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AN OSCILLATION CRITERIA FOR SECOND-ORDER
NONLINEAR DIFFERENTIAL EQUATIONS WITH

FUNCTIONAL ARGUMENTS

JAGMOHAN TYAGI, VENKATARAMANARAO RAGHAVENDRA

Abstract. We establish an oscillation criteria of the second-order nonlinear

damped differential equation with functional arguments

x′′(t) + p(t)f(t, x(t), x′(t))x′(t) + q(t)g(x(t), x[h(t)]) = 0, t ∈ [t0,∞) .

1. Introduction

Over the previous three decades, many studies have dealt with the oscillation
theory for functional differential equations. For an excellent bibliography and later
developments of this theory, we refer the books by Agarwal, Bohner and Wan-Tong
Li [1], Erbe, Kong and Zhang [3] and research articles [4, 9, 2, 8, 10, 11, 12]. In this
note, we consider the second-order nonlinear differential equations with functional
arguments of the type

x′′(t) + p(t)f(t, x(t), x′(t))x′(t) + q(t)g(x(t), x[h(t)]) = 0, t ∈ [t0,∞), (1.1)

where p, q ∈ C([t0,∞), R+), f ∈ C([t0,∞)×R2, R+), g ∈ C(R×R, R), g(y1, y2) > 0
if yi > 0; g(y1, y2) < 0 if yi < 0, for all i = 1, 2 and h ∈ C1([t0,∞), R).

We consider only nontrivial solutions of (1.1) which are defined for all t ≥ t0 ≥ 0.
A solution of (1.1) is said to be oscillatory if it has arbitrarily large zeros; i.e., for
any T > t0, there exists a t ≥ T such that x(t) = 0, otherwise the solution is said to
be non-oscillatory. When either p(t) = 0 or f = 0, the oscillatory behavior of (1.1)
is investigated by many investigators, (see, e.g., Bradley [2], Travis [10], Yeh [11]).
For the convenience of the reader, we give a brief introduction about the earlier
developments. In 1970, Bradley considered the equation

(r(t)x′(t))′ + q(t)g(x(t), x[h(t)]) = 0, [t0,∞), (1.2)

where r(t) > 0, q(t) ≥ 0 and
(i) h(t) →∞ as t →∞.
(ii) If y1, y2 are of the same sign, then g(y1, y2) has that sign.
(iii) g(y1, y2) is bounded away from zero when y1, y2 are.

Bradley stated the following theorem.
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Theorem 1.1 ([2]). If q(t) ≥ 0, r(t) > 0,
∫∞

t0
q(t)dt = ∞,

∫∞
t0

1
r(t)dt = ∞, and

conditions (i)–(iii) hold, then any solution of (1.2) that exists on a ray [t0,∞) is
oscillatory.

In 1972, Travis considered the equation

x′′(t) + q(t)g(x(t), x[h(t)]) = 0, [t0,∞), (1.3)

where q, g, h are continuous functions. If y1 and y2 are of one sign, then g(y1, y2)
has that sign. To avoid the assumption that h is differentiable, he introduced a
differentiable minorant j(t) and gave the following result

Theorem 1.2 ([10]). If
(i) j(t) ≤ h(t) and 0 < α ≤ j(t) ≤ 1.
(ii) There exists M > 0 such that y1 ≥ M implies

lim inf
|y2|→∞

|g(y1, y2)
y2

| ≥ ε > 0.

(iii) q(t) ≥ 0 and lim supx→∞ x
∫∞

x
q(t)dt = ∞,

then all solutions of (1.3) existing on (t0,∞) are oscillatory.

In 1980, Yeh also considered (1.3), where q, g, h are continuous functions and
if y1 and y2 are of one sign, then g(y1, y2) has that sign. He gave a new integral
criterion for the oscillation of (1.3). He used the n-th primitive

An(t) =
1
n!

∫ t

t0

(t− u)n−1q(u)du

of the coefficient q(t). He established the following result.

