Electronic Journal of Differential Equations, Vol. 2009(2009), No. 39, pp. 1-7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

POSITIVE PERIODIC SOLUTIONS FOR LIÉNARD TYPE p-LAPLACIAN EQUATIONS

JUNXIA MENG

Abstract

Using topological degree theory, we obtain sufficient conditions for the existence and uniqueness of positive periodic solutions for Liénard type p-Laplacian differential equations.

1. Introduction

In recent years, the existence of periodic solutions for the Duffing equation, Rayleigh equation and Liénard type equation has received a lot of attention. We refer the reader to [3, 5, 6, $7, ~ 8, ~ 4] ~$ and the references cited therein. However, as far as we know, fewer papers discuss the existence and uniqueness of positive periodic solutions for Liénard type p-Laplacian differential equation.

In this paper we study the existence and uniqueness of positive T-periodic solutions of the Liénard type p-Laplacian differential equation of the form:

$$
\begin{equation*}
\left(\varphi_{p}\left(x^{\prime}(t)\right)\right)^{\prime}+f(x(t)) x^{\prime}(t)+g(x(t))=e(t) \tag{1.1}
\end{equation*}
$$

where $p>1$ and $\varphi_{p}: \mathbb{R} \rightarrow \mathbb{R}$ is given by $\varphi_{p}(s)=|s|^{p-2} s$ for $s \neq 0$ and $\varphi_{p}(0)=0$, f and g are continuous functions defined on \mathbb{R}. e is a continuous periodic function defined on \mathbb{R} with period T, and $T>0$. By using topological degree theory and some analysis skill, we establish some sufficient conditions for the existence and uniqueness of T-periodic solutions of (1.1). The results of this paper are new and they complement previously known results.

2. Preliminaries

For convenience, let us denote

$$
C_{T}^{1}:=\left\{x \in C^{1}(\mathbb{R}, \mathbb{R}): x \text { is T-periodic }\right\}
$$

which is a Banach space endowed with the norm $\|x\|=\max \left\{|x|_{\infty},\left|x^{\prime}\right|_{\infty}\right\}$, and

$$
|x|_{\infty}=\max _{t \in[0, T]}|x(t)|, \quad\left|x^{\prime}\right|_{\infty}=\max _{t \in[0, T]}\left|x^{\prime}(t)\right|, \quad|x|_{k}=\left(\int_{0}^{T}|x(t)|^{k} d t\right)^{1 / k}
$$

[^0]For the periodic boundary-value problem

$$
\begin{equation*}
\left(\varphi_{p}\left(x^{\prime}(t)\right)\right)^{\prime}=\widetilde{f}\left(t, x, x^{\prime}\right), \quad x(0)=x(T), \quad x^{\prime}(0)=x^{\prime}(T) \tag{2.1}
\end{equation*}
$$

where \tilde{f} is a continuous function and T -periodic in the first variable, we have the following result.

Lemma 2.1 ([11]). Let Ω be an open bounded set in C_{T}^{1}, if the following conditions hold
(i) For each $\lambda \in(0,1)$ the problem

$$
\left(\varphi_{p}\left(x^{\prime}(t)\right)\right)^{\prime}=\lambda \widetilde{f}\left(t, x, x^{\prime}\right), \quad x(0)=x(T), \quad x^{\prime}(0)=x^{\prime}(T)
$$

has no solution on $\partial \Omega$;
(ii) The equation

$$
F(a):=\frac{1}{T} \int_{0}^{T} \widetilde{f}(t, a, 0) d t=0
$$

has no solution on $\partial \Omega \cap \mathbb{R}$;
(iii) The Brouwer degree of F satisfies

$$
\operatorname{deg}(F, \Omega \cap \mathbb{R}, 0) \neq 0
$$

Then the periodic boundary value problem 2.1) has at least one T-periodic solution on $\bar{\Omega}$.

