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DIOPHANTINE CONDITIONS IN GLOBAL WELL-POSEDNESS
FOR COUPLED KDV-TYPE SYSTEMS

TADAHIRO OH

ABSTRACT. We consider the global well-posedness problem of a one-parameter
family of coupled KdV-type systems both in the periodic and non-periodic set-
ting. When the coupling parameter o = 1, we prove the global well-posedness
in H*(R) for s > 3/4 and H*(T) for s > —1/2 via the I-method developed
by Colliander-Keel-Staffilani-Takaoka-Tao [5]. When « # 1, as in the local
theory [14], certain resonances occur, closely depending on the value of a. We
use the Diophantine conditions to characterize the resonances. Then, via the
second iteration of the I-method, we establish a global well-posedness result
in H5(T), s > 5, where 5§ = 5(a) € (5/7,1] is determined by the Diophantine
characterization of certain constants derived from the coupling parameter .
We also show that the third iteration of the I-method fails in this case.

1. INTRODUCTION

In this article, we consider the global well-posedness (GWP) of coupled KdV

systems of the form

Ut + A11Ugze + A12Vgae + 010Uz + bouvy + b3ugv + byvv, =0

Ut + a21Upge + 422Vzaz + sty + beuvy + brugv + bgvvg, =0 (1.1)

(u,v)|,_y = (u0,0)

in both periodic and non-periodic settings, where A = (Z;} Z;;) is self-adjoint and
non-singular, and u and v are real-valued functions. There are several systems
of this type: the Gear-Grimshaw system [7], the Hirota-Satsuma system [9], the
Majda-Biello system [12], etc. By applying the space-time scale changes along with
the diagonalization of A, one can reduce (|1.1) to

Ut + Ugpgr + Z;vluur + l;;uvm + E}Umv + l;:L'Uvr =0
0t + Wy + bstty, + bty + brtugv + bgvv, = 0 (1.2)
(U, U) ’t:O = (u07 ’UO)a

where a # 0, (z,t) € T x R or R x R with T = [0, 27).
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As a model example, we consider the Majda-Biello system:
Up + Uggy + V0, =0
U + Qg + (w0), =0 (1.3)
(U’U)’t:o = (ug, vo),

where (z,t) e TxRorin RxR, 0 < o <4, and u and v are real-valued functions.
This system has been proposed by Majda and Biello [I2] as a reduced asymptotic
model to study the nonlinear resonant interactions of long wavelength equatorial
Rossby waves and barotropic Rossby waves with a significant mid-latitude pro-
jection, in the presence of suitable horizontally and vertically sheared zonal mean
flows. In [12], the values of « are numerically determined and they are 0.899, 0.960,
and 0.980 for different equatorial Rossby waves. Of particular interest to us is the
periodic case because of its challenging mathematical nature as well as its physical
relevance of the proposed model (the spatial period for the system before scaling is
set as 40,000 km in [12].)
Several conservation laws are known for the system:

E1:/udx, EQZ/’Ud.T,

(1.4)

N(u,v) = /u2 +v?de, H(u,v) = /ui + aw? — wv?dz,
where H(u,v) is the Hamiltonian of the system. There seems to be no other con-
servation law, suggesting that the Majda-Biello system may not be completely
integrable. The system has scaling which is similar to that of KdV and the critical
Sobolev index s, is —% just like KdV.

First, we review the local well-posedness results of from [I4]. Note that all
the results are essentially sharp in the sense that the smoothness/uniform continuity
of the solution map fails below the specified regularities. When v = 1, the local well-
posedness (LWP) theory of KAV (Bourgain [3], Kenig-Ponce-Vega [I1]) immediately
implies that is locally well-posed (LWP) in H=3+(R) x H~4+(R). In [I4],
we showed that is locally well-posed (LWP) in H~/2(T) x H~'/?(T) without
the mean 0 condition on the initial data, by relying on the vector-valued variants
of the Bourgain space X [3] and the bilinear estimates due to Kenig-Ponce-Vega
[11.

Now, let’s turn to the case a € (0,1)U(1,4]. In the following, we first consider the
periodic setting. Since « # 1, we have two distinct linear semigroups S(t) = e—to:
and S, (t) = e—atd; corresponding to the linear equations for u and v, respectively.
Thus, we need to define two distinct Bourgain spaces X** and X2 to encompass
the situation. For s,b € R, let X**(T x R) and X5*(T x R) be the completion of
the Schwartz class S(T x R) with respect to the norms

||u||X5!b(TX]R) = H<£>S<T - €3>ba(£a T>||L§:T(ZXR) (15)
HU”Xg’b(']I‘XR) = || <€>5<T - a§3>bﬁ(£7 T)HLE)T(ZX]R) (16)
where () =1+ |-|. Then, two of the crucial bilinear estimates in establishing the
LWP of (1.3)) are:
<
”a”(le)HXS"%(TxR) ~ Hvl”Xi’%(TxR)HU2HXZ’%(TxR). (L7)
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10x (uo)]| .

< 1.8
X;’_%(TxR) ~ HUHXS‘%(?MR)”UHXZ’%(WR) 49

First, consider the first bilinear estimate (1.7). As in the KdV case [I1], we define
the bilinear operator Bg (-, ) by

B b(f; )(57 )
_ ) f(&1,711)9(82,72) r
<7_ - 53 % £1+§ =g/ T1tTe=T 52) <T1 - a£%>1/2<7—2 - a€§>1/2
Then ) holds if and only if ||Bss(f, g HL2 ||f||L2 ||g||L2 . As in the KdV

case, 6 appears on the left hand side of (|1.7] and thus we need to make up for this
loss of derivative from (7—£&3)2 (1 —a&? >1/ 2(7'2 ag3)1/? in the denominator. Recall
that we basically gain 3/2 derivatives in the KdV/a = 1 case (with &,&1,£2 # 0)
thanks to the algebraic identity

& —& - =3¢6 (1.9)

for £ = & + &. However, when « # 1, we no longer have such an identity and we
have

max (<T - £3>a <Tl - a£%>v <7_2 - agg»
~ (T = &)+ (m — aff) + (m — a&3) (1.10)
Z|(r =€) = (n —a&l) — (- afd)| = [€® — agf — agi],

where £ = £ + & and 7 = 71 + 2. Note that the last expression in ([1.10]) can be 0
for infinitely many (nonzero) values of £, &1, & € Z, causing resonances. By solving
the resonance equation:

€ —afd —afd =0 with &€ =& + &, (1.11)
we have (£1,&2) = (1€, c2€) or (2§, ¢1&), where
o = % n \/—3+612<rl, y = % o \/—3+612o¢*1. (1.12)

Note that ¢; + co = 1 and that ¢;,¢0 € Rif and only if 0 < a < 4. If ¢; € Q (and
thus ¢y € Q), then there are infinitely many values of £ € Z such that ¢1£, c2€ € Z.
This causes resonances for infinitely many values of £, and thus we do not have any
gain of derivative from (7 — £3)(r; — a€3) {12 — a&3) in this case.

If c; € R\ Q, then ¢;& ¢ Z for any £ € Z. ie. &£ —a&} —a&l # 0 for any
€,&1,& € Z. However, generally speaking, £2 — a&f — a&3 can be arbitrarily close
to 0, since ¢1£ can be arbitrarily close to an integer. Therefore, we need to measure
how “close” ¢y is to rational numbers. In [14], we used the following definition
regarding the Diophantine conditions commonly used in dynamical systems.

Definition 1.1 (Arnold [I]). A real number p is called of type (K, v) (or simply
of type v) if there exist positive K and v such that for all pairs of integers (m,n),

we have

m K
- — |z —. 1.13
Sk 2+ (1.13)

Also, for our purpose, we defined the minimal type index of a given real number
p-
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Definition 1.2. Given a real number p, define the minimal type index v, of p by
00, ifpe@
vV, =
g inf{r > 0: pisof type v}, if p & Q.

Remark 1.3. Then, by Dirichlet Theorem [I, p.112] and [I p.116, lemma 3], it
follows that v, > 0 for any p € R and v, = 0 for almost every p € R.

Using the minimal type index v,, of ¢;, for any € > 0, we have

€% —a&f —ag3| 2 ¢ (1.14)
for all sufficiently large n € Z, which provides a good lower bound on (1.10). With

([1.14), we proved that (L.7) holds for s > 1/2+ 1v,.
The resonance equation of the second bilinear estimate (1.8)) is given by

afd — & —afd =0 with &€ =& +&. (1.15)
By SOIVing 7 we obtain (Sla 62) = (dlgu (1 _dl)g)v <d2£7 (]- _d2)§)7 (07 6)7 where

—3a+4/3a(d—a) —3a—y/3a(d—a)

dy = =0 and dy =~ (1.16)
Note that di,ds € R if and only if o € [0,1) U (1,4]. Then, for any € > 0, we have
jag® — & — agd| 2 |g|! e ra)me (1.17)

for all sufficiently large £ € Z with |& — di€] < 1 or [& — doé] < 1. With (L.17),
we proved that holds for s > 1/2+ 3 max(vg, , Va,) with the mean 0 condition
on u. Note that the mean 0 condition on wu is needed since &; = 0 is a solution of
for any £ € Z. Also, we need both vy, and v, since di + da ¢ Q in general.

Remark 1.4. Tt is shown in [I4] that the bilinear estimates and hold
for s > 0 away from the resonance sets; i.e., (1.7)) holds for s > 0 on {(£,&1) : |€] 2
1,[& — 1] > 1 and & — €] > 1}, and holds for s > 0 on {(§,&) : [€] 2
L[ —di] > 1 and [§; — d2§| > 1}.
Now, let

so(a) = % + %max(ucl, Vdy s Vdy)- (1.18)
Note that sp = 1/2 for almost every a € (0,4] \ {1} in view of Remark In
[14], we proved that, for o € (0,4] \ {1}, the Majda-Biello system is locally
well-posed in H*(T) x H*(T) for s > s*(a) := min(1, sp+), assuming the mean 0
condition on wug.

We would like to point out the following. On the one hand, we have s*(a) =
so(a) = 1/24 for almost every o € (0,4]\ {1}. On the other hand, for any interval
I c (0,4], there exists a € I such that s*(a) = 1. This shows that the well-
posedness (below H') of the periodic Majda-Biello system is very unstable under
a slight perturbation of the parameter «.

Now, let us discuss the LWP of in the non-periodic setting for a € (0,4] \
{1}. In this case, the LWP of follows once we prove the bilinear estimates:

”az("}l”Q)Hstb*l(R?) 5 Hvlnx{i’b(Rz)||U2HX(§7*’(]R2) (1'19)
||am(uv)||ngb*1(]1§2) S ||u||X5vb(R2)HU”X;J’(Rz)- (1.20)

As in the periodic case, we obtain two resonance equations &2 — &3 — €3 = 0 and
af® — & —agd = 0 with € = & + &, giving rise to ¢1, di, and dy. Since the spatial
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Fourier variables are not discrete in this case, the rational/irrational character of
c1,d1, and ds is irrelevant. In [I4], we proved that and hold for s > 0
with some b = 1/2+. Using the L? conservation law N (u,v) = [ u®+v?, we showed
that is globally well-posed in L?(R) x L?(R). This result is sharp in view of
the ill-posedness result [14] in H*(R) x H*(R) for s < 0.

Note that although the rational /irrational character of ¢1, dy, and ds is irrelevant
in this case, the result for oo € (0,4] \ {1} is much worse than that for « = 1, where
the threshold for LWP is s = —%—i—.

In this paper, we continue to study the well-posedness theory of , in particu-
lar, global in time well-posedness. In view of the L? conservation, we see that when
a =1, (1.3) is globally well-posed in L? x L? in both periodic and non-periodic
settings. When o € (0,4] \ {1}, one can use the Hamiltonian H(u,v) along with
Sobolev embedding to obtain an a priori bound on the H' norm of the solutions
(u,v). This yields the GWP of in H'(T) x H'(T). Note that this result is
sharp when s* = 1, i.e. when max(v,,,vq,,V4,) > 1. In particular, this result is
sharp for a = 4 since ¢; € Q for a = 4.

In order to fill the gap of the Sobolev indices between LWP and GWP (except
for the non-periodic setting with « € (0,4] \ {1}), we use the I-method developed
by Colliander-Keel-Staffilani-Takaoka-Tao [5] to generate sequences of modified en-
ergies EU) to gain a better control of the growth of the Sobolev norms of solutions.

In the following section, we introduce the necessary notations to set up the
modified energies. In this introduction, we simply state the results without any
details. When o = 1, we use the third modified energy E®) constructed from
N(u,v) = [u*+ v? as in the KdV case [5]. In the non-periodic case, the result
follows from the argument in [5] once we prove certain pointwise cancellations in the
quintilinear multiplier for %E (3) which in turn controls the growth of the solutions.
Thus, we obtain:

Theorem 1.5. When o = 1, the Majda-Biello system (L.3)) is globally well-posed
in H*(R) x H*(R) for s > —3.

In the periodic case, in handling the situation without the mean 0 assumption
on ug and vy, we consider u — u — p and v — v — ¢, where p and ¢ are the means
of up and vy along with the conservation of F; and Fs of the means of u and v.
This leads us to consider the following system:

Ut + Ugzx + q/U:E + VUV = 0
Vi + Vggx + qQUy + DUz + (’U,’U)m = 07
When ¢ # 0, the linear part of (|1.21)) is mixed, and thus we need to use the vector-
valued Bourgain space X;:g as in the local theory [I4]. There are two difficulties
in this case. As seen in [14], the eigenvalues d;(§) and da(€) of the symbol A(§) =

3
(fq : 53_:1}57 E) of the linear part are no longer £3. Moreover, the presence of lower

order linear terms in introduces extra terms in %E@). In dealing with
the first difficulty, we need to refine the trilinear linear estimate by Colliander-
Staffilani-Keel-Takaoka-Tao [0, Theorem 3] using d;(£) and d2(€). This requires us
to go through a more refined number-theoretic counting argument. See Appendix.
In the end, we obtain the following result.

Theorem 1.6. When a = 1, the periodic Majda-Biello system (1.3)) (without the
mean 0 assumption) is globally well-posed in H*(T) x H*(T) for s > —1/2.

(1.21)
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We point out that the algebraic identities [3]:

€3+ e3 €3 =36166, whené& +&+6=0

E+E+E+E=3E+E)(E +E)& +E), when & +E&+E&+E=0
(1.22)
play a crucial role in the proof when o =1 as in the KdV case.

When a € (0,4) \ {1}, is locally well-posed in H*(T) x H*(T) (with the
mean 0 assumption on wug) for s > s* := min(1, so+), where so = so(c) is given in
. It is also globally well-posed in H'(T) x H!(T). When so > 1, this is sharp.
Hence, we assume sy < 1 in the following. In this case, we construct the modified
energies £) using the Hamiltonian H (u,v) since s* € (3,1). The main difficulty
when o # 1 lies in the fact that we can not make use of the identities in ((1.22))
and that the multipliers for %E () no longer satisfy certain symmetries needed for
reasonable pointwise cancellation. In this case we obtain the following positive and
negative results, using the I-method with £(), j = 1,2, 3.

Theorem 1.7. Let o € (0,4) \ {1} and so < 1. Assume the mean 0 condi-
tion on ug. Then, the I-method with the first modified energy E() establishes

the global well-posedness of the Majda-Biello system (1.3) in H*(T) x H*(T) for
X 2
s > 3HT(ot)=2(s0t)” particular, it is globally well-posed for s > % for almost

every o € (0,4).

Theorem 1.8. Let o € (0,4) \ {1} and so < 1. Assume the mean 0 condition on
ug. Then, the I-method with the second modified energy E?) establishes the global
well-posedness of the Majda-Biello system (1.3) in H*(T) x H*(T) for
(6(80+) — 2(80+)2 2(80+) + 9)

5— (so+) ’ 14 '

In particular, it is globally well-posed for s > 5/7 for almost every a € (0,1).

