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POSITIVE PERIODIC SOLUTIONS FOR LIÉNARD TYPE
p-LAPLACIAN EQUATIONS

JUNXIA MENG

Abstract. Using topological degree theory, we obtain sufficient conditions

for the existence and uniqueness of positive periodic solutions for Liénard type

p-Laplacian differential equations.

1. Introduction

In recent years, the existence of periodic solutions for the Duffing equation,
Rayleigh equation and Liénard type equation has received a lot of attention. We
refer the reader to [3, 5, 6, 7, 8, 9] and the references cited therein. However, as far
as we know, fewer papers discuss the existence and uniqueness of positive periodic
solutions for Liénard type p-Laplacian differential equation.

In this paper we study the existence and uniqueness of positive T -periodic solu-
tions of the Liénard type p-Laplacian differential equation of the form:

(ϕp(x′(t)))′ + f(x(t))x′(t) + g(x(t)) = e(t), (1.1)

where p > 1 and ϕp : R → R is given by ϕp(s) = |s|p−2s for s 6= 0 and ϕp(0) = 0,
f and g are continuous functions defined on R. e is a continuous periodic function
defined on R with period T , and T > 0. By using topological degree theory and
some analysis skill, we establish some sufficient conditions for the existence and
uniqueness of T -periodic solutions of (1.1). The results of this paper are new and
they complement previously known results.

2. Preliminaries

For convenience, let us denote

C1
T := {x ∈ C1(R, R) : x is T-periodic},

which is a Banach space endowed with the norm ‖x‖ = max{|x|∞, |x′|∞}, and

|x|∞ = max
t∈[0,T ]

|x(t)|, |x′|∞ = max
t∈[0,T ]

|x′(t)|, |x|k =
( ∫ T

0

|x(t)|kdt
)1/k

.
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For the periodic boundary-value problem

(ϕp(x′(t)))′ = f̃(t, x, x′), x(0) = x(T ), x′(0) = x′(T ) (2.1)

where f̃ is a continuous function and T−periodic in the first variable, we have the
following result.

Lemma 2.1 ([11]). Let Ω be an open bounded set in C1
T , if the following conditions

hold
(i) For each λ ∈ (0, 1) the problem

(ϕp(x′(t)))′ = λf̃(t, x, x′), x(0) = x(T ), x′(0) = x′(T )

has no solution on ∂Ω;
(ii) The equation

F (a) :=
1
T

∫ T

0

f̃(t, a, 0) dt = 0

has no solution on ∂Ω ∩ R;
(iii) The Brouwer degree of F satisfies

deg(F,Ω ∩ R, 0) 6= 0,

Then the periodic boundary value problem (2.1) has at least one T−periodic solution
on Ω.

Set

Ψ(x) =
∫ x

0

f(u)du, y(t) = ϕp(x′(t)) + Ψ(x(t)). (2.2)

We can rewrite (1.1) in the form

x′(t) = |y(t)−Ψ(x(t))|q−1 sign(y(t)−Ψ(x(t))),

y′(t) = −g(x(t)) + e(t),
(2.3)

where q > 1 and 1
p + 1

q = 1.

Lemma 2.2. Suppose that the following condition holds.
(A1) g is a continuously differentiable function defined on R, and g′x(x) < 0.

Then (1.1) has at most one T -periodic solution.

Proof. Suppose that x1(t) and x2(t) are two T -periodic solutions of (1.1). Then,
from (2.3), we obtain

x′i(t) = |yi(t)−Ψ(xi(t))|q−1 sign(yi(t)−Ψ(xi(t))),

y′i(t) = −g(xi(t)) + e(t), i = 1, 2.
(2.4)

Set
v(t) = x1(t)− x2(t), u(t) = y1(t)− y2(t), (2.5)

it follows from (2.4) that

v′(t) = |y1(t)−Ψ(x1(t))|q−1 sign(y1(t)−Ψ(x1(t)))

− |y2(t)−Ψ(x2(t))|q−1 sign(y2(t)−Ψ(x2(t))),

u′(t) = −[g(x1(t))− g(x2(t))],

(2.6)
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Now, we prove that u(t) ≤ 0 for all t ∈ R. Contrarily, in view of u ∈ C2[0, T ] and
u(t + T ) = u(t) for all t ∈ R, we obtain

max
t∈R

u(t) > 0.