Set

$$
\begin{equation*}
\Psi(x)=\int_{0}^{x} f(u) d u, \quad y(t)=\varphi_{p}\left(x^{\prime}(t)\right)+\Psi(x(t)) . \tag{2.2}
\end{equation*}
$$

We can rewrite (1.1) in the form

$$
\begin{gather*}
x^{\prime}(t)=|y(t)-\Psi(x(t))|^{q-1} \operatorname{sign}(y(t)-\Psi(x(t))), \tag{2.3}\\
y^{\prime}(t)=-g(x(t))+e(t)
\end{gather*}
$$

where $q>1$ and $\frac{1}{p}+\frac{1}{q}=1$.
Lemma 2.2. Suppose that the following condition holds.
(A1) g is a continuously differentiable function defined on \mathbb{R}, and $g_{x}^{\prime}(x)<0$.
Then 1.1) has at most one T-periodic solution.
Proof. Suppose that $x_{1}(t)$ and $x_{2}(t)$ are two T-periodic solutions of (1.1). Then, from (2.3), we obtain

$$
\begin{gather*}
x_{i}^{\prime}(t)=\left|y_{i}(t)-\Psi\left(x_{i}(t)\right)\right|^{q-1} \operatorname{sign}\left(y_{i}(t)-\Psi\left(x_{i}(t)\right)\right), \\
y_{i}^{\prime}(t)=-g\left(x_{i}(t)\right)+e(t), \quad i=1,2 \tag{2.4}
\end{gather*}
$$

Set

$$
\begin{equation*}
v(t)=x_{1}(t)-x_{2}(t), \quad u(t)=y_{1}(t)-y_{2}(t) \tag{2.5}
\end{equation*}
$$

it follows from (2.4) that

$$
\begin{align*}
v^{\prime}(t)= & \left|y_{1}(t)-\Psi\left(x_{1}(t)\right)\right|^{q-1} \operatorname{sign}\left(y_{1}(t)-\Psi\left(x_{1}(t)\right)\right) \\
& -\left|y_{2}(t)-\Psi\left(x_{2}(t)\right)\right|^{q-1} \operatorname{sign}\left(y_{2}(t)-\Psi\left(x_{2}(t)\right)\right), \tag{2.6}\\
u^{\prime}(t)= & -\left[g\left(x_{1}(t)\right)-g\left(x_{2}(t)\right)\right]
\end{align*}
$$

Now, we prove that $u(t) \leq 0$ for all $t \in \mathbb{R}$. Contrarily, in view of $u \in C^{2}[0, T]$ and $u(t+T)=u(t)$ for all $t \in \mathbb{R}$, we obtain

$$
\max _{t \in \mathbb{R}} u(t)>0 .
$$

Then, there must exist $t^{*} \in \mathbb{R}$ (for convenience, we can choose $t^{*} \in(0, T)$) such that

$$
u\left(t^{*}\right)=\max _{t \in[0, T]} u(t)=\max _{t \in \mathbb{R}} u(t)>0
$$

which, together with $g^{\prime}(x)<0$, implies that

$$
\begin{align*}
u^{\prime}\left(t^{*}\right)= & -\left[g\left(x_{1}\left(t^{*}\right)\right)-g\left(x_{2}\left(t^{*}\right)\right)\right]=0, \quad x_{1}\left(t^{*}\right)=x_{2}\left(t^{*}\right), \\
u^{\prime \prime}\left(t^{*}\right) & =\left.\left(-\left(g\left(x_{1}(t)\right)-g\left(x_{2}(t)\right)\right)\right)^{\prime}\right|_{t=t^{*}} \tag{2.7}\\
& =-\left[g_{x}^{\prime}\left(x_{1}\left(t^{*}\right)\right) x_{1}^{\prime}\left(t^{*}\right)-g_{x}^{\prime}\left(x_{2}\left(t^{*}\right)\right) x_{2}^{\prime}\left(t^{*}\right)\right] \leq 0 .
\end{align*}
$$