S > max

Remark 1.9. We show that one of the quintilinear multipliers for the time deriv-
ative %E(?’) of the third modified energy is unbounded. Hence, the I-method fails
after the second iteration, and Theorem is the best global well-posedness result
we can obtain via the I-method. See Section

Now, we compare Theorems and In Figure [I] the curve I shows the
Sobolev index s for the GWP, obtained by the first modified energy E(!), against
the LWP index sg, and II shows the GWP index obtained by the second modified
energy E®. Since 3 — 2 ~ 0.75 — 0.714 = 0.036, it may seem that Theorem
does not provide much improvement. However, Figure[I]shows that there’s actually
a significant gain in Theorem at least for sg > g—g ~ 0.69, i.e. until the curve II
bends. When sy = %, Theorem gives the GWP index s ~ 0.861 and Theorem
[1.§ gives the GWP index s ~ 0.741 with their difference 0.12 > 0.036.

Lastly, we summarize the LWP and GWP results for KdV and the Majda-Biello
system in the tables below. Note that Kappeler-Topalov [I0] proved the global
well-posedness of KAV in H~!(T), using the complete integrability of the equation.
We did not include this result in the tables since their method can not be applied
to the general coupled KdV system which is not necessarily integrable.

This work is a part of the author’s Ph.D. thesis [I3]. In the forthcoming papers,

we address the invariance of the Gibbs measures (i.e. the weighted Wiener measure
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3/4
517

F1GURE 1. GWP index s against LWP index sq

KdV |a=1 O<axl1
T f% f% %+ ~ 1, depending on «
3 3
Rl -3 | -1t 0

TABLE 1. Local Well-posedness Results

KdV | a=1 O<ax<l1
T f% f% %Jr ~ 1, depending on «
3 3
R| -4+ ]| -5+ 0

TABLE 2. Global Well-posedness Results

for @ € (0,4] in [I5] and the white noise for & = 1 in [16]) in the periodic setting
and the global well-posedness almost surely on the statistical ensembles.

This paper is organized as follows. In Section 2, we introduce some standard
notations as well as the notations for describing certain multilinear forms. In Section
3, we introduce the modified energies for the non-periodic setting with o = 1.
Then, we focus on establishing a pointwise estimate for one of the quadrilinear
multipliers which is not present in the KdV case [B]. In Section 4, we first go over
the vector-valued functions spaces to handle the well-posedness theory on T with
o = 1 without the mean 0 assumption. After introducing the modified energies
in this setting, we establish tri-, quadri-, and quintilinear estimates. We conclude
this section by proving Theorem via the almost conservation law of the third
modified energy. In Section 5, we present the proof of Theorem We first
introduce the modified energies constructed from the Hamiltonian and discuss the
unboundedness of the growth of the third modified energy. Then, we establish the
almost conservation law of the second modified energy by establishing the crucial
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quadrilinear estimates. In Appendix, we present the proof of Lemma [£.10] the
crucial trilinear estimate for proving Theorem in Section 4.

2. NOTATION

Let Ty = [0,27A) for A > 1. In the periodic setting on T}, the spatial Fourier
domain is Z/\. Let dé* be the normalized counting measure on Z/\, and we say
ferLP(zZ/N),1<p<ooif

1/p 1/p
1fllzezn) = (/Z/A |f(€)‘pdgA> = (% gEXZ;AIJ“(QI’”) < 0.

If p = oo, we have the obvious definition involvingAthe essential supremum. For
f € S(R), the Fourier transform of f is defined as f(&) = [ e f(x)dx, and its

inverse Fourier transform is defined as f(&) = %A(—f). If f € L?(T)), then the
Fourier transform of f is defined as

2T
f(6 = / e f(x)dx, where £ € Z/),
0
and we have the Fourier inversion formula

f@ = [ e flgae = o Y e o).
Z/X TA cczin

If the function depends on both z and ¢, we use "= (and "*) to denote the spatial
(and temporal) Fourier transform, respectively. However, when there is no con-
fusion, we simply use " to denote the spatial Fourier transform, temporal Fourier
transform, and the space-time Fourier transform, depending on the context.

Let () =1+]-]. For Z =R or Ty, we define X**(Z x R) and X$*(Z x R) by
the norms

||UHXS=b(ZxR) = [1{§)* (T — €3>ba(§>7-)”L§,T(Z*><R) (2.1)
[0ll sz xmy = 166 (T — a€®)°B(E, )12 2+ ), (2.2)

where Z* =R if Z =R and Z* =Z/X if Z = T,. Given any time interval I C R,
we define the local in time X*°(Z x I) by

H“”X;«b = HUHXSJ’(ZXI) = inf{|‘ﬂ||Xs~b(Z><R) culp = U}.

We define the local in time X32*(Z x I') analogously. In proving estimates, we often
use the Littlewood-Paley decomposition implicitly. In such cases, we define N; to
be a dyadic block for ;, i.e. |§;| ~ N;. Also, in dealing with a product space of
two copies of a Banach space X, we may use X x X and X interchangeably.

We use ¢, C to denote various constants, usually depending only on s, b, and «.
If a constant depends on other quantities, we make it explicit. We use A < B to
denote an estimate of the form A < C'B. Similarly, we use A ~ B to denote A < B
and B < A and use A < B when there is no general constant C' such that B < C'A.
We also use a+ (and a—) to denote a + ¢ (and a — €), respectively, for arbitrarily
small ¢ < 1.

Now, we introduce the notation for describing certain multilinear forms; see for
example [5], Tao [I7]. Let X = R or Ty and Y denote the corresponding Fourier
space, ie. YV =R i X =R, and Y = Z/\ if X = T,. For n > 2, define an
n-multiplier M, (¢1,...,&,) to be a function: T',,(Y) — C, where I',(Y) is the
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hyperplane in Y given by I',,(Y) = {(&1,...,&) € Y" : &+ -+ &, = 0}. We
endow I',,(Y') with the n — 1 dimensional surface measure given by

/ P a1 Ea)der . dEns.
T, (Y) yn-1

We use dﬁj’-\ in place of d¢; if Y = Z/X. Also, given an n-multiplier M,,, define an
n-form A, (M; f1,..., fr) acting on n functions fi,..., f, by

Ap(Myi fry s fo) = /F My (&1, &) Fi(E1) o Fuln).
Given an n-multiplier M,, on ', (Y'), we define its norm || My, [|(,,;y to be the smallest
constant such that the inequality [A,(Mp; fi,- -+, fu)l < Mgy [T—1 1 fill2v)
holds for all test functions f; on Y. We extend this definition of the multiplier

norm to the space-time n-multiplier M,, by defining || M, ||y xr) to be the smallest
constant such that the inequality

| [ 8Os i )] < Wl [T Wil 23)
Jj=1

holds for all test functions f; on Y x R. We define the symmetrization of an
n-multiplier M,, by

(Mo (€ 16) = - 52 Ma(0(61,-160)),

" oES,

where .S, is the symmetric group on n elements. Unlike the KdV theory, we some-
times need to symmetrize only under certain indices, say j and k.
We define the symmetrization under j and k by

[(My]jer (&, 6n)
- 1/2(Mn((§1,...,gj,...,g,g,...,fn)) +Mn((fl,...,fk,...,gj,...,gn)))

Similarly, for pairs of indices (j1,k1) and (jo, k2), we define [M,];, —k, to be the
Jak
symmetrized average of M, under j; <> k1 and jo < ko. o
Lastly, let &p = & + &y S = & + & + &, and Z, = & + - + & Note
that we have nice algebraic identities for Z, when k = 3,4: Z3 = 3£1£2€3 when
§&1+&+ & =0and

i+ &+ & +E=0=Z, =& + &+ +6 =3¢26361. (2.4)

3. GLOBAL WELL-POSEDNESS ON R, v =1

In this section, we briefly discuss an application of the I-method on R for @ =
1 to obtain the global well-posedness in H~3+(R) x H~3+(R), referring to the
corresponding results in the KAV theory [B]. We mainly focus on setting up the
modified energies, displaying certain asymmetry in the multipliers which was not
present in the KdV theory [5]. Then, we concentrate on proving the pointwise
estimate on the multiplier in the absence of full symmetry. The remaining argument
is basically the same as in [5] and hence is omitted. For full details, see [13].
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3.1. Modified Energies. For s < 0, define m : R — R to be the even, smooth,
monotone Fourier multiplier given by

m(e) = {1&5 forlef = (3.1)

‘5‘7_5, fOI' |§|22]\77

for N > 1 (to be determined later), and the operator I to be the corresponding

Fourier multiplier operator defined by ﬁ (&) = m(&)f(£). The operator I is smooth-
ing of order —s (since s < 0) : H® — L? and we have |||/ xs0.00 < |11 xs0-500 <
N3 fll xs0.b0 for any sg,bp € R.

Now, define the first modified energy E()(t) by

EMW(t) = N(Iu, Iv)(t) = || (Tu, To)(t)[| 72 12-
By Plancherel and the fact that m, u, and v are real-valued, we have
EMN (1) = As(m(&)m(&2)iu,u) + As(m(&)m(&2);v,0).

Using (|1.3)), we have
d

%E(l) (t) = —3iA3 ([m(gl)m(£23)€23]sym§ U, v, U) = A3 (MS; U, v, U)v (32)

where Mz = 3i[¢;m?(¢1)]sym. Now, we define the second modified energy E?)(t)
by

E(z) (t) = E(l)(t) + A3(03; u, v, U)a
where the 3-multiplier o3 will be chosen to achieve a cancellation. Then, we have

d d d
2 @) — 2 (D) el .
th (t) th (t) + thg(O'g,u,’U,’U). (3.3)

By (1.3)), we have

d . i
7A3(0-3; u,v, U) :A3(ZU3Z3; u,v, ’U) - §A4(£14U3(€147 52753); v,v,, U)

dt
— 204 (&2303(&1, 623, €4)5 u, u, v, 0).

Then, by choosing o3 = i%f, we cancel the two trilinear terms in (3.3]) and thus we
obtain

%E@) (t) = Ay(My;v,v0,0,0) + A4(]\Z; Uy U, V, V),
where My = —%[£1403(&14, €2, €3)]sym and My = —21'[52303(517523»54)]:%:% Now,

we define the third modified energy E)(t) by
E(B) (t) = E(z) (t) + A4(J4; v,0,v, U) + A4(6—\Z; U, u, v, ’U),

with oy = i%“ and o4 = ’;ME Then, using , full symmetry of o4, and symmetry
of 04 in 1+ 2 and 3 « 4, we have
d
dt
where

E(3)<t) = A5<M5;’U/,’U,’U,’U,’U> + A5(],\\4/5;U7U,U7’U7’U) + A5<],\Z5I;U,U,U,U7U),

Ms = —4i&1504(615, 62,63, 64), M; = —2i€3504(&1, &2, 835, 84)s

y (3.4)
Ms = —ila504(&1, 825,63, &4).
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3.2. Pointwise Estimates of the Multipliers and Almost Conservation
Law. Let |¢;| ~ Nj, |éxi| ~ Ni for Nj, Ny, dyadic. Then, we have the fol-

lowing pointwise estimate on My and ]\Z. Since My is symmetric in {1, 2,3, 4}, the
proof for My directly follows from Lemma 4.4 in [5]. However, since My is symmet-
ric only in 1 «-» 2 and 3 < 4, we need to obtain new pointwise cancellations. The

proof for My is presented at the end of this subsection.

Lemma 3.1.

IM (€1, 62,63, 60)| S | Za|m? (min(N;, Ni))

(N + N1)(N 4 N2)(N + N3)(N + Ny)

(3.5)

where M = My or ]\Z.
Lemma shows that M, and Z\Z vanish whenever Z, vanishes. Moreover, we

— —~/
have the following pointwise estimates for M5, M5, and M5 as in the KdV case.

Corollary 3.2.
m?(N,15)N1s

M ) 9 ) ) S

MalEr €280, 80 8| S (N N (N + No) (N + Na) (N + No)
where Ny5 = min(Na, N3, Ny, Ni5, Na3, Nog, N3g). The same estimate holds for
— —~/
My and Ms with the obvious change. i.e. we replace Nis, Ni15 by N3s, Ni35 for

(3.6)

]\A4/5, and by Nas, Nyos for Z\,Z5/ along with the rest of variables adjusted accordingly.

Once we establish the pointwise estimates on the quintilinear multipliers in Corol-
lary we need to control the growth of the third modified energy E(?’)(t). Using
Lemma 5.1 in [B], we obtain the following lemma. (See Lemma 5.2 in [5].)

Lemma 3.3. For s = —%—l—, we have

[0,1]

1 5
[ st )t S NECTT 1A oo (37)
j=1

where M = Ms, ]\’4;, or ]\f/.\fjr)l.

We point out that the proof of Lemma 5.2 in [5] does not make use of symmetry
of the multiplier M5 after establishing Corollary 3.2} Hence, the same result holds

—~ —~
for M5 and M , thus providing a good estimate on the time growth of E(3) (t). We
omit the remaining portion of the proof of Theorem [1.5| since it basically follows
from the argument in [5].

- _ iMy _ =3[ (€)]eym
Proof of Lemmal[3.1l Since o3 = L= T nne o, we have

_ (20 &mP (&) + Ea3m®(€a3) + Lam?(&4)

12 .
34 3 §184 12

(3.8)

My = —2i[€2303(&1, 23, €a)]

From , we have
Zy = 3612613814 = 3(§16283 + 18284 + §16380 + €2€384). (3.9)
Then, we have
[%M@} _ [zm%m g’<m2<£1) m%)ﬂ
12 Lo

366 & g 3V & &
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a4 (mP(&) +mP(&))Zs i mP(&) | mP(&) | mP(&) | mP(&)
B I8 R

where the symmetry 3 < 4 is used in the first equality and 1 < 2 is used in the
last equality. A similar computation yields

{%§4m2(§4)%} _ i (m() + m?(&))
3Gk GLli T I P
Since &o3 = —&14 and m is even, we have m(&23) = m(&14). Using this fact and

(13.9), we have

|:27, fggm (523) 7 Z4

3 & h:i B _%m(mZ(&?’) +m?(€1a) +m?(E23) +m*(E24)).-

Hence, after symmetrization 1 « 2 and 3 < 4, we can write ]\Z as

4=

36 H N3 ( Z_:m (&) — m?(&13) — m*(&ua) — m*(&23) — m2(§24))

. ‘ L2
_6( Z 5(5]) £y ;}f )) — 1411

J,k=1 j,k=3

(3.10)

Now, let L; denote the jth largest dyadic interval among Nj, j =1,...4. Since
]\Z is symmetric in 1 < 2 and 3 < 4, assume N; > Ny and N4 > N3. We further
assume Ny > Ny, since ]\Z is symmetric under 1 < 4 in view of . Also, a
simple reasoning (as in [5]) shows that we may assume that Ny 2 N and that
at least one of Nio, Ni3, N14 is at least of size ~ Nj. Lastly, note that we have

Ni2Ni3Niam?(min(N;,Ngp)
RHS of (3.5) ~ 12N11L32(K}+L3)(N+L4)M .
e Case (1): Ly 2 N/2 In this case, we have N + L; ~ L; for all j. Since m is
2 .
decreasing, we have |I| < [Zalm mintV.Nu)) ©opich gatisfies (3.5). Now, write the

H?:1(N+Nj)
term II in (3.10) as

i m2(&) i mA(&) | mA(&)  m2(&) | mE(E)N
__6; & _6( & + & + & + & )_IHI—FHZ.

Note that IT; appears in [5] and it can be estimated by Mean Value Theorem and
Double Mean Value Theorem [5, Lemmata 4.1 and 4.2]. Now, we estimate IIs.
o Subcase (1.a): Ni2, Ni3, N14 2 N1. In this case, we have

m(L4) N12N13N14m2(L4)
TI,| < I < Ny LaLals ~ RHS of (3.5).

o Subcase (1.b): Ny, N14 = Ny and Nj3 < Np. In this case, write two terms in
11, as

m2(§1) 53 ‘ _ ‘ m?*(&)éis n m*(&3) — m2(51)‘
£2 264 €4 '
The first term is of size ~ UZRZV“ < N“Nﬁll\i;;gl (L1) < RHS of (3.5). On the

other hand, since N1z < Ny, we have [m?(&3) —m?(&1)| = [m? (& —&iz) —m?(&1)] ~
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Nizm?(N1)
N

- . Then, the second term can be written as

m?(& — &13) — m?(&) N Ni3m?(Ny) < NiaNi3Niam?(L
& NiNy ~ N3N,

4) < RHS of (3.5).