Theorem 1.3 ([11]). Let conditions (i)–(ii) of Theorem 1.2 hold. Let q(t) ≥ 0 and

lim sup
t→∞

t1−nAn(t) = ∞,

where An(t) is the n-th primitive of q(t) for some n > 2, then all solutions of (1.3)
are oscillatory.

The oscillatory behavior of a class of second-order functional equations which
have the potential, q(t) = t, t2, . . . , are discussed in Theorems 1.1–1.3. It is worth
mentioning that the oscillatory behavior of the equations which have the potential,
like q(t) = e−t + 2

t2 , t > 0, cannot be discussed by the above approaches.
Koplatadze et al. [8] gave some oscillation theorems for second-order linear de-

lay differential equations. Recently, Zayed and El-Moneam [12] gave some oscilla-
tion criteria for second-order nonlinear functional differential equations with linear
damping. They point out that the oscillation of some nonlinear functional differ-
ential equations is studied by comparison with related to some linear equations.

All the above cited results do not include a nonlinear damping term. The main
result is proved in section 2 which includes a nonlinear damping term. Our approach
is not only different from other approaches but also it deals with nonlinear functional
equations with nonlinear damping and more general potentials.

Komkov [7] considered the equation

(a(t)x′(t))′ + q(t)x(t) = 0, (1.4)

where a, q ∈ C([t0,∞), R) and a(t) > 0. He proved the following result.
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Theorem 1.4. Suppose there exist a C1 function u(t) defined on [t1, t2] and a
function G(u) such that G(u(t)) is not constant on [t1, t2], G(u(t1)) = G(u(t2)) = 0,
g(u) = G′(u) is continuous,∫ t2

t1

[a(t)(u′(t))2 − q(t)G(u(t))]dt < 0,

and (g(u(t)))2 ≤ 4G(u(t)) for t ∈ [t1, t2]. Then every solution of (1.4) must vanish
on [t1, t2].

For a proof of the above theorem, we refer the reader to [7]. Also, this result is
used by Graef and Spikes [6] for getting the sufficient conditions for nonoscillation
of a second-order nonlinear differential equations.

We need the following hypotheses for further studies.
(H1) g(y1, y2) is a continuously differentiable function with respect to y1 and y2.

Also suppose there exist k > 0 such that ∂
∂yi

g(y1, y2) ≥ k/2 > 0, for yi 6= 0
for i = 1, 2.

(H2) There exist a C1 function u defined on [t0,∞), a C1 function F on R, and
a continuous function G on R such that F ′(u) =

√
kG(u), F (u) ≥ (G(u))2

4 .
(H3) lim inft→∞

1
t

∫ t

t0
[(u′(s))2 − q(s)F (u(s))]ds < 0.

(H4) h ∈ C1([t0,∞), R) such that h(t) →∞ as t →∞, h′(t) ≥ 1, h(t) ≤ t for all
large t.

Remark 1.5. Hypotheses (H2) is more general than the condition used by [7,
Theorem 1.4]. If we restrict F (u(t1)) = F (u(t2)) = 0, F (u(t)) is not constant on
[t1, t2], k = 1 and [t1, t2] ⊆ [t0,∞) in (H2), then (H2) implies a condition used in
Theorem 1.4. Similarly, (H3) can be viewed as a more general condition than an
integral inequality used in Theorem 1.4.

Remark 1.6. Let τ ∈ C1([t0,∞), R+) such that τ(t) → 0 as t →∞ and τ ′(t) ≤ 0.
Let h(t) = t− τ(t). Then h(t) satisfies the hypothesis (H4).

Lemma 1.7. Let p(t) ≥ 0 and q(t) be continuous non-negative and not identically
zero on any ray of the form [t∗,∞), t∗ ≥ t0 and assume that

(i) f(t, x, y) ≤ |y|α, −∞ < x, y < ∞, t ≥ t0 and some constant α ≥ 0.
(ii)

(
1 +

∫ t

t0
p(s)ds

)−1/α
/∈ L(t0,∞), if α > 0,∫ ∞

t0

exp
( ∫ s

t0

−p(τ)dτ)
)
ds = ∞, if α = 0.

If x(t) is a non-oscillatory solution of (1.1), then x(t)x′(t) > 0 for all large t.