Then

$$
\begin{align*}
u^{\prime \prime}\left(t^{*}\right)= & -g_{x}^{\prime}\left(x_{1}\left(t^{*}\right)\right)\left[x_{1}^{\prime}\left(t^{*}\right)-x_{2}^{\prime}\left(t^{*}\right)\right] \\
= & -g_{x}^{\prime}\left(x_{1}\left(t^{*}\right)\right)\left[\left|y_{1}\left(t^{*}\right)-\Psi\left(x_{1}\left(t^{*}\right)\right)\right|^{q-1} \operatorname{sign}\left(y_{1}\left(t^{*}\right)-\Psi\left(x_{1}\left(t^{*}\right)\right)\right)\right. \\
& \left.-\left|y_{2}\left(t^{*}\right)-\Psi\left(x_{2}\left(t^{*}\right)\right)\right|^{q-1} \operatorname{sign}\left(y_{2}\left(t^{*}\right)-\Psi\left(x_{2}\left(t^{*}\right)\right)\right)\right] \tag{2.8}\\
= & -g_{x}^{\prime}\left(x_{1}\left(t^{*}\right)\right)\left[\left|y_{1}\left(t^{*}\right)-\Psi\left(x_{1}\left(t^{*}\right)\right)\right|^{q-1} \operatorname{sign}\left(y_{1}\left(t^{*}\right)-\Psi\left(x_{1}\left(t^{*}\right)\right)\right)\right. \\
& \left.-\left|y_{2}\left(t^{*}\right)-\Psi\left(x_{1}\left(t^{*}\right)\right)\right|^{q-1} \operatorname{sign}\left(y_{2}\left(t^{*}\right)-\Psi\left(x_{1}\left(t^{*}\right)\right)\right)\right] .
\end{align*}
$$

In view of

$$
\begin{equation*}
-g_{x}^{\prime}\left(x_{1}\left(t^{*}\right)\right)>0, \quad u\left(t^{*}\right)=y_{1}\left(t^{*}\right)-y_{2}\left(t^{*}\right)>0, \tag{2.9}
\end{equation*}
$$

and

$$
\begin{aligned}
& \left|y_{1}\left(t^{*}\right)-\Psi\left(x_{1}\left(t^{*}\right)\right)\right|^{q-1} \operatorname{sign}\left(y_{1}\left(t^{*}\right)-\Psi\left(x_{1}\left(t^{*}\right)\right)\right) \\
& \quad-\left|y_{2}\left(t^{*}\right)-\Psi\left(x_{1}\left(t^{*}\right)\right)\right|^{q-1} \operatorname{sign}\left(y_{2}\left(t^{*}\right)-\Psi\left(x_{1}\left(t^{*}\right)\right)\right)>0 .
\end{aligned}
$$

It follows from 2.8) that

$$
\begin{align*}
u^{\prime \prime}\left(t^{*}\right)= & -g_{x}^{\prime}\left(x_{1}\left(t^{*}\right)\right)\left[\left|y_{1}\left(t^{*}\right)-\Psi\left(x_{1}\left(t^{*}\right)\right)\right|^{q-1} \operatorname{sign}\left(y_{1}\left(t^{*}\right)-\Psi\left(x_{1}\left(t^{*}\right)\right)\right)\right. \\
& \left.-\left|y_{2}\left(t^{*}\right)-\Psi\left(x_{1}\left(t^{*}\right)\right)\right|^{q-1} \operatorname{sign}\left(y_{2}\left(t^{*}\right)-\Psi\left(x_{1}\left(t^{*}\right)\right)\right)\right]>0, \tag{2.10}
\end{align*}
$$

which contradicts the second equation of (2.7). This contradiction implies that

$$
u(t)=y_{1}(t)-y_{2}(t) \leq 0 \quad \text { for all } t \in \mathbb{R} .
$$

By using a similar argument, we can also show that

$$
y_{2}(t)-y_{1}(t) \leq 0 \quad \text { for all } t \in \mathbb{R} .
$$

Therefore, we obtain $y_{2}(t) \equiv y_{1}(t)$ for all $t \in \mathbb{R}$. Then, from (2.6), we get

$$
g\left(x_{1}(t)\right)-g\left(x_{2}(t)\right) \equiv 0 \quad \text { for all } t \in \mathbb{R},
$$

again from $g_{x}^{\prime}(x)<0$, which implies that $x_{2}(t) \equiv x_{1}(t)$ for all $t \in \mathbb{R}$. Hence, 1.1) has at most one T-periodic solution. The proof is complete.