Since Noy = Ny3 < Np, a similar computation holds for |% + % | A similar
computation holds if precisely one of Ny, N13, N14 is much smaller than Nj.
o Subcase (1.c): Nig, Ni3 < N7 and Ny4 2 Np. In this case, we have Ny ~ Ny ~
N3. Write Il as
11, = m?(€1)€246163 +m (52)5135254 m?(&3) —m? (&) L m? (&) —m? (&)
1. & €4 €3

== ﬁl + ﬁz + 113

Then, using (3.9) and Mean Value Theorem on m? (&) — m2(&1) = m2(&; — &12) —
m?2(&1), we obtain

| _ m? 51 Z4 2(52) *mz(fl)
31_[] 1§J §183

which is < than the right-hand side of (3.5]).

Next, we apply Mean Value Theorem to estimate Il + I~13, using Noy = Ni3 <
N;i. Then, for some & ~ & and &5 ~ &2, we have

m2(N1)Z4 N12N13m2(N1)
31_[31»:1 Nj N12N5

13 S

Ty + 1T
N ng?ﬁls er?éfz?fm‘
164 263
m?(&7) m?(&f — &12) &) | m*(& — &)
= 513( &G (& — &) +én) >‘ ‘513( (£3)&s * (&7 —&12)&3 )’
m2 (£ _ m2(&F
<[ «s(rg L e sl

’513< (=&) 2(5?*512))’_

(=6)& (& —&2)és

Now we can apply Mean Value Theorem on the first and the third term, since
12| < Ny and [(§] — &i2) — (—&)] < 67 — &l + € — €| < N2 Then, we have
T, + I3 < %&i(m < RHS of (3.5). We point out that, unlike [5], we could
not apply Double 1Mean Value Theorem. Note that the first application of Mean
Value Theorem on I~Il is only on the numerators, and the second application of
Mean Value Theorem on ﬁg + ﬁg is on the whole fractions. A similar computation
holds if precisely two of Nyo, N13, N14 are much smaller than Nj.
e Case (2): Ly < N/2

In this case, we have m?(min(N;, Ni;)) = 1. Let Lyj ~ |€1 + &k | where |&x| ~
Also, L4 < N1 ~ Lo. Thus, it is sufficient to show |M4| < % As in [ ],
a simple reasoning shows that we have max(Lis, L13) ~ Nj in this case.
o Subcase (2.a): Li3 ~ Ny, % S Lip < %. In this case, we have Lg ~ Lis 2 N.

From this and LN—lf ~ 1, it is sufficient to show |]\Z| < +. First, note that 0 Zs z
j=165J

32‘;:1 é by (3.9). Then, after rewriting (3.10]) using this identity, all the terms
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which don’t have L are O(+) since Lo, Ly > N. If Ly = N3, the remaining terms
1 N1)N. N2)N
E( (Ni) ER (Ns) 3

the case Ly = Ny is similar.

o Subcase (2.b): L1z ~ Ny, L1y < %. In this case, we have L3 < % Thus,

it is sufficient to show |]\74| < % First, suppose Ly = N». Then, we have

m?2(&3) = m?(€4) = 1. Then, from (3.10]), we have

are ~

) < % by Mean Value Theorem. A computation for

. 2 . 2 2 .
= i m=(§)\ i+ &
M, = m2<§1{j+2}))+2)77( j )7, :
18 H] 1 5] ]; 6 ],kz—l g/c 3 5354
(3.11)
L . Zy _
In principle, the last term could be large. However, using (| , we have & 5 HJ =

éggjé“ — %%E% The first term exactly cancels the last term in and the

second term is O(]X;;) < ?\}24. Then, using (3.9), the remaining terms in 1 can

be written as

7 Zy 2 2 2 ! m2(§j)
Em;(m (&) —m*(1gi42y) — 6( Z &k )

Jik=

[

1618283 + 618284 2 ,
= EW ; (m2(£]) - m2(§1{j+2}))

0 €18380 + 828380, o 2
- GW( (§13) +m (fl4))~

The first term can be bounded by Double Mean Value Theorem as in [5], and the
second term can be estimated by ]\][\1[ e < 1]\\[]122
Next, suppose Ly = Ny. Then, we have m?(&3) = m?(£3) = 1. In this case, we

also have m?2(£14) = m?(L12) = 1. Then, By repeating a similar computation, we

have, from (3.10)),

~ i Z
M, :Tg%(m2(fl) +m?(&) +1 - m?(&13))
Hj:l &
_ f(m2(€1) n m*(&1) n m*(€4) n m2(§4)) _ j(fl + &2 . &3 +€4)
6\ & 3 3 &4 §1é2 €384 (312)
Once again, the last term could be large in principle. However, using , we have
15 Hi‘i 5= i géjé? + é%jé“ This exactly cancels the last term in . Using

and Mean Value Theorem as before, the remaining terms in are can be
bounded by N“.

o Subcase (2.(3). Lis ~ Ny,
Subcase (2.a).

o Subcase (2.d): Lis ~ Ny, L1z < %. Then, Loy = L3 < % and Ly < %
imply Lo < N, which is impossible since Ly ~ Ny 2 N. Hence, this case does not
occur. (]

% < L1z < %. This case basically follows from
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4. GLOBAL WELL-POSEDNESS ON T, o =1

4.1. Vector-Valued Function Spaces. In this subsection, we recall the vector-
valued function spaces introduced in [13] and [14], which are needed to study the
well-posedness issues of without the mean 0 condition.

Assuming the mean 0 condition for u and v, the bilinear estimate (with
a = 1, adjusted to the period 27\ [5]) yields the local well-posedness of in
H*(Ty) x H*(T,) for s > —1. Proceeding as in Section [3| one can also establish
the global well-posedness of for s > —% via the I-method.

It is known from [11] that the crucial bilinear estimate (with @ = 1) fails
for any s,b € R unless the functions have the spatial mean 0 for all ¢. If the means
of u and v are not 0, we consider u — u — 5= [‘ug(2)dz and v — v — 5= [vo(z)dz
along with the conservation of F; and Fs, the means of v and v. This modifies the
Majda-Biello system into the mean 0 system:

Up + Uggr + qQUz + VU =0

4.1
V¢ + VUgpz + qUg + PU + (UU)I = 07 ( )

where p and ¢ are the means of the original u and v in (1.3). Now, consider the

linear part of (4.1):
3, (0 ¢ w) _
(0 + 02+ (q p)) <v) = 0. (4.2)

When g # 0, the linear terms are mized. In this case, it does not make sense to
consider the solution space as the direct sum of the scalar X*° spaces. By taking
the space-time Fourier transform of (4.2)), we see that the Fourier transforms of
free solutions are “supported on” 71 — A(§), where I is the 2 x 2 identity matrix
and A(¢) = (_5; 63_:1;5) Since A(€) is self-adjoint, it is diagonalizable via an
orthogonal matrix M (&) (with M (0) := I). i.e., we have A(¢) = M (£)D(&)M~1(€),

where D(§) = (dlég) d;ég)) and dq(£), da(€) are the eigenvalues of A(€) given by

d;j(€) =€ — B+ (-1)L¢, j=1,2, (4.3)

with L := L(p,q) = 1/21/p?> + 4¢2. Then, we can define the vector-valued X*°
space as follows:

Definition 4.1. Define X35(T x R) = {(u,v) € §": ||(u,v)||X;:2 < oo}, via the
norm

||(va)||xg;g(1er)
1 s 2b (a(e,r u(g, 1/2
(Sl o™ (363 (363) | o)
EEZ
where [, ]c2 is the usual Euclidean inner product on C2.

Remark 4.2. Since 71 — A(§) is self-adjoint, (71— A(E))2 is a positive matrix with
a unique positive square root. We define |71 — A(§)| by such a unique square root.

Then, I+ |7I — A(£)| is also positive definite and we can define (I + |71 — A(§)|)2b
2,
by M(&)(I + |71 — D(&)[)" M (&)
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Remark 4.3. Note that the X;;Z norm is not defined as a weighted L? norm of
[ and [9], unlike the scalar X** norm. Now, let

(ven) =m0 (363)- (4.4

Then, by the orthogonality of M () for all £ € Z, we have

o) oy = (€| tr1 = acen (567 L dear) ™

2 1/2
- (6o pior (352 Lo
= (101 e + V12 00) "%,
where
1 llxeo = 464 = dy@FEN,z o 5=1.2. (4.5)

Hence, X;:g is defined as a weighted L? norm of the diagonal terms |(7| and |X7|
Thus, we can prove all the estimates in terms of these diagonal terms with their
accompanied X;’b norms, assuming that U and V' are nonnegative.

1

As in the scalar case, we use b = 1/2 in the periodic setting. Since the X2

norm barely fails to control the CyH; norm, we define a smaller space Y7, via the
norm

1 0y, = (w0l oy + €)@, 0)(E T2 ae, 1)

p,q

Then, we have Y’ C CtH;. We also define Y}° via the norm
1l = AN ey + K€ F(E T2 ag nrys =1, 2.
i

In proving estimates, we repeatedly use the orthogonality of M () for all £&. Thus,

if F and G are the diagonal terms of f and g given by (GEED M~1(¢), then

[F@P+IGEP = FEP+[GE)? for all & Tn particular, ||(F,G)|z = [I(f,9)]z2-

Now, we like to discuss the scaling property on on [0,27)) x R. (4.1)
was obtained from (1.3) via v — u — p and v — v — ¢, where p and ¢ are the
means of the original v and v in , respectively. Now, consider the scaling

T =1[0,2m) — Ty = [0,27)) on (1.3)) given by

1 t x

Nz, t) = pu()\* X)
t x

vz, t) = 2 (/\* X)

and

B@) = 35005

Note that the scaling does not preserve the means of u and v. Rather, we have
A = the mean of u* = p/A\?, and ¢* = the mean of v* = ¢/\%. Then, after scaling,
we need to consider the following equation rather than (4.1):

U+ g + g 0 v g =0
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v} +vh, + ud +prod + (uot), =0
on [0,27)) x R, where p* = p/A\? and ¢* = ¢/A\?. Hence, p and ¢ in the definition of
X;:g and Y, need to be modified accordingly when we apply scaling. i.e., we need
to consider X;;bqk([o, 27A) x R) and so on. The same modification is needed for

X ]S * and Y} as well since their definition depends on the eigenvalues d; (£) and d2(§)
in , which in turn depend on the spatial averages p and ¢. In the following, we
drop the subscripts p and ¢ in X;;g and Y’ when there is no confusion.

Before concluding this subsection, we verify that E(u,v) = [u? 4+ v?dz =
As(1;u,u) + Ag(1;v,v) is conserved for the mean 0 system (4.1), using the multi-
linear notation. From , we have

0,(€) = IEU(E) — ig€D — €0+ D(E)
0y0(€) = i€70(€) — iq€u — i€ — i€u * V(€).
Using and the fact that & + &5 = 0 when & + & = 0, we have

& B (1)
= iAo (& + &5 u,u) — 2igAs (15 u,v) — iA3(Eaz; u, v, v)

+ il (€ 4 €35 0,0) — 2igAa (&1 v, u) — ipAa(§r2;v,v) — iAs(§12 + &is3u, 0, 0)
= —2iqAo (&1 + E25u,v) — 2iA5(& + & + &35u,0,0) = 0.

Hence, E(u,v)(t) = ||(u,v)||72, > is conserved. As in Section [3} we use E(u,v)(t)
to generate a sequence of modified energies and apply the I-method to prove the
following theorem.

Theorem 4.4. Let p,q € R. The Cauchy problem (4.1)) with mean 0 initial data
(uo,v0) 1s globally well-posed in H*(T) x H*(T) for s > —1/2.

(4.6)

As a corollary, we obtain Theorem [I.6]

Before proceeding with the I-method, recall that we have p=~%sand ¢g= {5 on
Ty, where p; and g; are the means of uo and vy of (| on T. In the followmg,
we fix the initial condition (ug,vp) of ( on T. Thus p1 and ¢ are fixed. We
often hide p; and ¢; under implicit constants in proving estimates. Also, for our
purpose, we set A > 1 in the remaining of the section.

4.2. Modified Energies. Asin Section for —% < s <0, define the first modified
energy EM(t) = ||(Tu, Iv)(t) ||2L2 . .2» where I is the Fourier multiplier operator with
the symbol m defined by (3.1] . Using (4.6)), we have

jE(l (t) = As(M3; u,v,v) —ipAa(€10;v,v) —igha(E1am? (1) +m2(&2);u,v) (4.7)

where Mz = 3i[¢;m?(£1)]sym. Now, we define the second modified energy E(?)(t)
by
E@(t) = EW(t) + As(os;u,v,0), (4.8)
where o3 = ZM3 to cancel the trilinear term Az(Ms;u,v,v) in . By (4.6 ., we
have
d

7
%A3(037U v,v) =A3(io3Z3;u,v,v) — §A4(£1403(§14a§2;53);7}707’07’0)



18 TADAHIRO OH EJDE-2009/52

— 2iA4(62303(&1, €23, 84); U, u, v, 0) — 2iqA3(§1035 U, U, v)
— 2ipA3(&303;u,v,v) — igA3(§303;0,v,v).
By symmetry in &,&,&s, we have —igAs(&303;v,v,v) = —%A3((& + & +
&3)os;v,v,v) = 0. Thus, we have
d —
aE(Q)(t) = Ay (My;v,0,0,0) + Ag(My; u,u, v,0) + Az (M u, u,v) + Ag (MY u,v,v),

where My = —£[£1403(£14, &2, €3)lsym, M, = —21'[52303(517523754)]%:4%7 and
M3 = [-2ig€103(61,€2,63) 1002 = —iq€1203(E1, €2, €3)
My = [-2ip&103(&1, 62, E3)]23 = —ip€2sas (&1, &2, E3).

Note that M, and ]\Z are exactly the same as Section Now, define the third
modified energy E®)(t) by

(4.9)

E(3)(t) = E(z)(t) + Ay(og;0,0,0,0) + Ay (0g; uyu, v, 0). (4.10)
As before, by choosing o4 = 2%4 and o4 = i’ZME, we can cancel the quadrilinear

terms in %E@) (t). However, there are several lower order multilinear terms after
differentiation. Indeed, using (4.6]), full symmetry of o4, and symmetry of o4 in
1 < 2 and 3 < 4, we have
d ~ —
%E(g) (t) =As5(Ms; u,v,0,0,0) + As(Ms; u,u, u, v,v) + As(Ms ;u,v,v,0,v)
—~/ —~ I
+ A4(Méia u,v, v, U) + A4(M4 ;U,V, 0, U) + A4(M4 y Uy Uy U,y U)

—~ 1

(4.11)
where Ms, ]\ZN and ]\Z)/ are as in (3.4), M} and MY are as in (4.9)), and
— N
Mzi - —42'(15104(51,52»53754); M4 = _2iq£20—4(£17§27£37£4)7 (4 12)
" :

My = —ipssoi(€r, E2,65.61), My = —2iq€s01(E1, &, 3, E1).

Hence, we need to estimate all the trilinear, quadrilinear, and quintilinear terms in
order to establish a good control on the growth of E(®).

4.3. Trilinear and Quadrilinear Estimates. In this subsection we establish
estimates on the trilinear and quadrilinear terms in . First, we state the
dual form of the bilinear estimate in [14, Proposition 7.9]. Let i, ¥, & be functions
on Ty x R with the spatial mean 0 for all ¢ € R. Let [7, ‘7, W be the diagonal

72 TiEn Y _ -1 ai(é,r)
terms of @, U, w; i.e., (f]}(g,f)) =M~1(¢) (@(SJ))’ ete.

Lemma 4.5. Let i, 7,4 be as described above. Furthermore, assume the spatial
Fourier transforms of U;, Vi, Wi are supported in dyadic blocks; i.e., suppg U&,t) C

{|¢] ~ 27} for some J for allt, etc. Then, for s > —%, we have, for j, k,l € {1,2},

|Vk||Xs,l ||Wz||X

2 [071]| k2 [0,1]

1
A3(1;U5, Vi, Wi)dt| S AFNUG | Ls
’/0 ! T CP0I (413)

SNl o T s s
- X011 X1 X
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Using this lemma, we have the following growth estimate on the trilinear terms.

