‖2

L2(Ω), we
deduce from the last inequality that

‖u(t)‖2
S1

0
+

∫
Ω

|u|pdx 6 C8

provided that t > t0(‖u0‖) + 1. It follows from here that the ball B0 centered at 0
with radius C8 is an absorbing set for S(t) in S1

0(Ω) ∩ Lp(Ω).
Using the absorbing set B0 in S1

0(Ω), and noting that the embedding S1
0(Ω) ↪→

L2(Ω) is compact, and that L2(Ω) is connected, we obtain the following theorem.

Theorem 2.6. Under conditions (1.2)-(1.3), the semigroup S(t) generated by the
problem (1.1) possesses a compact connected global attractor A = ω(B0) in L2(Ω).

Remark 2.7. In fact, if we are only concerned with the existence of the global
attractor for the semigroup S(t) in L2(Ω), then the assumption (1.3) can be replaced
by the weaker assumption(

f(u)− f(v)
)
(u− v) > −C|u− v|2 for any u, v ∈ R.

However, we need to use the stronger assumptions, namely f ∈ C1(R) and (1.3),
in the next section (for proving (3.2)).

3. Continuous dependence of attractors on the nonlinearity

In this section we consider a family of C1 functions fλ, λ ∈ Λ, such that for each
λ ∈ Λ, fλ satisfies conditions (1.2)-(1.3) with the constants independent of λ. The
family Λ is considered with a topology T such that the convergence λj → λ with
respect to T implies that

fλj
(u) → fλ(u) for any u.

Let St(λ, u0) be the semigroup generated by the problem

ut −Gsu + fλ(u) + g(x) = 0, x ∈ Ω, t > 0

u(x, t) = 0, x ∈ ∂Ω, t > 0

u(x, 0) = u0(x), x ∈ Ω.
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From the results in Section 2, this semigroup has a compact absorbing set

Bλ = {u ∈ L2(Ω) : ‖u‖S1
0(Ω) 6 Rλ}

and a compact global attractor Aλ = ω(Bλ) in X = L2(Ω).

Lemma 3.1. St(., .) is continuous in Λ×X for any fixed t > 0.

Proof. Let (λ0, u0) ∈ Λ×X and (λj , uj0) ∈ Λ×X such that λj → λ0 and uj0 → u0.
Let uj(t) = St(λj , uj0) be the solution of (1.1) with the nonlinearity fλj

and the
initial data uj0. Since fλj

satisfies (1.2)-(1.3) with the same constants and {uj0} is
bounded, by using arguments as in the proof of Theorem 2.4, we have

{uj} is bounded in L∞(0, T ;L2(Ω))

{uj} is bounded in L2(0, T ;S1
0(Ω))

{fλj
(uj)} is bounded in Lq(0, T ;Lq(Ω))

{∂tuj} is bounded in L2(0, T, S−1(Ω)) + Lq(0, T ;Lq(Ω)).

We may apply the Compactness Lemma to conclude that {uj} is relatively compact
in L2(0, T ;L2(Ω)). Hence, there exists a subsequence (still denoted by) uj such that

uj
∗
⇀ u in L∞(0, T ;L2(Ω))

uj ⇀ u in L2(0, T ;S1
0(Ω))

uj → u almost everywhere in Ω× (0, T )

fλj
(uj) ⇀ ω in Lq(0, T ;Lq(Ω))

∂tuj ⇀ ∂tu in L2(0, T ;S−1(Ω)) + Lq(0, T ;Lq(Ω)).

(3.1)

Combining (3.1) with the hypotheses imposed on fλ and the fact that fλj converges
almost everywhere to fλ0 we have

fλj
(uj) → fλ0(u) almost everywhere in Ω× (0, T ). (3.2)

From [11, Lemma 1.3], we have ω = fλ0(u). By passing to limit in the weak form,
we obtain that u is the solution of the problem (1.1).

Now, let t ∈ (0, T ). Since uj(t) is bounded in S1
0(Ω), there is a subsequence, still

denoted by uj , such that uj(t) → v(t) strongly in L2(Ω). Therefore,

St(λj , uj0) → St(λ0, u0).

We have proved that for any (λj , uj0) → (λ0, u0), there exists a subsequence of
St(λj , uj0) which converges to St(λ0, u0) and the limit is independent of the subse-
quence, so the whole sequence St(λj , uj0) converges to St(λ0, u0). This completes
the proof. �

Theorem 3.2. The family {Aλ : λ ∈ Λ} depends upper semi-continuously on the
parameter λ, i.e.

lim sup
λ→λ0

δX(Aλ,Aλ0) = 0.

Proof. For any λj ∈ Λ the semigroup St(λj , u) has a compact absorbing set

Bλj = {u ∈ L2(Ω) : ‖u‖S1
0(Ω) 6 R},
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where R is sufficiently large constant depending only on the constants in (1.2)-(1.3).
Hence, we can choose R independent of λj . Hence, there exists

B0 = {u ∈ L2(Ω) : ‖u‖S1
0(Ω) 6 R}

such that for any bounded set B ⊂ L2(Ω) and for any λ, there is τ = τ(λ, B) with
the property

St(λ, B) ⊂ B0 for t ≥ τ.

Let ε > 0, there exists T = T (ε) > 0 such that

δX(ST (λ0, B0),Aλ0) < ε.

By Lemma 3.1, for any x ∈ B0, there are open neighborhoods V (x) and W (λ0) in
X and Λ such that

δX(ST (λ, V (x)),Aλ0) < ε for any λ ∈ W (λ0).