For a proof of above lemma, we refer the reader to [5, p. 1083].
This paper is organized as follows. Section 2 deals with the main result. In

Section 3, we construct some examples for the illustration of this result.

2. Main results

The main result of the paper is as follows.

Theorem 2.1. Let the conditions (i)–(ii) of Lemma 1.7 hold. Let p(t) ≥ 0, q(t)
be non-negative and not eventually zero on [t0,∞). Then under the hypotheses
(H1)–(H4), (1.1) is oscillatory.
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Proof. Suppose on the contrary, (1.1) has a non-oscillatory solution x(t). Then,
there exist some t1 ≥ t0 such that either x(t) > 0 or x(t) < 0, for all t ≥ t1.

Case 1. x(t) > 0, for all t ≥ t1. For large t, we have, x(t) > 0, x[h(t)] > 0, for
all t ≥ T , where T is sufficiently large. By Lemma 1.7, we have x′(t) > 0, for all
t ≥ T . From (1.1), x′′(t) < 0, for all t ≥ T . Now we note that the following identity
is valid on [T,∞),

(u′(t))2 − q(t)F (u(t))

= (u′(t))2 − q(t)F (u(t)) +
( x′(t)F (u(t))

g(x(t), x[h(t)])

)′
+

x′(t) ∂
∂x[h(t)]g(x(t), x[h(t)])x′[h(t)]h′(t)F (u(t))

(g(x(t), x[h(t)])2

+
x′(t) ∂

∂x(t)g(x(t), x[h(t)])x′(t)F (u(t))

(g(x(t), x[h(t)]))2
−

(x′(t)F ′(u(t))u′(t)
g(x(t), x[h(t)])

)
− x′′(t)F (u(t))

g(x(t), x[h(t)])

= (u′(t))2 + p(t)f(t, x(t), x′(t))x′(t)
F (u(t))

g(x(t), x[h(t)])

− F (u(t))
g(x(t), x[h(t)])

[x′′(t) + p(t)f(t, x(t), x′(t))x′(t) + q(t)g(x(t), x[h(t)])]

+
( x′(t)F (u(t))

g(x(t), x[h(t)])

)′
+

x′(t) ∂
∂x[h(t)]g(x(t), x[h(t)])x′[h(t)]h′(t)F (u(t))

(g(x(t), x[h(t)])2

+
x′(t) ∂

∂x(t)g(x(t), x[h(t)])x′(t)F (u(t))

(g(x(t), x[h(t)]))2
−

(x′(t)F ′(u(t))u′(t)
g(x(t), x[h(t)])

)
.

(2.1)
Since x′ is a decreasing function for large t, so, x′[h(t)] ≥ x′(t), for t ≥ T and using
the hypotheses (H1) and (H2) in (2.1), we get

(u′(t))2 − q(t)F (u(t))

≥ (u′(t))2 + p(t)f(t, x(t), x′(t))x′(t)
F (u(t))

g(x(t), x[h(t)])

− F (u(t))
g(x(t), x[h(t)])

[x′′(t) + p(t)f(t, x(t), x′(t))x′(t) + q(t)g(x(t), x[h(t)])]

+
( x′(t)F (u(t))

g(x(t), x[h(t)])

)′
−

(x′(t)
√

kG(u(t))u′(t)
g(x(t), x[h(t)])

)
+

k(x′(t))2(G(u(t)))2

4(g(x(t), x[h(t)]))2

≥ p(t)f(t, x(t), x′(t))x′(t)
F (u(t))

g(x(t), x[h(t)])

− F (u(t))
g(x(t), x[h(t)])

[x′′(t) + p(t)f(t, x(t), x′(t))x′(t) + q(t)g(x(t), x[h(t)])]

+
( x′(t)F (u(t))

g(x(t), x[h(t)])

)′
+

[
u′(t)− x′(t)

√
kG(u(t))

2g(x(t), x[h(t)])

]2

.