Lemma 4.6. Let u, v be functions on Ty x R with the spatial mean 0 for allt € R.
Then, for s > —1/2, we have

1
‘ / Ag(Mé;u,u,v)+A3(M§’;u,v,v)dt‘ < AN ([, Tv) (4.14)
0

”3 0,% .
X010

Proof. We prove the estimate only for M} as the proof for MY is basically the same.
First note that (4.14]) is equivalent to

, (4.15)

s

(o,

1
| [ Aol it] £ 372N ()
0 X

= N

]

where ]\Afg, = . Let T be the trilinear Fourier multiplier operator defined

Fom(&))
Jj=1 J .
by M4 and let U = (Uy,Uy) be the diagonal term of @ = (u, v) given by (%i?) =
2 \T
M=) (ggg:; ) In view of Remark assume ﬁ; and (7; are nonnegative. Then,

upon defining the bilinear operator B by B( f, 9 = ( f1091 ), we have

LHS of - ]/01 /T T[(B(w, w))(x,t),w(x,t)}dexdt‘.

After dyadic decomposition |§;| ~ N;, j = 1,2, 3, we can replace the sharp cutoff
Xo,1](t) by a smoothed one (c.f. [4].) Then, by proceeding as in the proof of [14}
Proposition 7.9], the left-hand side of (4.15)) is

2
- ‘/ﬁl‘f”rz""‘rg:o Z M3Cj,k,lUj(§1,7'1)Uk(§2,T2)Ul(£377-3)d€§‘d§§\d7-2d7.3 ,
&1+62+83=0 j,k,l=1

where Cj i, is defined in terms of the entries of the orthogonal matrix M (), and
thus we have |C} ;1(1,&2,8&3)] S 1 for all &1,&,83 € Z/X and j,k,1 = 1,2. See
the proof of [14, Proposition 7.9]. Then, by Lemma on each dyadic domain
A = {l¢| ~ N;j, j = 1,2,3}, we have LHS of < A0+supA|%|||ﬁ|\3 e

0,11
Hence, it only remains to estimate sup 4 |]\A4/3| on each dyadic domain and sum up
in the dyadic variables N1, No, and Nj.

Recall that M3 = —ig€1203(£1,82,€3). Also, on Ty, we have ¢ = {5. Since

2 . 3 o2&
o3 = 773[%2 5,(2?3)]”"‘, we have M3 = %72]:1322 ©) In the following, we assume
max N; 2 N since ]\7[;, = M3 = 0 when Ny, Na, N3 < N. Now, let L; denote the

jth largest dyadic block among Nj, N3, and N3. Then, we have Ly ~ L1 2 N

since £123 = 0. From Lemma 4.3 in [5], we have |Z?:1 &m?(&)| < Lsm?(Ls).
Thus, we have |Mj| < %1(162) By symmetry, assume N7 < No. If Ly = Ny,
then Ny ~ N3 > N and thus m?(N;) ~ - for j = 2,3. Also, by definition,

(N;)
m(Np) < 1. Thus, we have ’
. N >sN2s N2s 3
M < )\—2 < 1 2 ~ )\—2 < )\—2 N§]7N2S—1+.
| 3| ~ N2m2(N2) <N1>_SN2 ~ H J

Jj=1
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If L3 = Ng, then N1 ~ N2 Z N. Then, we have

< )\72N128<N3>SN3 )2 N (Ng)'*s
~ NZm2(Ny) N{7% NjTS

3
S )\72 H N‘?—N3571+.
7j=1

| M|

Now, we can finish the proof by summing up over Nj, N3, and N3 to obtain
(4.15]). (]

Before proving the estimates on the quadrilinear terms, we state a useful bilinear
estimate.

Lemma 4.7. Let © and ¥ be as described at the beginning of this subsection. Then,
for s > L we have, for all j, k,1 € {1,2},

27
AN 1o/

A

3 v lVellye S lldllys[19]y. (4.16)

This lemma follows easily from Sobolev embedding or Lemma [4.5] by considering
different cases, and thus we omit its proof. See [13] for details. Also, see Lemmata
and for the trilinear version of this estimate, for which we present the full
proof.

Let [£;] ~ Nj, |ki| ~ Ny, dyadic. From Lemma we have |04(&1,&2,&3,84)],
/

20 ) —
G2(&1, 6, €5,8)| < Lﬁ;% Now, we apply symmetrization to M}, My
i

— I
and My in (4.12). In view of Ay(M};u,v,v,v), we can redefine M, under the
symmetrization in &9, &3, &y i.e. among the variables of ¥. Then, we have

My = [—4ig&104(&1, &2, €3, €4))2mg0a = 6iq€3404 (&1, €2, €3, Ea).

—~ N — ) N
Similarly, we have My = —iq€3404(&1,82,83,84) and My = —iq€1204(&1, 82,63, &4)-

Note that the symmetrization was used here to have a convenient form in terms of

estimates, not to have the totally symmetrized form. Using ¢ = 4, we have

N34m2(min(Nj, Nkl))
AT (N +Ny)

|My(&1,62,83,80)] (4.17)

—~ ! —~I —~ 1
Similar pointwise estimates hold for My , My and M, . Then, using Lemmata
and [£.7] we have the following growth estimate on the quadrilinear terms.

Lemma 4.8. Let u, v be functions on Ty x R with the spatial mean 0 for all t € R.

Then, for s € [—%, 0), we have

1
‘/ A4(Mg;u,v,v,v)dt] SATENET (T, Do)l (4.18)
0 0,1

—~/ —~ 1!
The same estimate holds for the expressions Ay(My ;u,v,v,v), Ag(My ;u,u,v,v),
—~/
and Ay(My ;u,u,u,v), appearing in (4.11]).
Proof. We prove the estimate only for M} as the proof for the other quadrilinear

terms is basically the same. Since all the function spaces are on the time interval

[0, 1], we will drop [0, 1] in X[So’bl] and Y[ ;). First, note that (4.18) is equivalent to

1
’/ Ag(M;u,v,0,0)dt] < AT2TN25710 | (u,0) |3, (4.19)
0



EJDE-2009/52 DIOPHANTINE CONDITION IN GLOBAL WELL POSEDNESS 21

MTI, (€)° = . R
where M = T e Let U = (Uy,Usz) be the diagonal term of & = (u,v)
j=1 J
given by (%EET;) = M~1(¢) (gg:;) After dyadic decomposition |£;| ~ Nj,
2(8,T )
Jj=1,...,4, assume U; is nonnegative and also drop the cutoff xo 1)(¢) as in the

proof of Lemma 4.6} Then, it suffices to show

4
oo M6 €200, 80 T T 6| S 42N i (4.20)
k=1

§1+E&2+E€3+84=0
for all ji,ja,7js,j4 € {1,2}. By Lemmata [4.5] and on each dyadic domain
A={l¢]| ~N;, j=1,...,4}, we have

LHS of (£.20) <A™ sup MU oy UGN s 56Ul ey

J1 J2 1
|

S X0 sup (MU g 10 ] oy 1T

J1 J2

Y.S+1| Uj.| ystt
J3 Ja

< AT sup [ M| N3Ny ||d]|3-.
A
Note that Lemma, was applicable thanks to the pointwise estimate (4.17)) of

Mj; i.e., we could assume the product U;,U;, has the spatial mean 0 since Mj =0
(and hence M = 0) when &34 = 0. Hence, it remains to show

/ 4 ) 4
|M4|N?:1N4 Hj:1<NJ>s S )\_2N28_1+ HNJO* (421)
Hj:l m(N;) j=1

From the proof of Lemma we have M) = 0 if N; <« N for all j. Thus, we
assume the largest and the second largest of Ny, Ny, N3, Ny are 2 N in view of

1234 = 0. From (4.17),

|M|NsNy < A2

|M| N3Ny =

N3y NsNym?(min(N;, Ni) [Tj—; (N;)*
1
[Tj=i [m(N;) (N + ;)]

From the symmetry in (4.22), assume N; > Ny and N3 > N,. Note that
N34 = Nip and m(N])<N]>7S(N—|—Nj) ~ N]‘Nis z NI=s if Nj Z N and ~
NN;* < N1~ if N; < N. (Recall s < 0.) Therefore, the worst case occurs when
N3, Ny 2 N > Ni, Ny. Then, we have

(4.22)

4
RHS of ([#.22) < N?*72(N1)*(N,)*Nigm?(N3) < N2~ 1+ H NO~.
j=1

Now, we can finish the proof by summing up over IV;, j = 1,...,4. (]

4.4. Quintilinear Estimate. In this subsection, we present an estimate for the

quintilinear terms in (4.11)).

Lemma 4.9. Let u, v be functions on Ty x R with the spatial mean 0 for all t € R.

1
Then, we have, for s > —3,

1
)/ As(Ms;u,v,v,v,0)dt §)\O+N4S+H(Iu,lv)|\§’,[g - (4.23)
0 ,1

— —~/
The same estimate holds for As(Ms; u, u, u,v,v) and As(Ms ;u,v,v,v,v), appearing
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Note that the quintilinear multipliers Ms, ]\//\[/5, and ]\75/ are as in the non-periodic
case. i.e. they satisfy the same pointwise estimates presented in Corollary We
omit the proof of Lemma since the lemma follows once we prove the following
estimate as in the KdV case [5]:

’/ /T (f1f2fs) f4f5d$dt‘ S A H [ /]

for all j, € {1,2}, where fi, k =1,...,5, are functions on Ty x R with the spatial
mean 0 and PP is the orthogonal projection onto the nonzero (spatial) Fourier modes.
Asin [B) Lemma 8.1], (4.24) follows once we prove the following trilinear estimate:

Al v1||f5H .. (4.24)

s 1
Y §

Hf1f2fs|| . <A H I fellys (rax) (4.25)

2(T xR)

for s > 1 and all j; € {1,2}7 k=1,...,4 When s > 1/2, a slight adjustment

of the argument in [5, Lemma 8.1] and Theorem 3 in [6] provides the proof of

([@:25). However, when s = 1/2, we need to refine the proof of [6, Theorem 3] since

d; (&) # €% in our case. By repeating the computation in [6], we see that the proof

f %D for A =1 and s = 1/2 is reduced to proving (with the notation introduced
2.3))

m

e

1

H <§3>% Hi:1<7’n —d;, (€,))1/? H[4;Z><R] Sl (4.26)
and
1
H (ENV2TT2 _y (mn — dj, (€2))1/2 H[4;Z><R] S (4.27)

In the appendix we prove (4.26) and (4.27). The argument is based on an
extension of the proof of [6, Theorem 3].

Lemma 4.10. Let A = 1. Then, (4.25) holds for s > 1/2. Moreover, if L1 =
1/24/p? +4¢> € Q, then (4.25) also holds for s = 1/2. Also, if the spatial Fourier
supports of fi are dyadic, then (4.25) holds for s = 1/2 without any condition on
L.

The general result for A > 1 can be obtained in the same manner as in [6]. Before
stating the lemma, recall how the scaling works. Recall that p and ¢ are the means
of the u and v of the unmodiﬁed system on T. When we apply the scaling,
the means p* and ¢* of u* and v* on T} are given by p* = 5 and @ vz Then,

we have Ly = §1/(p%)? +4(¢*)? = 552 VP? +4¢% = 53

Lemma 4.11. Let A > 1. Then, (&25) holds for s > 1/2. Moreover, if Ly = % €
Q, then (4.25)) also holds for s = 1/2. Also, if the spatial Fourier supports of fi
are dyadic, then (4.25)) holds for s = 1/2 without any condition on Ly.

Remark 4.12. The extra condition L) = % € Q is not really a restriction since
we can always choose the scaling parameter A such that Ly € Q. Moreover, in
proving Lemma is used after the dyadic decomposition. Hence, the issue
of Ly being rational/irrational becomes irrelevant for our purpose.
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4.5. Almost Conservation Law. Now, we are ready to establish the global
well-posedness for the mean 0 system in H-Y2(T) x H-Y%(T), which, in
turn, implies the global well-posedness of the original Majda-Biello system in
H=Y2(T) x H~Y/2(T). Applying the I operator to (1)), we obtain the I-system.

1
OuTu + 02 Tu + q0,Iv + 5(%[("02) =0

O lv + 82]1} + g0, Iu + pOdIv + 0, 1(uv) =0 (4.28)
(Tu, Iv)(x,0) = (Tug, Tvg) € L? x L2

Then, (1.3)) is well-posed on [0,T] in H® x H® if and only if (4.28)) is well-posed
on [0,T] in L? x L?. The local well-posedness of the I-system (4.28) in L? x L?
for small initial data follows from the vector-valued bilinear estimate for (4.1)) [14]
Proposition 7.9] and the interpolation lemma [6, Lemma 12.1].

Fix T > 0 and a mean 0 initial condition (ug,vg) for (4.1). By the scaling
(u’\,v’\)(x,t) = %(u,v)(%, %) and by choosing A ~ N_ﬁi';s, we have

N, o)l xre < 1.
In the following, we work only on the A-scaled I-system, and thus we drop the
superscript A. Our goal is to show that the A-scaled I-system is well-posed on the
time interval [0, \3T]. For simplicity, assume s = —% in the following. Note that
A~ N2 when s = —1/2.

Let @ = (u,v) and wy = (ug,vo). Recall that the first modified energy E™M(t) =
| [(t)| 12, and that Lemmata and control the time growth of the
third modified energy E®)(t). Thus, we need to show that E®)(t) and EM(t) are
comparable. We state the following lemma whose proof is presented at the end of
this section.

Lemma 4.13. Let s = —1/2. Then, we have
|E® () = EW(0)] S 1Ta(0)]132 + [ Td()]| - (4.29)

First, from the local theory, if the I-system is locally well-posed on [t, ¢+ 1], then
we have

sup |[1d(t)|| 22 < [[TWlyo < 2/ TW(t)] L2 (4.30)
e[t t+1] (t.t+1]
Now, choose g9 = |[Iwo| 2 sufficiently small such that: (a) ||[I@W(t)]z < 2e0

guarantees the local well-posedness of the A-scaled I-system on [t,t + 1]. (b)
@ (t)||L2 < 2e0 together with (4.30) makes ||[IwW(t + 1)|| 12 small sufficient so that
Cr(Iw(t + D[22 + 1w + D7) < 50+ )72,
where C7 is the constant from (4.29).

If (b) is satisfied, then from (4.29)) we have ||Iw(t+1)[|2, < 2|E®)(t+1)]. Since
IHwp|lL2 = €0 < 2ep, the solution exists on [0,1]. Moreover, by Lemma we
have |[E®)(0)| < &2 + 2C1€3. Then, from Lemmata and we have
|IEG) ()| < |[E®)(0)| + CoN~2Fe for all t € [0,1]. Putting everything together, we
have

[ T5(1)]|22 < 2]E®(1)] < 2(e2 + 20163 + CoN~2Fe]) < 4l
as long as 2Co N~2t¢y < 1. Then, by condition (a), the solution is guaranteed to
exist on [1,2]. In general, after K iterations, we have

| TW(K)|2: < 2(2 4+ 2C1e5 + 2K CoN ™21 el) < 4e?
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as long as KCyN~2Tgg < 1, guaranteeing the existence on [0, K + 1]. Hence, this
procedure establishes the well-posedness on the time interval of size ~ [0, N27]. Re-
call that our goal is to show the well-posedness of the A\-scaled I-system on [0, A3T7.
Therefore, by choosing N = N(T') large such that N2~ > \3T ~ N 55T ~ N3T,
we establish the well-posedness of the A-scaled I-system on [0, \*>T7].

5. GLOBAL WELL-POSEDNESS ON T, 0 < a < 1

In [14], assuming the mean 0 condition on ug, we established the local well-
posedness of the Majda-Biello system (1.3) with a € (0,4] \ {1} in H*(T) x H*(T)
for s > min(1, sg+), where

1 1
S0 = so(a) = 3 + B max(Ve, , Vdy s Vdy )- (5.1)

Since the Hamiltonian H(u,v) controls the H! norm of the solution (u,v), is
globally well-posed in H(T) x H!(T). For the values of a such that sy > 1, this
result is the sharp. However, we have sg = 1/2 for almost every a € (0,4] \ {1}.
Thus, the global well-posedness in H' x H' is far from being optimal for almost
every a. Now, fix a € (0,4] \ {1} such that sy < 1, i.e. is locally well-posed
in H%% x H*™. In this section, we establish global well-posedness results below
the energy space H' x H!, using the I-method.