3. Main Results

Using Lemmas 2.1 and 2.2 , we obtain our main results:
Theorem 3.1. Let (A1) hold. Suppose that there exists a positive constant d such that
(A2) $g(x)-e(t)<0$ for $x>d$ and $t \in \mathbb{R}, g(x)-e(t)>0$ for $x \leq 0$ and $t \in \mathbb{R}$.
Then 1.1) has a unique positive T-periodic solution.
Proof. Consider the homotopic equation of (1.1) as follows:

$$
\begin{equation*}
\left(\varphi_{p}\left(x^{\prime}(t)\right)\right)^{\prime}+\lambda f(x(t)) x^{\prime}(t)+\lambda g(x(t))=\lambda e(t), \quad \lambda \in(0,1) \tag{3.1}
\end{equation*}
$$

By Lemma 2.2, and (A1), it is easy to see that (1.1) has at most one positive T periodic solution. Thus, to prove Theorem 3.1, it suffices to show that (1.1) has at least one T-periodic solution. To do this, we shall apply Lemma 2.1. Firstly, we will claim that the set of all possible T-periodic solutions of 3.1 is bounded.

Let $x(t) \in C_{T}^{1}$ be an arbitrary solution of (3.1) with period T. By integrating two sides of (3.1) over $[0, T]$, and noticing that $x^{\prime}(0)=x^{\prime}(T)$, we have

$$
\begin{equation*}
\int_{0}^{T}(g(x(t))-e(t)) d t=0 \tag{3.2}
\end{equation*}
$$

As $x(0)=x(T)$, there exists $t_{0} \in[0, T]$ such that $x^{\prime}\left(t_{0}\right)=0$, while $\varphi_{p}(0)=0$ we see

$$
\begin{align*}
\left|\varphi_{p}\left(x^{\prime}(t)\right)\right| & =\left|\int_{t_{0}}^{t}\left(\varphi_{p}\left(x^{\prime}(s)\right)\right)^{\prime} d s\right| \\
& \leq \lambda \int_{0}^{T}\left|f(x(t)) \| x^{\prime}(t)\right| d t+\lambda \int_{0}^{T}|g(x(t))| d t+\lambda \int_{0}^{T}|e(t)| d t \tag{3.3}
\end{align*}
$$

where $t \in\left[t_{0}, t_{0}+T\right]$.
From (3.2), there exists a $\bar{\xi} \in[0, T]$ such that $g(x(\bar{\xi}))-e(\bar{\xi})=0$. In view of (A2), we obtain $|x(\bar{\xi})| \leq d$. Then, we have

$$
|x(t)|=\left|x(\bar{\xi})+\int_{\bar{\xi}}^{t} x^{\prime}(s) d s\right| \leq d+\int_{\bar{\xi}}^{t}\left|x^{\prime}(s)\right| d s, t \in[\bar{\xi}, \quad \bar{\xi}+T]
$$

and

$$
|x(t)|=|x(t-T)|=\left|x(\bar{\xi})-\int_{t-T}^{\bar{\xi}} x^{\prime}(s) d s\right| \leq d+\int_{t-T}^{\bar{\xi}}\left|x^{\prime}(s)\right| d s, t \in[\bar{\xi}, \quad \bar{\xi}+T] .
$$

Combining the above two inequalities, we obtain

$$
\begin{align*}
|x|_{\infty} & \left.=\max _{t \in[0, T]}|x(t)|=\max _{t \in[\bar{\xi}}, \bar{\xi}+T\right] \\
& \leq \max _{t \in[\bar{\xi}, \bar{\xi}+T]}\left\{d+\frac{1}{2}\left(\int_{\bar{\xi}}^{t}\left|x^{\prime}(s)\right| d s+\int_{t-T}^{\bar{\xi}}\left|x^{\prime}(s)\right| d s\right)\right\} \tag{3.4}\\
& \leq d+\frac{1}{2} \int_{0}^{T}\left|x^{\prime}(s)\right| d s .
\end{align*}
$$