Therefore,

(u′(t))2 − q(t)F (u(t)) ≥
( x′(t)F (u(t))

g(x(t), x[h(t)])

)′
.
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An integration over [T,∞) yields∫ t

T

[(u′(s))2 − q(s)F (u(s))]ds ≥
∫ t

T

( x′(s)F (u(s))
g(x(s), x[h(s)])

)′
ds

=
( x′(t)F (u(t))

g(x(t), x[h(t)])

)
−

( x′(T )F (u(T ))
g(x(T ), x[h(T )])

)
.

So,

1
t

∫ t

T

[(u′(s))2 − q(s)F (u(s))]ds ≥ −1
t

x′(T )F (u(T ))
g(x(T ), x[h(T )])

→ 0 as t →∞,

which contradicts to (H3).
Case 2. x(t) < 0, for all t ≥ t1. For large t, we have, x(t) < 0, x[h(t)] < 0, for

all t ≥ T , where T is sufficiently large. By the Lemma 1.7, we have x′(t) < 0, for
all t ≥ T . From (1.1), x′′(t) > 0, for all t ≥ T ; i.e., x′ is an increasing function
for sufficiently large t. This implies that x′[h(t)] ≤ x′(t) < 0 for sufficiently large t.
Now the rest of the proof of case 2 is similar to the proof of case 1 and we omit the
proof for brevity. This completes the proof of the theorem. �

Remark 2.2. The oscillatory behavior of (1.1) with p(t) = 0 has been investigated
by Bradley [2], Travis [10], Yeh [11] by different conditions.

Remark 2.3. Let

(H1’) g(y1, y2) is a continuously differentiable function with respect to y1, y2.
Suppose there exists k > 0 such that ∂

∂yi
g(y1, y2) ≥ k > 0, for yi 6= 0, for

i = 1, 2.
(H2’) There exist a C1 function u defined on [t0,∞), a C1 function F on R, and

a continuous function G on R such that F ′(u) =
√

kG(u) and suppose that
there exists α > 0 such that F (u) ≥ (G(u))2

4α .
(H4’) h ∈ C1([t0,∞), R) such that h(t) →∞ as t →∞, h′(t) ≥ α, h(t) ≤ t for all

large t.

Let (H1), (H2) and (H4) in Theorem 2.1 be replaced by (H1’), (H2’) and (H4’),
respectively. Then (1.1) is oscillatory

We also consider the equation

x′′(t) + p(t)f(t, x(t), x′(t))x′(t) + q(t)g(x[h1(t)], x[h2(t)], . . . , x[hn(t)]) = 0, (2.2)

where p, q ∈ C([t0,∞), R+), f ∈ C([t0,∞)×R2, R+), g ∈ C(Rn, R), g(y1, . . . , yn) >
0 if yi > 0, g(y1, . . . , yn) < 0 if yi < 0 and hi ∈ C1([t0,∞), R), for all i =
1, 2, 3, . . . , n.

For the study of (2.2), we consider the following hypotheses:

(H1”) g(y1, y2, . . . , yn) is a continuously differentiable function with respect to
y1, y2, . . . , yn. Suppose there exists k > 0 such that ∂

∂yi
g(y1, y2, . . . , yn) ≥

k/n > 0, for yi 6= 0, for i = 1, 2, 3, . . . , n.
(H4”) hi ∈ C1([t0,∞), R) such that hi(t) →∞ as t →∞, h′i(t) ≥ 1, hi(t) ≤ t for

all large t for i = 1, 2, 3, . . . , n.

Theorem 2.4. Let (H1), (H4) in Theorem 2.1 be replaced by (H1”), (H4”), respec-
tively. Then (2.2) is oscillatory.
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Proof. For sufficiently large T , on [T,∞), the following identity plays the role of
identity (2.1):

(u′(t))2 − q(t)F (u(t)) +
F (u(t))

g(x[h1(t)], x[h2(t)], . . . , x[hn(t)])
×

[
x′′(t) + p(t)f(t, x(t), x′(t))x′(t) + q(t)g(x[h1(t)], x[h2(t)], . . . , x[hn(t)])

]
=

( x′(t)F (u(t))
g(x[h1(t)], x[h2(t)], . . . , x[hn(t)])

)′
+

x′(t) ∂
∂x[h1(t)]

g
(
x[h1(t)], x[h2(t)], . . . , x[hn(t)]

)
x′[h1(t)]h′1(t)F (u(t))(

g(x[h1(t)], x[h2(t)], . . . , x[hn(t)])
)2 + . . .