5.1. Modified Energies. For s € (sp,1), define m : R — R to be the even,
smooth, monotone Fourier multiplier given by

o [t mrigeN
me) = ‘Jg‘l%, for |€] > 2N,

for N > 1 (to be determined later), and the operator I to be the correspond-
ing Fourier multiplier operator defined by f} (&) = m(&)f(&). The operator I is
smoothing of order 1 — s : H® — H' and we have ||f||xow S | Lf]lxorriow S
N3] ]| xoror for any s, b’ € R.

Now, define the first modified energy EW(t) by EM(t) = H(Iu,Iv)(t) =
J(Iu)2 + a(Iv)2 — Iu(Iv)®. By Plancherel and the fact that m, u, and v are
real-valued, we have

EW(t) = — Aa(E1&am(€1)m(Ea); u, u) — ala(&1&am(E)m(E); v, v)
— As(m(&)m(&2)m(€3); u, v, ).
Using , we have

%E(l)(u,v) = A3 (Ms;u,v,v) + Ay(My;u, u,v,0) + A4(Z\74; V,0,0,0), (5.2)
where
Mg = i(§fm?(&1) + a&dm® (&) + agim®(&s)) — (& + a&i + Oéﬁg)m(fl)m(ﬁz)m((&))a
5.3
and

My = 2i[§23m(§1)m(§23)m(§4)]§32a My = i[eram(Ea)m(E)m(Es)lsym.  (5.4)
We like to point out the presence of the resonance equation:

E+atd+atd=0 withé& +&+6 =0 (5.5)
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in the second term of M3. (Since &+ a3 +a&i does not appear in the denominator,
it does not really cause a resonance in this case. Nonetheless, we refer to £} + &3 +
af3 ~ 0 as the resonant case.) Note that Mj is not symmetric in &1, s, and &,
since & # 1. To prove Theorem we need to estimate the time growth of E™)(t)
using multilinear analysis. However, this asymmetry prohibits certain cancellations
which would be present if & = 1. It turns out that the argument for the growth
bound on M3 requires separate treatments for the resonant and non-resonant cases
as in the local theory [14], and that the trilinear term with M3 has the worst decay
in (5.2). See [13] for the proof of Theorem
Now, we define the second modified energy E®)(t) by

E(Z) (t) = E(l)(t) +A3(0'3;U,1},’U>7 (56)
where the 3-multiplier o3 is to be chosen later. Using (1.3]), we have
d .
%AB(O—?); u, v, U) = lAg ((5? + aé-g + ag??:)o-fi(é_la 527 53)7 u, v, U)
— 2iA4(€2303(€ €23, 84)5u, u, v, v)

— $A4(E1403(614, &2, 63);0, 0,0, 0).

By choosing
_ M3
o +agd
we cancel the trilinear term in (5.2)). Then, we have
d .
%E(Z) (U, /U) = A4(M47 u,u,v, U) - 22A4(§230-3 (517 5237 54)7 u,u,v, ’U) (5 8)
+ A4(m7 v,v,v, U) - %A4(§14U3(§147 £2a 63)7 v,v,v, U)'

g3

Remark 5.1. EW is real-valued, since m(-) is real-valued and even. By definition,
o3 is real-valued. Moreover, o3(—&1,—&2, —&3) = 03(&1,£2,€3). Hence, for real-
valued u and v, E®)(t) defined in (5.6)) is real-valued for all ¢.

From (5.3)) and (5.7, we have
Em?(&1) + agdsm®(fs) + a&im® (&)

—2i€2303(&1, &3, &4) =2i&a3 B+ all, + ald
1 23 b

— 2i&a3m(&§1)m(Eaz)m (&)
Note that the second term above exactly cancels the term with My in (5.8). A

similar cancellation occurs between J\Z; and —%51403(514,52,53) in (5.8). Hence,
we have

%E@) (u7 U) = A4(M411 u, u, v, 11) + A4(m/; v,v,0, 1))7 (59)
where
b oee EimMA(E1) + afdym?(a3) + alim? (&)
M = [pitay &+l + o] s 10
— i, &ymP (&) + afdm?(&2) + agdm? (&)
My = {5514 €3, + afd + ae3 Lym' (5.11)

Remark[5-T]tells us that we need to consider only the real parts of the quadrilinear
—~

expressions in (5.9), i.e. ReAy(M};u,u,v,v) and ReAy(My ;v,v,v,v). Also, note

—~

that the resonance equation ([5.5) appears in the denominators of M and My .
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Since we assume sy < 1, we know that the denominator can not be exactly 0.
However, it can be very small, causing the small denominator problem. Thus, we
need to proceed using the Diophantine conditions as in the local theory. When
a = 1, one of the quadrilinear multipliers, My, was given by

§1m?(€1) + Eazm®(Ea3) + Eam® (54)}
G+ &+ ac
which could be singular. In the proof of Lemma [3.1] we first used the algebraic

identity £ + &35 + €3 = 3€1€23€4 to cancel o3 in the numerator and denominator.
Then, we obtained pointwise cancellations, using the other algebraic identity (2.4))

M, = [21'523

and the symmetry of M. However, when a # 1, we do not have such nice algebraic
identities or symmetry of the multipliers. Therefore, we can not hope to have
reasonable pointwise estimates on M) and ]\74/. It turns out that we have a different
kind of cancellation in this case. In estimating ReA4(MJ; u, u,v,v), we can use the
symmetry 1 < 2 and 3 < 4. As we will see in Subsection the contribution
of ReAy(M}; u, u,v,v) near one resonance set is exactly cancelled with that of the
permuted expression near its corresponding resonance set. This cancellation takes
place as the whole sums. In the following subsections, we discuss the proof of
Theorem [L8
Lastly, consider the third modified energy E®) given by

E(3)(t) = E(Q)(t) + Ay(og;u,u,v,0) + Ay(0g;0,0,0,0),

where o4 and oy are chosen later to cancel the quadrilinear terms in (5.9). Using

(1.3), we have
d

%A4(04; u,u, v, U) :ZA4((€§ + 5% + O‘ES + 0452)0'4(51,527 537 f4)a u,u, v, U)

+ As(Ms;u,u, u,v,v) + As (M u,v,v,0,0),
where M5 = 2i€3404(&1, &2, 834, &5) and My = i€a304(€1, €23, 64, E5), and
d _ . —
%A4(04; v,v,v, U) :ZQAAL((&-% + 53 + EZ:;) + 52)04(€1> 527 533 g4)a v,v,v, U)
+ AS(]%7 u,v,v,v, ’U),

where J\% = 4i€1204(&12, &2, €4, &5). Then, by choosing

—/
iM, N iMy
= 5 Oy4 = )
Gr8+a+afl ' ag +afd +afd +af]

04 (5.12)

we have

d —
—E(?’)(u, v) = As(Ms;u, u,u,v,0) + As(ME;u,v,v,0,0) + As(Ms; u,v,v,0,v).

dt
(5.13)
Note that Z?Zl 533 appearing in the denominator of oy allows us the algebraic
identity (2.4) to establish a reasonable bound on ]\% However, there is a problem
with o4. We have
Em?(&1) + agizam®(€asa) + a&dm? (&) 1
&+ akdsy +afd & + 63+ agly +agd

My = —4i€348234 X
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The denominator of the third factor is 0 when & = —&; and &5 = —&34, while
the second factor is equal to 1 for |§;] < N,j =1,...,5. This shows that M5 is
unbounded over

{(gla s 355) € (Z/A)s : 512 = 5345 = 07534 # 0 OI'—§27 and |£j‘ < Na] =1,... ,5}
Since As(Ms;u, u,u,v,v) is the only term with 3 «’s and 2 v’s in (5.13)), we can not
use the other two quintilinear expressions to gain any cancellation. Therefore, there
is no control on the growth of the third modified energy E(®) and thus Theorem
with the second modified energy E(®) is the best global well-posedness result
we can obtain via the I-method.

5.2. Scaling and Local Well-Posedness of the [-System. Our goal is to estab-
lish the well-posedness of the Majda-Biello system ([1.3]) with the initial condition
(ug,vo) € H?(T) x H*(T) on an arbitrary time interval [0, 7] for all s > S, where
S = S(sp) is a function depending on sqg. First, apply the A-scaling (u)‘, v)‘)(x, t) =
%(u,v)(%, %) (ug‘,vé‘) (z) = %(uo,vo)(ﬁ) to the Majda-Biello system (|1.3), and
consider the following Cauchy problem on Ty:
ui‘ + u;\m + v’\v;\ =0
o) + vy, + (W), =0 (5.14)
(u*, ) (2,0) = (ug,vg)(x,0) € H*(Ty) x H*(T)).

Then (|1.3) is well-posed on the time interval [0, T] if and only if ((5.14) is well-posed
on [0, \3T). Applying the I operator to (5.14), we obtain the A-scaled I-system.

1
oplu™ + O3 ITu> + iaml(v’\)Q -0
o Iv* + ad2Iv* + 0, I(urv*) =0 (5.15)
(Iu*, Iv*) (2,0) = (Tud, Tvy) € HY(Ty) x H'(Ty).
Then (|1.3)) is well-posed on [0, T] with the initial condition (ug, vg) € H*(T)x H*(T)
if and only if the A\-scaled I-system (5.15)) is well-posed on [0, A3T] with the initial
condition (Iug, Ivg) € HY(T) x H*(T).
From the local theory in [I4] and the interpolation lemma [6, Lemma 12.1], it

follows that (5.15)) is locally well-posed on the time interval [0,1] for small initial
data in H(Ty) x H'(T,) satisfying

N (Tug, T0)) || (myy s bt (1y) < €0 < 1, (5.16)

for some small g9 > 0. We point out that the scaling constant A\*¢T appears in

due to the fact that the crucial bilinear estimate (and ) holds on
Ty x R with a constant ~ AzT271+ (and A2tz max(va, va:)+) pegpectively. i.c., the
contraction argument scales like ~ A2z max(vey vy ap)+ — Ao+ When o = 1 (and
for KAV [5]), the scaling constant A’ did not play an important role. However,
when a # 1, it is important to keep this constant AT,

A direct calculation shows

(T, Tod) |y sy S A7 3N (g, v0) | 12wy = () (5.17)
Then, from (5.16]) and ([5.17)), we choose A so that the A-scaled initial condition
(Tup, Ivy) is sufficiently small. i.e.,

AOF A== N (g, v0) | e x 1 = €0 € 1 = A ~ NFFo355= (5.18)
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Note that we have ||(ud, v))|lr2xr2 = A~ 2||(uo,v0)||L2xz2. By choosing A as in
, we see that A is a positive power of N for s,s9 < 1. Thus, for fixed (ug,vo)
on T, we can make the A-scaled initial condition ||(u,v3)||z2x 2 arbitrarily small.
Also, from the L? conservation of the A-scaled system and the fact that
m(-) <1, we have

1T, TN Ol < 10N O lzxie = 0, vd) [22xre (5.19)

as long as the solution exists.

In the following, we work only on the A-scaled I-system (5.15), and thus we drop
the superscript A. Our goal is to show that ((5.15)) is well-posed on the time interval
[0, A3T).

5.3. On the Hamiltonian. In this subsection, we discuss some properties of the
Hamiltonian H(u,v) = [u2 + av? — uv?dz. Sobolev embedding and the conserva-
tion of the L? norm and the Hamiltonian yield the following a priori bound on the
H'! norm of the solution. (c.f. [2].)

Lemma 5.2. Let (u,v) be a smooth solution of (1.3|) with the initial condition
(ug,vp). Then, we have

(), v(E) | rrxm S (14 [[(wo, v0) || 2xr2) | (w0, vo) || 1 x a1
where the implicit constant is independent of X > 1.

Now, we’d like to use H(f,g) to control ||(f, )l (r,) when ||(f, 9)llm1(r,) < 1.

In this case, we have ||(f,g)||;{12 > (£, 9%, ~ [ f7 + ag;. For our purpose, it

turns out that H(f,g) is not sufficient to control ||(f,g)||m(r,). Instead, we use
I(£.9)lI72 + H(f, g) to control [ (f,9)ll s (z,)-

Lemma 5.3. Assume that ||(f, 9)|lr2xr2 < €0 < 1. Then, we have

1 ) s SN 972 + H (S, 9).
In particular, if ||(Tu, Iv)(t)||r2xr2 < €0 < 1, then we have

1(Tu, I0) ) i S 1(Tu, ) (@)][F2 + BV (@) (5.20)

Proof. Let C be the constant such that || f||re~ < C||f||z: and let g be sufficiently
small such that Ceg < 1. Then, we have

| [ oda| < Iflulolits < S1FI3 + S NglEs < 31513 + Hlgl-
Hence, we have
(£, )72 + H(f.9) = 5l1FII7 + 319z + gl > min(z, )| (f, 91 «m-
(|
As a corollary of the proof, we obtain a control on E(M(t).
Corollary 5.4. If ||(Tu, [v)(t)||r2x12 < €0 < 1, then we have

[EW (0)] < max(§, @)ll(Tu, To)(t) |11
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5.4. Useful Estimates. By solving the resonance equation & + a3 + a&i = 0

with & + & + &3 = 0, we obtain (§2,83) = (—c181, —¢261) or (—c281, —c161), where
¢1 and co are as in (1.12). Now, define two non-resonance sets A and B by

A={(£1,62,83) &1+ &+ 8 =0,[&+aéi] > 1and & + 6| > 1}
B={(&,6,8) &+ &+ =06 +a&] > 5 and [& + b > 1)

Recall that the bilinear estimates ((1.7) and (1.8)) on T x R hold for s > 0 as long as
we are away from the resonance sets. See Remark Then, as a direct corollary
of (the proof of) [I4, Propositions 3.7 and 3.8], we have the following lemma.

Lemma 5.5. Let f,g,h have the spatial mean 0 on Ty. Then, we have

(a) on A, i.e. away from the resonance set,

TN
A 1|

s Bl o
s Aol yedo y (5.21)

1
As(xai f.9.h)dt| S
) st ST TN I FO
X720 X, 201 XA 2[0,1]

(b) on B, i.e. away from the resonance set,

1/2 . N
O P!

oty (5.22)
A2 '

1
As(xs: fr 9. h dt‘ S
\A s(xsi £ 9. h)dt| < oo ol oy Al oy
X720 X2 0,1] 0 T Xa 2 [0,1]

(¢) on B¢, i.e. near the resonance set,

1 A PR PSS N L) s S
‘/0 A3<XBC;U7'U,'U)dt‘5 Asot || £]| 1 lgll ) 1 | 7l . 1 ’ .
XSO+!§[O,1] X;1—507,§[0)1] XZOJ“?X[OJ]

(5.23)

Next, we present bilinear estimates analogous to Lemma [£.7] In the next sub-
section, we use these estimates to establish a control on the quadrilinear terms in

B9).

Lemma 5.6. (a) Let s’ > —1 and s > s’ + % Then

loveall oy S T lesllve- (5.24)
j=1

(b) Let s’ > —% and s > s' + % Then

luvll oy S llully=llolly;- (5.25)

Proof. o Proof of (5.24): By symmetry, assume (11 —a&$) > (o —a&3). If (1—¢3) <
(11 — a&}), then the proof basically follows from Sobolev and Hélder inequalities as
in case (4.2) in Theorem 3 in [6], since s —s’ > 2 and s > 0. Hence, we assume
(11 —a&d), (ro—af3) < (7—E€3). In this case, we have 1 < (1—&3) ~ €3~} —a&l|.
Thus, it suffices to show

H / |'£3 - Oéé{f - a€§|1/2f(£177—1)g(€2,7—2) ’
sttt (€)' (61)*(€2)* (ry — a€])7*(r; — ag])'/?