Denote

$$
E_{1}=\{t: t \in[0, T],|x(t)|>d\}, \quad E_{2}=\{t: t \in[0, T],|x(t)| \leq d\}
$$

Since $x(t)$ is T-periodic, multiplying $x(t)$ and (3.1) and then integrating it from 0 to T, in view of (A2), we get

$$
\begin{align*}
\int_{0}^{T}\left|x^{\prime}(t)\right|^{p} d t & =-\int_{0}^{T}\left(\varphi_{p}\left(x^{\prime}(t)\right)\right)^{\prime} x(t) d t \\
& =\lambda \int_{E_{1}}[g(x(t))-e(t)] x(t) d t+\lambda \int_{E_{2}}[g(x(t))-e(t)] x(t) d t \tag{3.5}\\
& \leq \int_{0}^{T} \max \{|g(x(t))-e(t)|: t \in \mathbb{R},|x(t)| \leq d\}|x(t)| d t \\
& \leq D T|x|_{\infty}
\end{align*}
$$

where $D=\max \{|g(x)-e(t)|:|x| \leq d, t \in \mathbb{R}\}$.
For $x(t) \in C(\mathbb{R}, \mathbb{R})$ with $x(t+T)=x(t)$, and $0<r \leq s$, by using Hölder inequality, we obtain

$$
\begin{aligned}
\left(\frac{1}{T} \int_{0}^{T}|x(t)|^{r} d t\right)^{1 / r} & \leq\left(\frac{1}{T}\left(\int_{0}^{T}\left(|x(t)|^{r}\right)^{s / r} d t\right)^{r / s}\left(\int_{0}^{T} 1 d t\right)^{\frac{s-r}{s}}\right)^{1 / r} \\
& =\left(\frac{1}{T} \int_{0}^{T}|x(t)|^{s} d t\right)^{1 / s}
\end{aligned}
$$

this implies that

$$
\begin{equation*}
|x|_{r} \leq T^{\frac{s-r}{r s}}|x|_{s}, \quad \text { for } 0<r \leq s \tag{3.6}
\end{equation*}
$$

Then, in view of (3.4), 3.5) and (3.6), we can get

$$
\begin{align*}
\left(\int_{0}^{T}\left|x^{\prime}(t)\right| d t\right)^{p} & \leq T^{p-1}\left|x^{\prime}(t)\right|_{p}^{p}=T^{p-1} \int_{0}^{T}\left|x^{\prime}(t)\right|^{p} d t \\
& \leq T^{p-1} D T|x|_{\infty} \tag{3.7}\\
& \leq T^{p} D\left(d+\frac{1}{2} \int_{0}^{T}\left|x^{\prime}(s)\right| d s\right)
\end{align*}
$$

Since $p>1$, the above inequality allows as to choose a positive constant M_{1} such that

$$
\int_{0}^{T}\left|x^{\prime}(s)\right| d s \leq M_{1}, \quad|x|_{\infty} \leq d+\frac{1}{2} \int_{0}^{T}\left|x^{\prime}(s)\right| d s \leq M_{1}
$$

In view of 3.3 , we have

$$
\begin{align*}
\left|x^{\prime}\right|_{\infty}^{p-1} & =\max _{t \in[0, T]}\left\{\left|\varphi_{p}\left(x^{\prime}(t)\right)\right|\right\} \\
& =\max _{t \in\left[t_{0}, t_{0}+T\right]}\left\{\left|\int_{t_{0}}^{t}\left(\varphi_{p}\left(x^{\prime}(s)\right)\right)^{\prime} d s\right|\right\} \tag{3.8}\\
& \leq \int_{0}^{T}\left|f(x(t)) \| x^{\prime}(t)\right| d t+\int_{0}^{T}|g(x(t))| d t+\int_{0}^{T}|e(t)| d t \\
& \leq\left[\max \left\{|f(x)|:|x| \leq M_{1}\right\}\right] M_{1}+T\left[\max \left\{|g(x)|:|x| \leq M_{1}\right\}+|e|_{\infty}\right]
\end{align*}
$$