Then, there must exist t∗ ∈ R (for convenience, we can choose t∗ ∈ (0, T )) such
that

u(t∗) = max
t∈[0, T ]

u(t) = max
t∈R

u(t) > 0,

which, together with g′(x) < 0, implies that

u′(t∗) = −[g(x1(t∗))− g(x2(t∗))] = 0, x1(t∗) = x2(t∗),

u′′(t∗) = (−(g(x1(t))− g(x2(t))))′|t=t∗

= −[g′x(x1(t∗))x′1(t
∗)− g′x(x2(t∗))x′2(t

∗)] ≤ 0.

(2.7)

Then

u′′(t∗) = −g′x(x1(t∗))[x′1(t
∗)− x′2(t

∗)]

= −g′x(x1(t∗))[|y1(t∗)−Ψ(x1(t∗))|q−1 sign(y1(t∗)−Ψ(x1(t∗)))

− |y2(t∗)−Ψ(x2(t∗))|q−1 sign(y2(t∗)−Ψ(x2(t∗)))]

= −g′x(x1(t∗))[|y1(t∗)−Ψ(x1(t∗))|q−1 sign(y1(t∗)−Ψ(x1(t∗)))

− |y2(t∗)−Ψ(x1(t∗))|q−1 sign(y2(t∗)−Ψ(x1(t∗)))].

(2.8)

In view of

−g′x(x1(t∗)) > 0, u(t∗) = y1(t∗)− y2(t∗) > 0, (2.9)

and

|y1(t∗)−Ψ(x1(t∗))|q−1 sign(y1(t∗)−Ψ(x1(t∗)))

− |y2(t∗)−Ψ(x1(t∗))|q−1 sign(y2(t∗)−Ψ(x1(t∗))) > 0.

It follows from (2.8) that

u′′(t∗) = −g′x(x1(t∗))[|y1(t∗)−Ψ(x1(t∗))|q−1 sign(y1(t∗)−Ψ(x1(t∗)))

− |y2(t∗)−Ψ(x1(t∗))|q−1 sign(y2(t∗)−Ψ(x1(t∗)))] > 0,
(2.10)

which contradicts the second equation of (2.7). This contradiction implies that

u(t) = y1(t)− y2(t) ≤ 0 for all t ∈ R.

By using a similar argument, we can also show that

y2(t)− y1(t) ≤ 0 for all t ∈ R.

Therefore, we obtain y2(t) ≡ y1(t) for all t ∈ R. Then, from (2.6), we get

g(x1(t))− g(x2(t)) ≡ 0 for all t ∈ R,

again from g′x(x) < 0, which implies that x2(t) ≡ x1(t) for all t ∈ R. Hence, (1.1)
has at most one T -periodic solution. The proof is complete. �
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3. Main Results

Using Lemmas 2.1 and 2.2, we obtain our main results:

Theorem 3.1. Let (A1) hold. Suppose that there exists a positive constant d such
that

(A2) g(x)− e(t) < 0 for x > d and t ∈ R, g(x)− e(t) > 0 for x ≤ 0 and t ∈ R.
Then (1.1) has a unique positive T -periodic solution.

Proof. Consider the homotopic equation of (1.1) as follows:

(ϕp(x′(t)))′ + λf(x(t))x′(t) + λg(x(t)) = λe(t), λ ∈ (0, 1) (3.1)

By Lemma 2.2, and (A1), it is easy to see that (1.1) has at most one positive T -
periodic solution. Thus, to prove Theorem 3.1, it suffices to show that (1.1) has at
least one T -periodic solution. To do this, we shall apply Lemma 2.1. Firstly, we
will claim that the set of all possible T -periodic solutions of (3.1) is bounded.