2 Sl Dol

(5.26)
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Now, let Te(€1) = €% — &} — agd. When [&1] ~ [¢], we have [T¢(&1)] S ¢[*. Then,

we have .
L2 gt
()= (€)s(&a)s Y (&)=

since s — s’ > % By symmetry, the same conclusion holds when |£3] ~ |£]. When
[€1] > [€], we have [T¢(&1)] < [667] and |€2| ~ |&1]. Then, we have

|F§/(£1)‘1/2 S ‘€|1/,2|£1| 5 1’
()7 (61)5 (&) ™~ ()" (&1)**
since 25 > 1 if s’ < —% and 2s — s’ > s — s > % if s > —1/2. Then, Li,tvLi,t

Holder inequality and Bourgain’s L}, Strichartz estimate [3] establish (5.26)).

o Proof of (5.25)): If (1 — a&®) < (m1 — &) or (1 —a€?) < (r2 — al), then the proof
again follows from Sobolev and Holder inequalities as in case (4.2) in Theorem 3
in [6]. Hence, we assume (11 — &), (12 — a€3) < (7 — a&3). In this case, we have
1< (1 —af?) ~|ag3 — € — a&3|. Thus, it suffices to show

g? _a€§|1/2f(£177—1)g(€2,7—2) ‘
(&)™ (m = &)1 (2 — agd)1/?

|g® —

< .
| e e i Sz Dol
T=T1+T2 ’

(5.27)
Now, let Te(€1) = a&® — & — al. When [&1] ~ [¢], we have [Te(61)] ~ |¢*. Then

Feer e}
(€)= (€r)s(€)s (&=t~ 7
since s — s’ > 3. When |&| > [¢[, we have |f§(§1)| ~ &3 and |&] ~ |€1]. Then

L@l
() (&) (&g~
since 2s > 3/2if ' <Oand 2s — s’ > s— s >
have [T¢(&1)| < 1€%61] and |€| ~ [€]. Then

\F§/(§1)|1/2 < \ﬁllé“ll/l/2 <1,
e ¥ O
since s—s’ > 3/2. Then, Li’t, Li’t Hélder inequality and Bourgain’s Li_’t Strichartz

estimate [3] establish ((5.27)). O

5.5. Quadrilinear Estimates and Almost Conservation Law. First, we state
the growth estimates on the quadrilinear terms appearing in (5.9). This provides a
control on the growth of the second modified energy E(?) (t).

Lemma 5.7. Let s > 5/8. Let My be as in (5.10)). Assume the mean 0 condition
on u. Then

1
% if ¢ > 0. When |&| < ||, we

1
Re Ay(My; u, u, v, v dt‘
‘/O 1(0M ) (5.28)
S max(ACT N2, XF N0y 1y 12y T30,y

Lemma 5.8. Let s > 5/8. Let M, be as in (5.11). Then

1
’/ ReA4(M4;v,v,v,v)dt’§max(/\OJrN*%*,)\5°+N*2+250+)||IUH§1[0 - (5.29)
0 o
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The condition s > 5/8 is not really a restriction to us since we are proving
the global well-posedness only for s > 5/7. Lemma says that E(l)(t) basically
controls ||(Iu, Iv)(t)|| g1 x 1. Now, we need to control EM (1) by E®)(t).

Lemma 5.9. Let o5 be as in (5.7). Let \ be as in (5.18)). Then
|E@(t) — BV (1) = |As(os;u,0,0)| S [[Tu(t)]| g [ To(t)| 31 (5.30)

The proofs of these lemmata are presented at the end of this section. We first
prove Theorem assuming these lemmata. Let @ = (u,v) and wy = (ug, vo),
and fix T. From the local theory, if (5.15) is locally well-posed on [t, ¢ + 1], then
we have

sup  NIEE) | < Wl evapeey < 2080w (5:31)
t/ €[t t+1]
Let C, = min(%,a)*l/z. Now, choose g = max(||Iwp]| g1, ||wWol|r2) sufficiently
small such that
(a) |[Tu(t)||gr < 4Cne0 guarantees the local well-posedness of (5.15) for [¢, ¢+
1].
(b) || IW(t)||r2 < eo guarantees that (5.20)) holds. (Note that |[wpllr2 < eo
implies || IwW(t)|| 2 < &o by (5.19) as long as the solution exists.)
(¢) Hw(@t)| g < 4Cqe0 together with (5.31) makes || W (t + 1)| g small suffi-
cient so that

CaCillTa(t + D < 5l + 1)1,
where C is the constant from ([5.30]).

Now, we proceed with the iteration. Since | Iwp||lgixgr = €0 < 4Che0, the
solution exists on [0, 1]. By Lemmata [5.3| and we have

IHGWIF < CAHTA)IZ: + B (1)]) + CZOUITE) |-
Then, by the condition (c), we have

IGW)F < 262 (HGD)]72 + [EP (D)]). (5.32)
By Lemma Corollary and the condition (c), we have
IE®(0)] < |[EMW(0)] + Cref < max(2, o+ 1)ef < 4.5¢3. (5.33)
From Lemmata [5.7] and ((5.31)), we have
IE@ ()] < |E@(0)] + Cy max(AOT N~3F, N0t N—2H2s0+) 4 (5.34)

for all ¢ € [0,1]. Then, by (5.32)), (5.33), and (5.34)), we have
@17 < 2CA(|TG(1)][72 + [EP (1))
< 20262 4 90262 4 202 Co max (AT N~3F \so+ N 24250+ 4
< 13C2&2

as long as max(\Ct N—2+ )%+ N=2+2s0+) « 1. Then, by condition (a), the solu-
tion is guaranteed to exist on [1,2]. In general, after K iterations, we have

HI@U(K)H%F < 2026(2) + 9025(2) + ZKCC%CQ maX()\O+N_%+, )\S°+N_2+250+)53
< 13C2%&2
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as long as K max(\OT N2+ Aot N=2+2s0+) « 1  guaranteeing the well-posedness
on [0, K + 1]. Hence, this procedure establishes the well-posedness on the time
interval of size ~ [0, min(\°~Nz~, A=~ N2~2%0~)]. Now, using (5.15), we choose
N = N(T) such that

A"NE™ > €T e N5~ 2 A3+ ~ NOH smss-
5.35
)\7807N272807 > )\3T — N272307 2 )\3+so+ ~ N(:H—&H—)ﬁ ( )
By solving the inequalities in the exponents, we obtain
_ 2
8 > max 6(80+) 2(80+) ’ 2(80+) +9 . (536)
5 — (80+) 14

Then ([5.35) can be satisfied by choosing large N if s satisfies ((5.36)). This establishes
the well-posedness of the A\-scaled I-system (5.15]) on [0, \3T] in H'(Ty) x H(T)).

The rest of this section is devoted for the proofs of Lemmata and
Recall that so = so(«) in (5.1) is fixed such that so € [1,1).

Proof of Lemmal[5.7 From (5.10), we have

§3m>(&1) + a&dym?(La3) + a&im® (&)
& +addy +aff

£3m?(&2) + agfym®(&14) + agim? (53)}
3+ agiy + ot} 327

M= i[fz )
+ &4

=: i[l + H]%Hi.

We prove the estimate for I (which holds for II after switching the indices 1 < 2
and 3 < 4), but we use M, = il + Il when we need cancellation between the
contributions of I and II.

e Case (1): N; < N, j =1,2,3,4. We have m(&;) = 1 and m(&3) = m(&14) = 1.
Then, from , we have M) = i€1234 = 0. Thus, we assume max N; 2 N. This
implies that med N; := the second largest of N; 2 N since {1234 = 0. In this
setting, the resonance equation for I i 1s given by Fgl (€23) = & + ads + &} = 0.

From Lemmata 5.5 E ) and 5.6 - , we have

1
‘/ A4(III;u,u,v71})dt‘
0

_3 —3
SXT Il oy 10, 1006) ™3O A0 e Iolgrmpo

S A [l Fogo 11101130 0,15

where III = E23<§23>S;+ = 5. Note that £33 in the numerator of III
§1)°0F(€4)°0 (£2) 4 (€3) 4 (§23) 4
allowed us to use Lemma (c). Then, it suffices to prove

L1 ‘ < N-2H2s0+ HNO* (5.38)

=
' ‘H? 1m(&5)(85) j=1
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If there is no resonance, i.e. on A = {|€23 + c1&1] > 1 and |€a3 + c2&1| > 1}, then,
from Lemmata E and |5 - , we have

1

[ MV ar] < A°+||u\|Xo,%[ovl]H<am>*%u<ax>*%v||xﬁ,%[o Ioll ot
S >\0+||UH%/0[0,1]||UH§/C9[0,1]’
(5.39)
where IV = 3 =. Then, it suffices to prove
(€2)3/4(€35)3/4(€23) 2
1-1v—! =
Py ‘4—‘ SN, (5.40)
HJ 1 m(&)(EG) j=1

Note that we can switch the indices 1 < 2 and 3 < 4 in III and IV in establishing

and (E10).

e Case (2): Noz < N o Subcase (2.a): Ny < N = N, < N. In this case, we
have Ny ~ N3 2 N since max N;, med N; 2 N. Also, we have m(§1) = m(&) =
m(&23) = 1. Then, I = &3 and thus we have

3 3
Nog N50+N§0+N4 N44
m(Na)m(Ns) [T;_; N; Ny N3t

Ni !
14 —2+4s50+ 0—
SN [T NY
j=1
o Subcase (2.b): Ny 2 N = Ny ~ N; 2 N. In this case, there is no resonance
since Nog < N < Ny ~ Ny, i.e. we are on A and thus |[I'¢, (§23)| ~ Nj. Suppose
Ny < N. Then, we have N3 < N, and

) 3 3 3 3 4
NozNPm?(N:) Ny N3 Nos - Nos < N*%JFH

ITe, (a3)[m(ND)m(Na) [Ty N; - Nos NZNJ N, il

Now, suppose Ny 2 N. Then, we have N3 ~ Ny 2 N since Nog < N. If N1 2 No,
then

Py~

Nz N3m2(Ny) N, N N, < 1

|F€1 (623>| Hj—tzl m(NJ)NJ N23 N%_Q‘QN1%+28

If Ny =2 Ny, then we exactly obtain the above computation (with 1 < 2 and 3 < 4),
by using IV after switching the indices 1 «» 2 and 3 « 4.

e Case (3): Nas = N and N; 2 N > Ny. In this case, there is no resonance,
thus we have |I'¢, (§23)| ~ N7. Note that max(N2, N3) > Nag = N. Also, we have
N3 ~ Njp since Noz = Niy > N,. Then, we have me (Nl) N3;m?(Nag) >
N3m?(Ny), since Nim?(Np) ~ N11+25N2_23 > N3 > Nim?(Ny).

o Subcase (3.a): Ny, N3 > N. After switching the indices 1 «» 2 and 3 < 4 in IV,
we have

Py~ <N %+HN0*

. NosN3m2(Ny) NiNj N,
2~ 4
e, (523)‘1—13 1m( j)Hj:l N; Ny
1 4
~ SNTEF]NO
N1=sN: * N3 N; E ’

o Subcase (3.b): Na 2 N > N3 (Symmetry takes care of the case N3 2 N > Na).
In this case, we have Ny ~ Nag ~ N; and m(&3) = 1. After switching the indices
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1+ 2 and 3 < 4 in IV, we have
3 3 3
P2 - N23N13m2(N1) . N14N44N144 ~ }/2 < + HNO_
e, (a3)[m(N1)m(No) [T;o, Ny Na Ny
e Case (4): Noz 2 N and Ny 2 N > Nj. In this case, there is no resonance
at o3 = —c1& or &o3 = —coéy since Nog ~ Ny > N;. However, recall that

T¢, (&23) ~ 0 when & ~ 0. Thus, we only have |I'¢, (&23)| = N1N3;. Note that we
have |£3,m?(€93)| = N?725¢,57%. By Mean Value Theorem,

|a&3sm?®(La3) + alim® (&4)] = |a&dam®(Ea3) — ooz + &1)*mP (a3 + &)
~ N?7"2NZZNy > Ny ~ [66m?(&)].

(5.41)

In this case, we have max(Na, N3) ~ Ny 2 N. Without loss of generality, assume
Ny 2 N. Then
m(No)m(N3)NaN3 > NSNS min(N'™*Nj§, N3) > N'75N5. (5.42)

Note that min(N1=*Nj§, N3) equals N1=*N3 if N3 > N, and equals N3 if N3 < N.
This point is not used here but will be used in Case ( ). After switching the indices
1< 2and 3 < 4in IV, we have

NasN2-25 N2 Ny NiNiN,
|F51(§23)\m(N2)m(N3) m(N) [, N N

1 _
NN1/2~ +I_INO

e Case (5): Naos, N1, Ny, 2 N. In this case, we can have resonances (for I); i
E +ald;+aki ~0over B={|€3+c1&] < 1} and B' = {[§23 +c261| < 1}. On B7
we have o3 = —c1&1 + 0 and & = —ca&y — § where |§] < 1 such that &23,84 € Z/ .

For fixed &»3, this is equivalent to
51(5) = —%(523 — (S) = 41(5) and 54(5) = %(523 — 5) — 5 = (2(5) (543)
Then, we have Eﬁs Zfl 254 XB = Zgg 2523 Z|5|§1-

When we repeat the proof for II, this case corresponds to when Ny4, No, N3 2 N,
and the resonances for IT occur over C' = {|€14+1&2] < 1} and C' = {|&14a+ 22| <
1}. On C, we have &4 = —c1&2 — 6 and & = —c2éa + ¢ where || < 1 such that
€14,&3 € Z/\. For fixed &14 = —&a3, this is equivalent to

§(0) = =L (61a +0) = L (&3 — 0) = =1 (9), (5.44)
&) = 2(€u+0) +5=—(2(6s—6)—0) = —G©),  (5.45)

where (1(0) and (2(6) are defined in (5.43). As before, we have 3 . > . > ¢ xc =
254 2514 Z|§|<1. By putting the contributions of I over B and of II over C, we
have -

Py ~

AT xp+11-xo;u,u,v,0)
§1m (&1) + afzgm (&23) + a§4m (€4)
(271')\) ZZ Z b2 §f+a§23+a§4

&3 &23 |6]<1

u(&1)u(&2)v(€3)v(6a)




EJDE-2009/52 DIOPHANTINE CONDITION IN GLOBAL WELL POSEDNESS 35

E3m? (&) + &ty m?®(E14) + a€fm?(€3)
(27r)\) 2.2 G £ J:4a§14+04§3 ;

€4 €14 |6|<1

x u(&1)u(§2)v(€3)0(6a)
Using (5.43]), (5.44)), (5.45)), and &14 = —&z3, the above expression equals

¢Pm?(&1) + agdym?(€a3) + aCim®(G2)
(27T)\> ZZ ZE 1 <13 04523"‘0‘42

&3 €23 |6|<1

X U(Cr)u(&as — €3)U(€3)V(C2)
Clm Cl) - 0452 m (52 ) - a(zm (42)
(277/\) ZZ Z 23 C1 —304523 _SaC2

&1 23 |61
X (14 — Ea)u(—C1)v(—C2)0(8a)

Now, note that u and v are real-valued, i.e. u(—¢) = u(¢) and (=€) = (¢). In
particular, @(&14 — &) = ©(&2s + &4). Then, letting 6 = &3 in the first term and
0 = —&, in the second term, we have

CEm? (1) + a€dzm?(E23) + aim?((a)
(27r/\> ZZ Z Sa3 : Cio’ Jf3a§23+oz(2 :

0 23 |6|<1
x (@(¢1)u(23 — 0)0(0)0(Ca) — u(€as — 0)u(¢1)v(C2)0(H)).

i.e., the contribution in this case is purely imaginary. Hence, ReAs(I- xp + II -
Xc;u,u,v,v) = 0. The (real) contribution of I over its resonant set B exactly
cancelled the (real) contribution of II over its resonant set C' as the whole sum. A
similar computation shows ReAs(I- xp/ + 1L+ xor; u, u, v,v) = 0.

Now, we focus only on I again. From the above argument, we need to work only
on the non-resonant set A = {|€a5+c1&1| > 1 and €23+ c2&1] > 1}. Without loss of
generality, assume Ny > N3. Then, Ny 2 Nas. Also, note that max(Ny, Ny) = Nos.
o Subcase (5.a): Ny ~ Nog > Ny > N. In this case, we have |['¢, (é23)| ~ Ni. If

Ny ~ Nog, then we have, using (5.42)),
3 3 3
Nag Nijzm?(Naz) Ny Ng' Ny
7]
e, (23)| [Tj=y m(Nj)N;  Nes

Py~

<
~ s—3 1
NEN;N1=sNS ™3 min(N1-s N1, NF)

4
1 1 3
Smax( )5]\7*§+ NO~—.
A |
Now, suppose No ~ N3 > No3. Then, after switching the indices in IV, we have

3 3 3
N23N23m (Na3) Ny Ny Ny
|F£1(§23)‘H] 1 m(N;)N; Nia

< 1 +HN0—

N2-2sNY2NsNITE

Py ~
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~

Also, we can apply Mean Value Theorem as in Case (4). If Ny ~ Nag, then we

have, using (5.41) and (5.42)),

o Subcase (5.b): Ny ~ Nz > N; > N. In this case, we have |I'¢, (€23)] ~ N1 N3;.