Thus, we can get some positive constant $M_{2}>M_{1}+1$ such that for all $t \in \mathbb{R}$, $\left|x^{\prime}(t)\right| \leq M_{2}$. Set $\Omega=\left\{x \in C_{T}^{1}:\|x\| \leq M_{2}+1\right\}$, then we know that 3.1) has no solution on $\partial \Omega$ as $\lambda \in(0,1)$ and when $x(t) \in \partial \Omega \cap \mathbb{R}, x(t)=M_{2}+1$ or
$x(t)=-M_{2}-1$, from $\left(A_{2}\right)$, we can see that

$$
\begin{aligned}
\frac{1}{T} \int_{0}^{T}\left\{-g\left(M_{2}+1\right)+e(t)\right\} d t & =-\frac{1}{T} \int_{0}^{T}\left\{g\left(M_{2}+1\right)-e(t)\right\} d t>0 \\
\frac{1}{T} \int_{0}^{T}\left\{-g\left(-M_{2}-1\right)+e(t)\right\} d t & =-\frac{1}{T} \int_{0}^{T}\left\{g\left(-M_{2}-1\right)-e(t)\right\} d t<0
\end{aligned}
$$

so condition (ii) is also satisfied. Set

$$
H(x, \mu)=\mu x-(1-\mu) \frac{1}{T} \int_{0}^{T}\{g(x)-e(t)\} d t
$$

and when $x \in \partial \Omega \cap \mathbb{R}, \mu \in[0,1]$ we have

$$
x H(x, \mu)=\mu x^{2}-(1-\mu) x \frac{1}{T} \int_{0}^{T}\{g(x)-e(t)\} d t>0
$$

Thus $H(x, \mu)$ is a homotopic transformation and

$$
\operatorname{deg}\{F, \Omega \cap \mathbb{R}, 0\}=\operatorname{deg}\left\{-\frac{1}{T} \int_{0}^{T}\{g(x)-e(t)\} d t, \Omega \cap \mathbb{R}, 0\right\}=\operatorname{deg}\{x, \Omega \cap \mathbb{R}, 0\} \neq 0
$$

so condition (iii) is satisfied. In view of the previous Lemma 2.1. there exists at least one solution with period T.

Suppose that $x(t)$ is the T-periodic solution of $\sqrt{1.1})$. Let \bar{t} be the global minimum point of $x(t)$ on $[0, T]$. Then $x^{\prime}(\bar{t})=0$ and we claim that

$$
\begin{equation*}
\left(\varphi_{p}\left(x^{\prime}(\bar{t})\right)\right)^{\prime}=\left(\left|x^{\prime}(\bar{t})\right|^{p-2} x^{\prime}(\bar{t})\right)^{\prime} \geq 0 \tag{3.9}
\end{equation*}
$$

Assume, by way of contradiction, that (3.9) does not hold. Then

$$
\left(\varphi_{p}\left(x^{\prime}(\bar{t})\right)\right)^{\prime}=\left(\left|x^{\prime}(\bar{t})\right|^{p-2} x^{\prime}(\bar{t})\right)^{\prime}<0
$$

and there exists $\varepsilon>0$ such that $\left(\varphi_{p}\left(x^{\prime}(t)\right)\right)^{\prime}=\left(\left|x^{\prime}(t)\right|^{p-2} x^{\prime}(t)\right)^{\prime}<0$ for $t \in(\bar{t}-\varepsilon, \bar{t}+$ $\varepsilon)$. Therefore, $\varphi_{p}\left(x^{\prime}(t)\right)=\left|x^{\prime}(t)\right|^{p-2} x^{\prime}(t)$ is strictly decreasing for $t \in(\bar{t}-\varepsilon, \bar{t}+\varepsilon)$, which implies that $x^{\prime}(t)$ is strictly decreasing for $t \in(\bar{t}-\varepsilon, \bar{t}+\varepsilon)$. This contradicts the definition of \bar{t}. Thus, (3.9) is true. From $(\sqrt{1.1})$ and (3.9), we have

$$
\begin{equation*}
g(x(\bar{t}))-e(\bar{t}) \leq 0 \tag{3.10}
\end{equation*}
$$