Let x(t) ∈ C1
T be an arbitrary solution of (3.1) with period T . By integrating

two sides of (3.1) over [0, T ], and noticing that x′(0) = x′(T ), we have∫ T

0

(g(x(t))− e(t)) dt = 0. (3.2)

As x(0) = x(T ), there exists t0 ∈ [0, T ] such that x′(t0) = 0, while ϕp(0) = 0 we
see

|ϕp(x′(t))| = |
∫ t

t0

(ϕp(x′(s)))′ ds|

≤ λ

∫ T

0

|f(x(t))‖x′(t)| dt + λ

∫ T

0

|g(x(t))| dt + λ

∫ T

0

|e(t)| dt,

(3.3)

where t ∈ [t0, t0 + T ].
From (3.2), there exists a ξ̄ ∈ [0, T ] such that g(x(ξ̄)) − e(ξ̄) = 0. In view of

(A2), we obtain |x(ξ̄)| ≤ d. Then, we have

|x(t)| = |x(ξ̄) +
∫ t

ξ̄

x′(s)ds| ≤ d +
∫ t

ξ̄

|x′(s)|ds, t ∈ [ξ̄, ξ̄ + T ],

and

|x(t)| = |x(t− T )| = |x(ξ̄)−
∫ ξ̄

t−T

x′(s)ds| ≤ d +
∫ ξ̄

t−T

|x′(s)|ds, t ∈ [ξ̄, ξ̄ + T ].

Combining the above two inequalities, we obtain

|x|∞ = max
t∈[0,T ]

|x(t)| = max
t∈[ξ̄, ξ̄+T ]

|x(t)|

≤ max
t∈[ξ̄, ξ̄+T ]

{d +
1
2
(
∫ t

ξ̄

|x′(s)|ds +
∫ ξ̄

t−T

|x′(s)|ds)}

≤ d +
1
2

∫ T

0

|x′(s)|ds.

(3.4)

Denote

E1 = {t : t ∈ [0, T ], |x(t)| > d}, E2 = {t : t ∈ [0, T ], |x(t)| ≤ d}.
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Since x(t) is T -periodic, multiplying x(t) and (3.1) and then integrating it from 0
to T , in view of (A2), we get∫ T

0

|x′(t)|pdt = −
∫ T

0

(ϕp(x′(t)))′x(t)dt

= λ

∫
E1

[g(x(t))− e(t)]x(t)dt + λ

∫
E2

[g(x(t))− e(t)]x(t)dt

≤
∫ T

0

max{|g(x(t))− e(t)| : t ∈ R, |x(t)| ≤ d}|x(t)|dt

≤ DT |x|∞,

(3.5)

where D = max{|g(x)− e(t)| : |x| ≤ d, t ∈ R}.
For x(t) ∈ C(R, R) with x(t + T ) = x(t), and 0 < r ≤ s, by using Hölder

inequality, we obtain( 1
T

∫ T

0

|x(t)|rdt
)1/r

≤
( 1

T
(
∫ T

0

(|x(t)|r)s/rdt)r/s(
∫ T

0

1dt)
s−r

s

)1/r

=
( 1

T

∫ T

0

|x(t)|sdt
)1/s

,

this implies that

|x|r ≤ T
s−r
rs |x|s, for 0 < r ≤ s. (3.6)

Then, in view of (3.4), (3.5) and (3.6), we can get

(
∫ T

0

|x′(t)|dt)p ≤ T p−1|x′(t)|pp = T p−1

∫ T

0

|x′(t)|pdt

≤ T p−1DT |x|∞

≤ T pD(d +
1
2

∫ T

0

|x′(s)|ds).

(3.7)

Since p > 1, the above inequality allows as to choose a positive constant M1 such
that ∫ T

0

|x′(s)|ds ≤ M1, |x|∞ ≤ d +
1
2

∫ T

0

|x′(s)|ds ≤ M1.

In view of (3.3), we have

|x′|p−1
∞ = max

t∈[0,T ]
{|ϕp(x′(t))|}

= max
t∈[t0,t0+T ]

{|
∫ t

t0

(ϕp(x′(s)))′ ds|}

≤
∫ T

0

|f(x(t))‖x′(t)| dt +
∫ T

0

|g(x(t))| dt +
∫ T

0

|e(t)| dt

≤ [max{|f(x)| : |x| ≤ M1}]M1 + T [max{|g(x)| : |x| ≤ M1}+ |e|∞].