3 3 3
py o NmNTENEN,  NININ,
4
e, (€23)[ TTj=y m(Nj)N;  Nas

—%-5—25
< N23
™ NENSN1-s NS min(N1-sNSTE N
1+%4 2 3 ’»+ '3

1 1 g
Smax( , ) SN 2H][ Y.
Ni=*NNY ' N1-s N N)/2 11

Now, suppose Ny ~ N3 > Na3. Then, after switching the indices in IV and using
5_ _

(B-A1), we have Py S N2 2N "Ny N, /2 < N-TH1 ND™

o Subcase (5.c): Ny ~ Ny > Np3 > N. In this case, we have |T¢, (£23)] ~ N7 If

Ny Z Ns, then we have, using (5.42)),
3 3 3

NozNim?2(Ny) NJ N NS,
~ 2
T, (€23)] Hj:l m(N;)N; Nas

—2+425 A73/4
Nl N23

P

<
~ o_3 a3 1
NiNSN1=sN, *min(N'=sN; % NJ)
1 1 1
Smax( , )5]\7*%+ NO~—.
N%75+N{J+N25 N175N11/2N5 j];[l J

If Ny 2 Ny, then we have No ~ N3 > Na3. After switching the indices of IV, we
1_o _

have Py < N2~2N; % < N-T+ ][I NI~

o Subcase (5.d): N3 ~ Ny ~ Noz 2 N. In this case, we may be “close” to the

resonant sets. However, we have |T'¢, (€23)| 2 N? on A. If No ~ Nag, then we have,

using (5-12),

N No3Nim?(Ny) N§N§N§3
O Pe (€a) TTj_, m(N)N;  Naa
_ Ny RN
~ _3 _3 1
NjN;N1=sN,” * min(N1-sN; * NJ)

1 1 ,l+ 1 0—
PV s—l>§N 2 HNJ 5
N2—28N10+N3 1 Nl—le 2 i

,Smax(

as long as s > 5/8. Now, suppose No ~ N3 > Naz. After switching the indices of
IV, we have Py < ]\728*2N1iN272S <N-Et H?Zl N]Q*7 as long as s > 2. O
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Proof of Lemma . From , we have
i [1g o) o)+ ocdn(cy
NV &, +aff + af}
gy, S ) + 0 (6) ¢ ogin’(6)]
" &+ a&d + el sym

(5.46)

4
i
= — I+ Hgym.

4

The proof is very similar to that of Lemma In the following, we point out a
few key points.

e Case (1): N; < N, j=1,2,3,4. From ({5.46]), we have m/ = 351234 = 0, since

m(&;) =1 and m(§23) = m(&1a) = 1.

e Case (2): maxNN; 2 N. In this setting, the resonance equation for I is given
by Ty, (&1) = &85 + a&f + a&l = 0. As before, it follows from Lemmata
(¢) and (b) that it suffices to prove (5.38). If there is no resonance, i.e. on
A ={|& + c1&3] > 1 and €1 + co&aos| > 1}, then, from Lemmata (a) and

(a), we have

1
‘/ A4(IV;’U,’U,’U,’U)dt 5)‘0+||<8$>_%U<8$>_%U||Xf 2
0

%%[o’unvuxi*%[o,u (5.47)
S /\O+||UH§1/L9[0,1],
where IV = 35 =. Then, it suffices to prove (5.40). As before, we can

<€2>3/4<53>3/4<523)%
switch the indices 1 <> 2 and 3 « 4 in IIT and IV in establishing (5.38)) and (5.40).

Note that we have |T¢,, (&1)| ~ max(N7, Ni5, Ni) away from the resonant set, i.e.
on AN{[€as| ~ 0}. We have [Te,, (61)] 2 NagN7 on {lgas| ~ 0}, and [Ty, (€1)] 2 N3,
on A¢. This is all we needed from the denominator of I in the proof of Lemma
Also, note that we can estimate the numerator of I by either

max(&33m? (€23), E§m? (&1), &m® (&)
or
Em? (&) + Em* (&) = Em* (&) — (&1 + &a3)*mP (&1 + Ea3)

along with Mean Value Theorem when N; ~ Ny > £33. Lastly note that €3 in I
exactly cancels with &3 in the numerators of III and IV. Hence, the proof basically
follows from the proof of Lemma after replacing (&1, &23,&4) by (§23,61,&). O

Proof of Lemma[5.9 From (5.3) and (5.7)), we have

_EmP (&) + afdm? (&) + agdm? (&)
&+ a&f + af

03(81,€2,83) = m(§1)m(§2)m(&3) =1-1IL

Since ¢ is fixed, we drop t-dependence in writing «(t) and v(t). Note that (5.30)) is
equivalent to

g3
siw0,0)| S lullzz ol (5.48)

‘A3(H§_1<§j>m(@
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By Hoélder inequality and Sobolev embedding, we have
1
‘Ag —_— U, v,V ‘
<H3 1<5j>5’ )
= ‘/ 520<8x>_33vdx’ (549)
< 1402) " ull £a [1(02) ~*2 0| 23 [1{02) ~**vll 2z < llullzz llvllZs,
as long as s; > 1/6. First, we estimate the contribution of I. We have
I B 1
[ &m&)  TH-1(&)

Hence, ((5.48)) for I follows from (5.49). Now, we will consider the contribution of
II. Let

ML @) ran’©) ragin’&) oo

[E_i&m&) Ty (E)mE) &+ agd + ag)

Without loss of generality, assume Ny > Nj.

e Case (1): N; < N, j =1,2,3 = m({;) = 1. In this case, we have M =
(N1)™H{Ny)~1(N3)~!. Then, follows from (5.49). For the following argu-
ment, recall that the resonance T'¢, (&) = & + a&5 + a& ~ 0 occurs only if
Ny ~ Ny ~ Ns. Also, note that s € (sg,1) with so > % In the following, we
present the proof only for a € (0,1). From (L.12)), we have ¢; > 1 when a € (0,1),
thus ruling out the possibility of the resonance in Case (2) below. When « € (1,4),
one can basically repeat the same proof. (In this case, we have ¢; € (%, 1), which
can be used to rule out the possibility of the resonance in Case (3).)

e Case (2): Ny =maxN; 2 N = Ny~ N; 2 N.

o Subcase (2.a): N3 < N = m(&) = 1. In this case we have no resonance
and thus we have |T'¢, (§2)| ~ Ni. Note that N§m?(N3) < N3 < NP N2=25 =
N3m?(Ny). Then, we have |[M| < N1]\172N3' Hence, follows from (5.49).

o Subcase (2.b): N3 = N. The resonance occurs only at £ = —c1&; or &3 = —c¢1&3.
Since ¢1 > 1, this implies |{2] > |§1] or |€3] > |€1]. This can not happen in this case
since N1 = max N;. Thus, we have |T¢, (&2)| ~ N7, and

M| < N3m2(Ny) N 1 1
~ NlNgNdm(Nl)m(Ng)m(Nd)|1"§1 (52)| N175N1N2N§ - N1N2N§

Then, follows from since s > 1/2.

e Case (3): Ny = maxN;.

o Subcase (3.a): No ~ Ny > N3. If N3 < N, then we have no resonance and the
proof follows from Subcase (2.a). Now, assume N3 2> N. In this case, the resonance
occurs over the set B = {|& + 11| < /\} First, we consider the contribution of II

on B°. In this case, we have |I'¢, (§2)| 2 —+ on B¢, since I'¢, (&2) is a parabola (in &2)
such that [T¢, (c161)] = 0 and | & T, (c1§1)| ~ €2. Note that for \ ~ N(1=9)0(s:50)

given in (5.18)), we have

i = N0 <, (5.51)
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—1—2542s0+
342s—2s0—
3,12
1< Nim*(N1)xpe N A N 1
~Y — b
N1N2N3m(N1)m(N2)m(N3)F§1 (62) Nt SNlNéS N11/2N21/2N§

and (5.48) follows from (5.49) since s > 1/2. Now, we consider the contribution of
IT on B. After adjusting (1.14)) and (1.17)) to the period 2w\, we have |T'¢, (&2)] 2

2—2s09—
% on B. Also, on B = {|&+c1&1] < %}, there are only 2 values of &5 and &3 for

each &1, which we can write as {o = —c1&1 + ¢, € Z/X and &3 = —cp61 — 6¢, € Z/A
with |d¢, | < §. Hence, there are only two terms in > 5¢,|< 1> and we have

since (s, s9) — 1 = < 0 for s > sg and s < 1. Then

|MXBC

2
Mslusiur o) =|(os) 3 2 WE)-ert + 56 )i(~esa — dc,)
§1€2/A |6¢, <%
SA Ml P17 < A ullzallolzz < A2 ullcz vllZs,
(5.52)
where we used Holder inequality (in z) in the last step. Using , it suffices
to prove |M| < Az. Since Ny ~ Ny ~ Nj in this case, the numerator of |M] is
~ N$m?(Np). Then, we have
N?mQ(Nl)XB N11—8A1+2so+ >\1+250+
|MXB| 5 N3m3 ~ _ 2—2s9— ~ 2—2s0—
im?(N1)lg, (§2)  N1-sNy—07 ™ N272%

since 1 + s — 2s9— > 0 and N; > N. Then, we have |M x| < A\'/2? once we show
ABH2s0+ < 2250, (5.53)
Since s > sg+, we have RHS of > N2725, From , we have
LHS of ~ N2 aaisig=

Thus, follows once we show % + 289+ < 3 + 2s — 2s¢9—, which follows from
Sot+ <s<1.

o Subcase (3.b): Ny ~ N3 > N;. If Ny < N, then we have m(&;) = 1. Also,
we have |T¢, (€2)] = N1 N3 in this case. Then, we have |[M| < W Hence,
follows from (5.49). Now, assume N; > N. In view of Subcase (3.a), we
need to consider this case only over the nonresonant set B€. As before, we have

ITe, (&2)] 2 NTS on B¢. Then, using (5.51), we have

|M ‘< NSmQ(NQ)XBc A 1
XEL S NN Nsm(ND)m(N2)m(Ns)Te, (&) NNjNs ~ NsnNI2N2
and (5.48)) follows from (5.49) since s > 1/2. O

6. APPENDIX: PROOF OF LEMMA [4.10]

In this appendix, we present the proof of (4.26)) and (4.27)), from which one can
deduce Lemma Before going to the proof, we first list the linear estimates for

X%, j =1,2 defined in (&5). c.f. [6].
For s > s" and b > V', || f|| yoror < |[|fll 5o From spatial Sobolev inequality, we
j j

have
Hf”Lfo; S Hf”LfH; = ||f||X;=° (6.1)
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for 0 <s < 4and2<p< 2 orfors>1/2and 2 < p < oco. From spatial

Sobolev inequality and Sobolev embedding in time, we have

[y S N loems < ||f||X;,%+ (6.2)
for the same range of s and p. In particular, we havé [fllee, < Hf||X%+%+. By

J
interpolating with the previous estimates, we have ||f|[zoz, < ||f||X%+,%Jr for all

2 < gq,7 < oco. Interpolating this with for s=0and p =2, we hajve
I lleeoy S A, 35y - (6.3)

J

for all 0 < § < § and 2 < ¢,r < ;. From Bourgain’s LS, Strichartz estimate [3],
we have

1A lee, S WA ov g (6.4)
J
Interpolating this with (6.3]), we obtain ||f||L;t < ||f||X5% for all 0 < § < 3 and

2 < g < 5. In particular when ¢ = 6, we obtain

-25°
1fllzs, < ||fHXJq+,% (6.5)
If we interpolate (6.4) with Bourgain’s Ly ; Strichartz estimate [3]
1fllzs, < ”foj.’%’ (6.6)
then we have, f01r4<q<6ando<%—%7
Iz, S 11 oy (6.7

We stated (6.4) and without the proof. Their proofs follow easily from a
slight modification of the argument in [3], using the fact that the leading term of

d;(€) in ([(£.3)) is &3. See [13] for details.
Proof of Lemma[{.10, We concentrate on proving (4.26) and (4.27):

1
H <§3>% Hizl <7-n _ djn (gn)>1/2 H[4;Z><R] ,S 1,
1

<

H (€2 [Tny (= dj, (€)1 H[‘*;ZXR] =
The argument is based on an extension of the proof of [6, Theorem 3]. First, we
state few number theoretic lemmata.

Let &, A, N, L be integers such that 0 < L,N < [¢| < |A\]. We consider the

quantity

#{(U,n)eZ?: |l - NS L, In—¢& <N, nfl}. (6.8)
ie, for all I = A+ O(L), we count the number of divisors of [ in the interval
&+ O(N). It is known that the number of divisors of an integer m is o(m) as
m — oo. c.f. Hardy-Wright [§8]. Thus, we can bound by |A°TL. The next
lemma [6, Lemma 6.1] removes the |A\|°F factor under some additional assumptions.

Lemma 6.1. Let &, A\, N, L be as above. Then, < N. Furthermore, if we
assume |\ < [€* and 0 < N < |€]s, then we have < 3L.
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The proof in [6] is based on showing
#{leZ:|l-\NSL,n|l} <1, and (6.9)
#{neZ:|n—-¢& SN, nll} <3, (6.10)

where the second estimate holds under the additional assumption.
From elementary number theory, we have the following lemma. See [I3] for the
proof.

Lemma 6.2. Let ny,ng,...,ny € Z such that n;|l € Z for each j = 1,...,N.
Then,

N
IInlt TI  sedng,me). (6.11)
j=1  1<j<k<N

In the following, let |£x| ~ Ny and (1, —d;, (§)) ~ M}, with Ny, My, dyadic. Also,
let Muin < Mmea < Mpax be the minimum, median, maximum of My, My, Ms.

e Part 1: Proof of (4.26)). In this case, it suffices to show that

lurugusllzz , S llwall oy lluall oy llusll 3-5.0- 5 -

X X2 100’2 100
I3

6.12
J1 .7’22 ( )
Note that we do not need the extra gain of 1/100 in the third term for proving
(4.26) on T x R. However, it is important to prove so that we can follow the
argument in [6] to obtain on Ty x R with A > 1 for proving Lemma
From the fact that ||uv||p2 = ||uT||z2, we may assume that & and & have the
same sign. By symmetry, we can further assume that £&; > & > 0.
e Case (1): Ny < (N3M;MoM3)®°. In this case, it suffices to show

luruousllpz , < llusll o1 [luzl

1o flusll 1oz 1l 2.
z X 04,3 =155 113

27 T00°'2 ~ T00
J2 st

This follow from L3} ,, L ,, L2, Hélder inequality along with (6.6)), (6.7), and (6.3).
e Case (2): Ny, Ny > (N3M;MyM;3)5°. By Cauchy-Schwarz, it is sufficient to
show

J1 X

d¢y d€adrydry S (N3My My Mg)'~ 00~ 6.13
58:7172 A1+52+53+54:0XA 51 €2 i N( 3 3) ’ ( )
T1+72+73+74=0

where
A= {N3~ &, My ~ (1 — dj, (&), 1,82 > (NsMyMyMs)™}. (6.14)

Note that we have some choice in which variable we perform the integrations in
(6.13)). By integrating in 7, variables corresponding to My, and Myeq, it suffices
to show

MininMnea#{ (€1,€2) € Z? : €1934 = 0, N3 ~ &3], &1,&2 > (N3 My My M),

3
74+ D dj (66)] S Minax} S (N3 My My M)~ 70

k=1
(6.15)
for all & € Z and 74 € R. Note that (6.15)) follows once we show
#{(€1,6) € Z% : &1234 = 0, N3 ~ |&5], &1, & > (N3 My Mo M3)™,
) (6.16)

3
|74 + Zdjk(@c)] S Miax} S N;_W%_Mm;g%‘.
k=1
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From (4.3), we have

3 3
T+ Y di (&) =T — &+ 254 + L (D (=)&) + 3inéasbia. (6.17)
k

k=1 =1

We fix &4 and 74 and prove (6.16) independent of the values of £, and 74.
o Subcase (2.a): j1 = jo = j3. (Note that this case basically follows from the
argument in [6].) In this case, we have

3
Tt Y dy (&) =7 — &+ (B + (1) L) & + 3€1a6asbua.
k=1

Let [ = 3512613514 and A = —T4 + fi’ - (g + (71)j’“+1L1)€4. Note that A is fixed
since it depends only on &4 and 74. Then, we have

3
72+ > dj (&)] $ Minax <= |l = Al $ Miax- (6.18)
k=1
Now, let n = & +&;. Then, |n+ &4| S N3, since {1234 = 0. Also, |&4] = &1, &2, since
&1,& > N3 > 0. Thus, we have |I| < |&]2. Then, we have |\ < [&]? from
and Mp,ax < |&4]3. Also, we have N3 < |§4|% in this case since N3° < &1,& < |&).
Hence, by Lemma [6.1] we have

max"*

#{(n,1) € Z% : |l = A| S Muna, |0+ €] S Nayn|l} S min(Ny, Myax) < Na/>M1Y/2

i.e., there are at most ~ NQ/QMILQ%( values of n = & + & which can contribute to
(16.16)).
Note that for each fixed value of n = & + &, we have

L €L |1 — N < My, n|l} < 1.