In view of (A2), 3.10 implies $x(\bar{t})>0$. Thus,

$$
x(t) \geq \min _{t \in[0, T]} x(t)=x(\bar{t})>0, \quad \text { for all } t \in \mathbb{R}
$$

which implies that (1.1) has at least one positive solution with period T. This completes the proof.

4. An Example

As an application, let us consider the following equation

$$
\begin{equation*}
\left(\varphi_{p} x^{\prime}(t)\right)^{\prime}+e^{x(t)} x^{\prime}(t)-\left(x^{9}(t)+x(t)-12\right)=\cos ^{2} t \tag{4.1}
\end{equation*}
$$

where $p=\sqrt{5}$. We can easily check the conditions (A1) and (A2) hold. By Theorem 3.1, equation (4.1) has a unique positive 2π-periodic solution.

Since the periodic solution of p-Laplacian equation 4.1 is positive, one can easily see that the results of this paper are essentially new.

References

[1] Xiankai Huang, Zigui Xiang; On the existence of 2π-periodic solution for delay Duffing equation $x^{\prime \prime}(t)+g(t, x(t-\tau))=p(t)$, Chinese Science Bullitin, 39(3), 201-203 (1994).
[2] Yongkun Li; Periodic solutions of the Liénard equation with deviating arguments, J. Math. Research and Exposition, 18(4), 565-570 (1998). (in Chinese).
[3] G. Q. Wang and S. S. Cheng; A priori bounds for periodic solutions of a delay Rayleigh equation, Applied Math, Lett., 12, 41-44 (1999).
[4] Genqiang Wang and Jurang Yan; On existence of periodic solutions of the Rayleigh equation of retarded type, Internat. J. Math.\& Math. Sci. 23(1), 65-68 (2000).
[5] Shiping Lu and Weigao Ge; Some new results on the existence of periodic solutions to a kind of Rayleigh equation with a deviating argument, Nonlinear Anal. TMA, 56, 501-514, (2004).
[6] Shiping Lu and Zhanjie Gui; On the existence of periodic solutions to p-Laplacian Rayleigh differential equation with a delay, Journal of Mathematical Analysis and Applications, 325, 685-702, (2007).
[7] Minggang Zong and Hongzhen Liang; Periodic solutions for Rayleigh type p-Laplacian equation with deviating arguments, Applied Mathematics Letters, 206, 43-47, (2007).
[8] Bingwen Liu; Periodic solutions for Liénard type p-Laplacian equation with a deviating argument, Journal of Computational and Applied Mathematics, In Press, doi:10.1016/ j.cam.2007.02.004.
[9] Fuxing Zhang and Ya Li, Existence and uniqueness of periodic solutions for a kind of duffing type p-Laplacian equation, Nonlinear Analysis: Real World Applications, In Press, Available online 14 February 2007.
[10] R. E. Gaines and J. Mawhin; Coincidence Degree, and Nonlinear Differential Equations, Lecture Notes in Mathematics, vol. 568, Springer-Verlag, Berlin, New York, (1977).
[11] R. Manásevich, J. Mawhin; Periodic solutions for nonlinear systems with p-Laplacian-like operators, J. Differential Equations, 145, 367-393(1998).

Junxia Meng
College of Mathematics and Information Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China

E-mail address: mengjunxia1968@yahoo.com.cn

[^0]: 2000 Mathematics Subject Classification. 34K15, 34C25.
 Key words and phrases. p-Laplacian; positive periodic solutions; Liénard equation; topological degree.
 (C) 2009 Texas State University - San Marcos.

 Submitted February 17, 2009. Published March 19, 2009.
 Supported by grant 20070605 from Scientific Research Fund of Zhejiang Provincial
 Education Department.