(3.8)

Thus, we can get some positive constant M2 > M1 + 1 such that for all t ∈ R,
|x′(t)| ≤ M2. Set Ω = {x ∈ C1

T : ‖x‖ ≤ M2 + 1}, then we know that (3.1)
has no solution on ∂Ω as λ ∈ (0, 1) and when x(t) ∈ ∂Ω ∩ R, x(t) = M2 + 1 or
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x(t) = −M2 − 1, from (A2) , we can see that

1
T

∫ T

0

{−g(M2 + 1) + e(t)} dt = − 1
T

∫ T

0

{g(M2 + 1)− e(t)} dt > 0,

1
T

∫ T

0

{−g(−M2 − 1) + e(t)} dt = − 1
T

∫ T

0

{g(−M2 − 1)− e(t)} dt < 0,

so condition (ii) is also satisfied. Set

H(x, µ) = µx− (1− µ)
1
T

∫ T

0

{g(x)− e(t)} dt,

and when x ∈ ∂Ω ∩ R, µ ∈ [0, 1] we have

xH(x, µ) = µx2 − (1− µ)x
1
T

∫ T

0

{g(x)− e(t)} dt > 0.

Thus H(x, µ) is a homotopic transformation and

deg{F,Ω ∩ R, 0} = deg{− 1
T

∫ T

0

{g(x)− e(t)} dt,Ω ∩ R, 0} = deg{x, Ω ∩ R, 0} 6= 0.

so condition (iii) is satisfied. In view of the previous Lemma 2.1, there exists at
least one solution with period T .

Suppose that x(t) is the T -periodic solution of (1.1). Let t̄ be the global minimum
point of x(t) on [0, T ]. Then x′(t̄) = 0 and we claim that

(ϕp(x′(t̄)))′ = (|x′(t̄)|p−2x′(t̄))′ ≥ 0. (3.9)

Assume, by way of contradiction, that (3.9) does not hold. Then

(ϕp(x′(t̄)))′ = (|x′(t̄)|p−2x′(t̄))′ < 0,

and there exists ε > 0 such that (ϕp(x′(t)))′ = (|x′(t)|p−2x′(t))′ < 0 for t ∈ (t̄−ε, t̄+
ε). Therefore, ϕp(x′(t)) = |x′(t)|p−2x′(t) is strictly decreasing for t ∈ (t̄− ε, t̄ + ε),
which implies that x′(t) is strictly decreasing for t ∈ (t̄− ε, t̄ + ε). This contradicts
the definition of t̄. Thus, (3.9) is true. From (1.1) and (3.9), we have

g(x(t̄))− e(t̄) ≤ 0. (3.10)

In view of (A2), (3.10) implies x(t̄) > 0. Thus,

x(t) ≥ min
t∈[0, T ]

x(t) = x(t̄) > 0, for all t ∈ R,

which implies that (1.1) has at least one positive solution with period T . This
completes the proof. �

4. An Example

As an application, let us consider the following equation

(ϕpx
′(t))′ + ex(t)x′(t)− (x9(t) + x(t)− 12) = cos2 t, (4.1)

where p =
√

5. We can easily check the conditions (A1) and (A2) hold. By Theorem
3.1, equation (4.1) has a unique positive 2π-periodic solution.

Since the periodic solution of p-Laplacian equation (4.1) is positive, one can
easily see that the results of this paper are essentially new.
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[11] R. Manásevich, J. Mawhin; Periodic solutions for nonlinear systems with p-Laplacian-like

operators, J. Differential Equations, 145, 367-393(1998).

Junxia Meng

College of Mathematics and Information Engineering, Jiaxing University, Jiaxing, Zhe-
jiang 314001, China

E-mail address: mengjunxia1968@yahoo.com.cn


	1. Introduction
	2. Preliminaries
	3. Main Results
	4. An Example
	References