Otherwise, if n|l and n|l’ with [,I’ = A4+ O(Mmax), then I = gn an I’ = ¢’n for some
¢,q¢' € Z. Then, we have |l —I'| = |q — ¢'|n 2 |&4] > M350 unless ¢ = ¢’. Thus, if

n|l and |l — A| $ Muax, then [ is uniquely determined. On the other hand, we have

= —3&12614600 = —3n(&1& + nés + £F).

i.e., the value of £1&5 is uniquely determined as well. Hence, , &1 and &5 are uniquely
determined (up to permutation). Therefore, the contribution to (6.16)) is at most
1/2571/2 . .
~ N3’ " Mnplax in this case.
Now, we consider the case when ji, jo2, j3 are not all equal.
o Subcase (2.b): j1 = 2, jo = j5 = 1 (The proof for the cases j; # jo = j3 or
J2 # j1 = Js is similar.) In this case, we have

3
Z(fl)jkfk =& — & —&§ =26 + & = —283 — & (6.19)
k=1
Thus
3
T4+ Z dj, (&) = 12 — &5 + (5 + L1) & + 3E10&13614 + 2L &1 (6.20)

k=1
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Let | = 3&12&15&14 and A = —74 + &§ — (% + L1)&. Note that A is fixed as before.
Then

3
’T4 + Zd]k (gk)’ 5 Mmax <~ |l — (/\ — 2L1§1)| 5 Mmax-

k=1
Fix & . Then, by Subcase (2.a) or , for each fixed n = & + &5 ~ —&4, we have
#HeZ: |l —(N=2L1&)| S Mmax, n|l} < 1. (6.21)

Moreover, if there exists | = 3£12€13€14 such that n := &12]l, then & and & are
uniquely determined (up to permutation) as before.

The issue here is that there may be &) # &1,&; such that n = & + & = & + &
and n|l’ # 1 where I’ = 3815813814 and [I' — (A = 2L1£7)| S Mpmax. We need to show
that this can not happen for fixed &,. If there exists such & and I/, then, on the
one hand, we have

=1 +2L1 (& = &) <Nl = (A =201 &) + I = (A = 2L1&))| S Mimax-  (6.22)
On the other hand,

I =1 +2L1(& — €)= =3n(& + &) (& + &) + 3n(&] + €4) (& + &) + 2L (& — &)
=3n(&& — &) +2L1(& — &)
= (Bn(&1 + & —n) +2L1) (6 — &),

since n = &2 = &}y and & is fixed. Clearly, the second factor is not 0. Also,
& + & —n # 0 since &) # &. Then, it follows that |l — I’ + 2L (& — &) > MY

max?
since n = &2 > M30 and Ly = 1/24/p? + 447 is a fixed number, This clearly
contradicts with (6.22)). Hence, for fixed n = &;0, there exists at most one value of
&1 contributing (6.21). Therefore, the contribution to is at most O(N3) in
this case since |n + &4 < Ns.
Next, we show that the contribution to is at most O(Mmax). Then, we
1/2

can conclude that it is at most O(N; / 2Mrmx). In this case, we need to assume
Ly €Q. ie., Ly = § for some a,b € Z. Then, from (6.19) and (6.20), we have

3
724+ > dj (&)] © Minax <= [l = | $ Minax, (6.23)
k=1
where B -
I = &93(3b€12&13 + 2a) and A = —b\ — 2a&y. (6.24)

Note that A depends only on & and 74, and thus it is fixed. Also, note that
\l~| ~ E2&,, since & > & > €50, We consider the following two cases: & > €3 and
< £2

ilsle%ubcase (2.b.i): & > €2. Let n = 3b&12&13 + 2a and ¢ = 3b€2 + 2a. Then, we
have [n— | = 3b|€4(&2+&3) + &283| S €1&2. Now, we claim that, for fixed |l~| ~ £2&,
we have N

#{neZ:|n—{ <&&, nli} <1. (6.25)
Suppose not. i.e., there exist two integers ni,ns in the above set. Then, by Lemma

[6-2] we would have
2

H n;| Iged(ny, na). (6.26)
j=1
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Now, left-hand side of (6.26) is O(¢?) = O(&3) = O(&}). From (6.25)), we have

ged(ny,n2) < €1&. Then the right-hand side of S1&& ~ 663 < ¢ ~ LHS
of , which is a contradiction.

Hence, for fixed ZN, there’s at most one value for n = 3b€12€15 + 2a. Once I and
n are fixed, then &»3 is also determined since 1= &agn. Then, & = —&o3 — &4 is
determined as well since &4 is fixed. Now, note that

I = £93(3bE34604 + 2a) = 3bEas(Eabs + Ea3Es + £3) + 2abas.

This implies that £2&3 is also determined, and thus £ and &3 are uniquely deter-
mined since & > £3°. Hence, &1, &2, &3 are determined for fixed I. In view of ,
there are O(M,ax) many possible values for L. Therefore, the contribution to
is at most O(Mmax)-

o Subsubcase (2.b.ii): & < €3. Recall that we’d like to prove

Ixallpzxr S (N1 My Mo M)t~ 165, (6.27)
where A is as in (6.14). Note that
Xé23=E2+O(N3) < Z X€a3=K+O(N3)X&,=K+O(N3)
KecZ
for some ¢ ~ O(N3). Thus,
||XA||[4;Z><R] < Z XAX¢E23=K+O(N3)Xéa=K+O(N3)-
KecZ

Without loss of generality, assume |K| > (N3M;MyM3)>°. Let

M (€23,62, 723, T2) = XAXeas—K+O(N3) Xe2=K+O(Ns)
= XAX{K+0(N3)} (§23) X (K +O(Na)} (§2)-
Then, by letting J; = {23} and Jo = {2}, we have

#{K €c: (623752)7_2377—2) S Sl;pp(mK)} 5 1u k= 172

k

since ¢ ~ O(N3). Hence, by Schur’s test [I7, Lemma 3.11], it is sufficient to show

2 _
Sl;(p”XAX§23:K+O(N3)X§2:K+O(N3)H[4;Z><R] < (N1 My Moy M)~ 10—,

Using the notation in (6.24)), we have I = O(€2¢) with [l — A| < Mpax. Suppose
that, for fixed 2: there exist 7 values of n = £23 with nﬂv i.e., n; is of the form
n; = &3 for some & and &, j = 1,...,7. Then, by the constraint |23 — K| < N3,
we have ged(nj, ng) < [£23 — 53] S N3. Then, by Lemma we have

7
[Tnlt ] sedng,me). (6.28)
j=1 1<G<k<T
On the one hand, we have the LHS of ~ £ > €35, On the other hand, we
have RHS of ~ E3ENG < ENF < £, which is a contradiction to (6.28).
Therefore, for each fixed 7, there can be at most 6 such n = &3 (which determines
&1, &2, &3 uniquely as before.) Since there are at most O(Mpax) many possible values
for 7, we conclude that the contribution to is at most O(Mpax).
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o Subcase (2.¢): j1 = j2 = 1, j3 = 2 (The proof for the case j; = jo = 2, jz =1 is
similar). In this case, we have 22:1(—1)“& ==& — & + & = —2&15 — &4. Then,
with L; = §, we have 74 + Zizl d;, (&) = $(1 — A), where

I =&2(3b613é1a — 2a) and A= —bry + b€ — (B +a)éa. (6.29)
Thus
3
I+ 3 (60)] S Minax <= 11— Al S Minas. (6.30)
k=1

Note that | ~ €2¢& < M320 . Thus, without loss of generality, we may assume

A~ €26 < €. Let n = &o. Then, n|l and |n+ &| < N3 < €,/°°. Then, by

Lemma [6.1] we have

H#{€Z |l — N S Mumax, n =&12]l} <1 (6.31)
for each fixed n = &1o, and
#{ne€Z:|n+¢&| < Ns,nll} <3, (6.32)

for each fixed [ satisfying (6.29) and (6.30). Hence, it follows that the contribution
to (6.16)) is at most O(N3) from (6.31)) and that it is at most O(Max) from (6.32]).

Remark 6.3. We like to point out the issue when L; ¢ Q. For example, in the
second half of Subcase (2.b), we need to count the number of (£1,&;) € Z? satisfying
[+ 2L1& — A| S Muyax. Let n =1+ 2L1&,. We can show that there’s exactly 1
value of [ for each fixed n. (Suppose n =1+ 2L,&; =" + 2L1&]. Then, we have
I—U'=2L1(&—&). If Ly ¢ Q, then we must have l =1’ and & = &) since -1’ € Z
and 2Ly (€] — &) ¢ @\ {0}

From (6.10), we have #{(&1,&) € Z? : |&12 + &4| S Ns, &i2|l} < 3 for each |
with |I| < |€4]°. Hence, if we can express the number of possible values for n with
|7 — A S Mpax in terms of some power of M.y, we can conclude the proof for
L; ¢ Q as well. However, 7 is in Z + L1 Z, which is dense in A + O(Mpayx), and we
do not know how to count. As we’ve seen, our counting argument strongly depends
on the divisions among the integers.

e Part 2: Proof of (4.27). The proof of (4.27)) basically follows from [6]. We
include the argument for the sake of completeness. Note that (4.27) is equivalent
to showing

| [ wususuadodt] < Juall oy luall o sl oy lunll g0 (633

3 3
J1 J2 ng Ja
for j1, j2, j3, ja € {1,2}. First, note that by L1, L1, L°L2 L? L% Holder inequal-

x,t) Tz,
ity along with (6.6)), (6.2), and (6.1), we have
| [ wsusuadadt| <l o leall o sl oyl goo (63)
J1 J2 73 J4

Then, it is sufficient to show that

/U1U2U3U4d93dt‘ S lluall oy lluall oy s llusll o g lluall g as0- (6:35)

J1 J2 J3 ja

Once we prove ([6.35)), then by interpolating (6.34) and (6.35)), we have

‘/u1u2u3u4dxdt‘ <l oy o] o o (6.36)

1
; . 2
J4

Ml oy sl

J1 J2 J3
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Then, interpolating (6.36)) with (6.34]) after switching w; and us, we obtain

| [ wsvausuadedt] S ol oy ol oyl og Tl 3o
J1 J2 J3 J4
which is sufficient to prove (6.33)). Hence, we shall focus on proving (6.35).
Note that (6.35]) follows once we prove

_ 1
0

1

| / wnuzuguadadt| S NET | o glluall oy lusl oy luallzz, o (6.37)
J1 J2 73 '

Note that among j1, ja2, js € {1,2}, there are exactly two of them taking the same
value or all of them take the same value. Thus, without loss of generality, assume
j1 = j2- As in Part 1, assume & and & have the same sign. Moreover, assume
§&1 28 >0.
e Case (1): (£&3) < Nj° (The same proof works when (&) < N or (&) < Ni°0).

In this case, it is sufficient to show that

| [ wsusuadadt| < ol oy sl oy sl oy sl

1.1 o
: 0 : 2~ 7100 °
J1 J2 J3 Ja

This follows from L} ;, L°L2, LS |, L;?2 L1? Hélder inequality along with (6.6)), (6.2)),
63, and G

e Case (2): (£1), (&), (&3) > N°. By averaging arguments [I7, Proposition 5.1
with by = 0], we can assume A\, = |7, —d;j, (&) ~ 1, k = 1,2, 3. i.e., we can assume
the Fourier transforms of uq,ug, us are supported in Q; = {(§,7) € Zx R : [{| >
Ni% 7 =d;(¢) +O(1)}, j =1 or 2. Then, it is sufficient to show

3
11
I H XSy, (fk’Tk)XI&\NMH[zL;ZxR] SN (6.38)
k=1
Let
F(€12,712) =/ B xe;, (61, T1)x0,, (§2, 72)u1 (€1, T1)uz(€2, 2)-
€12=61+82
T12=T1+T2
Then F = (IP’QJ1 ul)(P% ug) and
1FN ez, < 1Pay;, willes  [Pay, uzllns, S IPay;, will oy [IPay, uzll oy
i1 i1 (639)

S lluallez Nualrz

from Holder inequality and (6.6). From (6.38) and (6.39), it is sufficient to show

7 _ - N v ’
/512+53+54:0 (12, T12)u3(€3, 73)Ua(€as Ta) X)ea |~ Na X0, (€35 Ta)

T12+73+74=0

1

4
1_ 1 _
SNETO T Nuwllee s
k=1

or equivalently

__1

1
|‘XQ(§1277'12)XQ]-3(5377'3)X|§4|~N4H[4;Z><R]§N42 o, (6.40)
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where Q2 = {(512,7'12) : (gk;Tk) S ij, k= 1,2}. Note that we have 512 = —fg +
O(Ny), and

Xé12=—£3+0(Ny) < Z Xg12=—K+O(N4) X¢3=K+O(N4)
KecZ
for some ¢ ~ O(N4). Without loss of generality, assume |K| > Ni°. Then, we have
LHS of (640) < > mx(&12,&5,&1, 712, 73, 7a),
KecZ

where mg (€12, &3, &4, T12, T3, T4) is equal to

x(§125 T12) X0y, (€35 T3) X | g4 |~ Na Xera=— K +O(Ns) Xes=K +O(Ny)
Then, by letting J; = {12} and Jo» = {2}, we have
#{K €l (5127£37£477-1277—37T4) S Supp(mK)} 5 ]-7 k= 172

J
since ¢ ~ O(Ny4). Hence, by Schur’s test [I7, Lemma 3.11], it is sufficient to show
that

S‘;{D ”XQ (&12, 7’12)XQj3 (537 TS)X\.£4|~N4X§12:7K+O(N4)X§3:K+O(N4) | [4;ZxR]

1
27 100
SNy

As in Part 1, by Cauchy-Schwarz, it suffices to show that

£12+§3+£4:0 xa(§12, T12) X0y, (€35 T3) Xe10=— K +O(Nu) Xea=K +O(N.)d€12dE3dT12dT3

T12+73+74=0
< Ni_%_
for all (&4,74) € Z x R with |4] ~ N4. Integrating in 712, 73, we reduce to showing

#{(61,6, )L €L &1a+ &+ &= 0,60 = —K + O(Ny),
3

1—-2 (641)

T4t Zdjk(ﬁk)‘ ~1p SNy T
k=1

o Subcase (2.a): j1 = j2 = j3. Let | = 3&12€13614 and A\ = —714 + &F — (% +
(—1)7++1L1)&,. Then, we have 74 + > 5_, d; (6) = [ — X in view of (6.17). Note
that \ is fixed. In this case, we have ||| = 3|¢12€24€14] S |62 < |K|? since
€12 = —K + O(Ny) with & > & > 0 and & > Nj° Then, |l — A\| ~ 1 implies
N S |KP. Also, |€12 + K| < Ny < At. Hence, by Lemma it follows that the
contribution to (6.41)) is at most O(1).
o Subcase (2.b): j1 = jo = 1,j3 = 2 (The proof for j; = jo = 2,73 = 1 is similar).
Let Ly = § for some a,b € Z, and let [ and A be defined as in (6.29)). As in Subcase
(2.a), we have |I| < |K|? and |€15 + K| < Ny < A10. Then, we have

& =K + O(Ny),

3
‘7'4 +Zdjk<£k)’ ~le=|l-)\~1
k=1
Thus |A| < |K|?. Hence, by Lemma it follows that the contribution to (6.41])
is at most O(1). This completes the proof of Lemma O
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