+
x′(t) ∂

∂x[hn(t)])g
(
x[h1(t)], x[h2(t)], . . . , x[hn(t)]

)
x′[hn(t)]h′n(t)F (u(t))(

g(x[h1(t)], x[h2(t)], . . . , x[hn(t)])
)2

−
( x′(t)F ′(u(t))u′(t)

g(x[h1(t)], x[h2(t)], . . . , x[hn(t)])
)

+ (u′(t))2

+ p(t)f(t, x(t), x′(t))x′(t)
F (u(t))

g
(
x[h1(t)], x[h2(t)], . . . , x[hn(t)]

) .

The rest of the proof of Theorem 2.4 is similar to the proof of Theorem 2.1, in view
of hypotheses (H1”) and (H4”). So, we omit the proof. �

3. Examples

Finally, we give some examples to illustrate our results.

Example 3.1. Consider the differential equation

x′′(t) + (x′(t))3 + x(t) + (x(t))2n+1 + x[t− 1
t + 1

] +
(
x[t− 1

t + 1
]
)2m+1 = 0, (3.1)

for t > 0, n, m ∈ N. This equation can be viewed as (1.1) with p(t) = 1, f(t, x, y) =
y2, q(t) = 1, g(y1, y2) = y1 + y2n+1

1 + y2 + y2m+1
2 , h(t) = t− 1

t+1 . With the choice
of k = 1, F (u) = u2, u(t) = t, it is easy to see that the hypotheses of Theorem 2.1
are satisfied; therefore, (3.1) is oscillatory.

Example 3.2. Consider the differential equation

x′′(t) + x′(t) +
(
e−t +

2
t2

)(
x(t) + x(

t

2
) + x(

t

2
)3

)
= 0, t > 0. (3.2)

This equation can be viewed as (1.1) with p(t) = 1, f(t, x, y) = 1, q(t) = e−t + 2
t2 ,

g(y1, y2) = y1 + y2 + y3
2 , h(t) = t

2 . With the choice of k = 1, F (u) = u2, u(t) = t,
it is easy to see that the hypotheses of Theorem 2.1 are satisfied; therefore (3.2) is
oscillatory.

Remark 3.3. Consider the differential equation

x′′(t) + x′(t) +
(
e−t +

4
t2

)(
x(t) + x(

t

2
) + x(

t

2
)3

)
= 0, t > 0. (3.3)

This equation can be viewed as (1.1) with p(t) = 1, f(t, x, y) = 1, q(t) = e−t + 4
t2 ,

g(y1, y2) = y1 + y2 + y3
2 , h(t) = t

2 . In view of Remark 2.3, with the choice of
k = 1, F (u) = u2

2 , u(t) = t, it is easy to see that the hypotheses of Theorem 2.1
are satisfied; therefore (3.3) is oscillatory.
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Remark 3.4. By Theorem 2.1, the equation

x′′(t) +
(
e−t +

2
t2

)(
x(t) + x(

t

2
) + x(

t

2
)3

)
= 0, t > 0 (3.4)

is oscillatory, whereas none of the known criteria [2, 10, 11] can obtain this result.

Example 3.5. Consider the differential equation

x′′(t) +
1
t
x′(t) + x(t) + (x(t))3 + x[t− e−t] +

(
x[t− e−t]

)5 = 0, t > 0. (3.5)

This equation can be viewed as (1.1) with p(t) = 1
t , f(t, x, y) = 1, q(t) = 1,

g(y1, y2) = y1 + y3
1 + y2 + y5

2 , h(t) = t− e−t. With the choice of k = 1, F (u) = u2,
u(t) = t, it is easy to see that the hypotheses of Theorem 2.1 are satisfied; therefore,
(3.5) is oscillatory.
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