Since B0 is compact in X, there exists a neighborhood W of λ0 such that

δX(ST (λ, B0),A(λ0)) < ε for any λ ∈ W.

Therefore,
δX(A(λ),A(λ0)) < ε for any λ ∈ W.

The proof is complete. �

4. Continuous dependence of attractors on the shape of domain

Let Ω0 be a bounded domain in RN with boundary ∂Ω0. We consider a family
G of diffeomorphism G such that:

• Any G ∈ G is a diffeomorphism of class C1 of a neighborhood of Ω0.
We denote ΩG = G(Ω0) and let

‖G‖C0(Ω0)
= max

x∈Ω0

|G(x)|

‖G‖C1(Ω0)
= ‖G‖C0(Ω0)

+ max
x∈Ω0

|∂G

∂x
(x)|.

• Assume that

sup
G∈G

‖G‖ < +∞, sup
G∈G

‖G−1‖ < +∞. (4.1)

• The family G is equipped with the topology T such that Gj → G with
respect to T if and only if

‖Gj −G‖C0(Ω0)
→ 0.

Let X = L2(Ω0) and XG = L2(ΩG), we define G∗ : XG → X as follows:

G∗u(x) = u(G(x)) for u ∈ XG.

We consider (1.1) on ΩG×[0,+∞) and assume that (1.2)-(1.3) are satisfied. Denote
by Σt(G, u0) the semigroup in XG generated by this problem. From the results in
Section 2, this semigroup has a compact absorbing set

BG = {u ∈ XG : ‖u‖S1
0(ΩG) 6 RG}

and has a global attractor AG = ω(BG).
Denote A(G) = G∗(AG) and we define the semigroup of operators St(G, .) :

X −→ X, G ∈ G, by
St(G, u0) = G∗Σt(G, (G∗)−1u0).
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Lemma 4.1. St is continuous in G ×X for any fixed t > 0.

Proof. Let (G0, u0) ∈ G × X and assume that Gj → G0 and uj0 → u0. Putting
vj0 = (G∗

j )
−1(uj0) and uj(t) = Σt(Gj , vj0), then uj(t) is the solution of (1.1) in

ΩGj × (0, T ), uj(0) = vj0 = (G∗
j )
−1(uj0). By (4.1), there exists R > 0 such that

‖uj‖L2(0,T ;S1
0(ΩGj

)) + ‖uj‖L∞(0,T ;L2(ΩGj
)) 6 R for all j. (4.2)

Putting vj(t) = G∗
j (uj(t)) then v(0) = uj0. It follows from (4.1) and (4.2) that

vj is uniformly bounded in L2(0, T ;S1
0(ΩG0)) ∩ L∞(0, T ;L2(ΩG0)). There exists a

subsequence, still denoted by vj , such that

vj
∗
⇀ v in L∞(0, T ;L2(Ω))

vj ⇀ v in L2(0, T ;S1
0(Ω)).

Putting u(t) = (G∗
0)
−1(v(t)). Since uj is the solution of (1.1) in ΩGj

× (0, T ), u
is the solution in the sense of distributions of (1.1) in ΩG0 × (0, T ). Moreover,

u(0) = (G∗
0)
−1(v(0)) = lim

j
(G∗

0)
−1(uj0) = (G∗

0)
−1(u0).

On the other hand, putting ũ(t) = Σt(G0, v0) where v0 = (G∗
0)
−1(u0) then by the

uniqueness of solution we have ũ = u.
Now, let t ∈ (0, T ). Since vj(t) is bounded in S1

0(Ω0), there is a subsequence
(still denoted by) vj such that vj(t) → v(t) strongly in L2(Ω0). Therefore,

St(Gj , uj0) → St(G0, u0).

For any (Gj , uj0) → (G0, u0), there exists a subsequence of St(Gj , uj0) which con-
verges to St(G0, u0), the limit is independent on the subsequence, so the whole
sequence St(Gj , uj0) converges to St(G0, u0). The proof is complete. �

Theorem 4.2. The family {A(G) : G ∈ G} depends upper semi-continuously on
the parameter G, i.e.

lim sup
G→G0

δX(A(G),A(G0)) = 0.

Proof. For any G ∈ G, the semigroup Σt(G, u) has a compact absorbing set

BG = {u ∈ XG : ‖u‖S1
0(ΩG) 6 R},

where R is a sufficiently large constant depending on the constants in (1.2)-(1.3)
and on the volume of ΩG. Hence, we can choose R independent on G. It follows
from (4.1) that there exists

B0 = {u ∈ X : ‖u‖S1
0(Ω0) 6 R}

such that for any bounded set B ⊂ X and for any G ∈ G, there is τ = τ(G, B) with
the property

St(G, B) ⊂ B0 for t ≥ τ.

Let ε > 0, there exists T = T (ε) > 0 such that

δX(ST (G0, B0),A(G0)) < ε.

By Lemma 4.1, for any x ∈ B0, there are open neighborhoods V (x) and W (G0) in
X and G such that

δX(ST (G, V (x)),A(G0)) < ε for any G ∈ W (G0).
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Since B0 is compact in X, there exists a neighborhood W of G0 such that

δX(ST (G, B0),A(G0)) < ε for any G ∈ W.

Therefore,
δX(A(G),A(G0)) < ε for any G ∈ W.

The proof is complete. �
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