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LIAPUNOV-TYPE INTEGRAL INEQUALITIES FOR CERTAIN
HIGHER-ORDER DIFFERENTIAL EQUATIONS

SAROJ PANIGRAHI

Abstract. In this paper, we obtain Liapunov-type integral inequalities for
certain nonlinear, nonhomogeneous differential equations of higher order with

without any restriction on the zeros of their higher-order derivatives of the

solutions by using elementary analysis. As an applications of our results, we
show that oscillatory solutions of the equation converge to zero as t → ∞.

Using these inequalities, it is also shown that (tm+k − tm) → ∞ as m →
∞, where 1 ≤ k ≤ n − 1 and 〈tm〉 is an increasing sequence of zeros of

an oscillatory solution of Dny + yf(t, y)|y|p−2 = 0, t ≥ 0, provided that

W (., λ) ∈ Lσ([0,∞), R+), 1 ≤ σ ≤ ∞ and for all λ > 0. A criterion for
disconjugacy of nonlinear homogeneous equation is obtained in an interval

[a, b].

1. Introduction

The Russian mathematician A. M. Liapunov [15] proved the following remarkable
inequality: If y(t) is a nontrivial solution of

y′′ + p(t)y = 0, (1.1)

with y(a) = 0 = y(b) (a < b) and y(t) 6= 0 for t ∈ (a, b), then

4
b− a

<

∫ b

a

|p(t)|dt, (1.2)

where p ∈ L1
loc. This inequality provides a lower bound for the distance between

consecutive zeros of y(t). If p(t) = p > 0, then (1.2) yields

(b− a) > 2/
√

p.

In [12], the inequality (1.2) is strengthened to

4
b− a

<

∫ b

a

p+(t)dt, (1.3)

where p+(t) = max{p(t), 0}. The inequality (1.3) is the best possible in the sense
that if the constant 4 in (1.3) is replaced by any larger constant, then there exists
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an example of (1.1) for which (1.3) no longer holds (see [12, p. 345], [13]). However,
stronger results were obtained in [2, 13]. In [13] it is shown that∫ c

a

p+(t)dt >
1

c− a
and

∫ b

c

p+(t)dt >
1

b− c
,

where c ∈ (a, b) such that y′(c) = 0. Hence∫ b

a

p+(t)dt >
1

c− a
+

1
b− c

=
(b− a)

(c− a)(b− c)
≥ 4

b− a
.

In [2, Corollary 4.1], the authors obtained

4
b− a

<
∣∣ ∫ b

a

p(t)dt
∣∣

from which (1.2) can be obtained. The inequality finds applications in the study
of boundary value problems. It may be used to provide a lower bound on the first
positive proper value of the Sturm-Liouville problems

y′′(t) + λq(t)y = 0

y(c) = 0 = y(d) (c < d)

and

y′′(t) + (λ + q(t))y = 0

y(c) = 0 = y(d) (c < d)

by letting p(t) to denote λq(t) and λ + q(t) respectively in (1.2). The disconjugacy
of (1.1) also depends on (1.2). Indeed, equation (1.1) is said to be disconjugate if∫ b

a

|p(t)|dt ≤ 4/(b− a).

Equation (1.1) is said to be disconjugate on [a, b] if no non-trivial solution of (1.1)
has more than one zero. Thus (1.2) may be regarded as a necessary condition for
conjugacy of (1.1). Inequality (1.2) has lots of applications in eigenvalue problems,
stability, etc. A number of proofs are known and generalizations and improvements
have also been given (see [12, 14, 22, 24, 25]. Inequality (1.3) was generalized to
the condition ∫ b

a

(t− a)(b− t)p+(t)dt > (b− a) (1.4)

by Hartman and Wintner [11]. An alternate proof of the inequality (1.4), due to
Nihari [17], is given in [12, Theorem 5.1 Ch XI]. For the equation

y′′(t) + q(t)y′ + p(t)y = 0, (1.5)

where p, q ∈ C([0,∞), R), Hartman and Wintner [11] established the inequality∫ b

a

(t− a)(b− t)p+(t)dt + max
{∫ b

a

(t− a)|q(t)|,
∫ b

a

(b− t)|q(t)|dt
}

> (b− a) (1.6)

which reduces to (1.4) when q(t) = 0. In particular, (1.6) implies the de la vallee
Poussin inequality [23]. In [10], Galbraith has shown that if a and b are successive
zeros of (1.1) with p(t) ≥ 0 a linear function, then

(b− a)
∫ b

a

p(t)dt ≤ π2.
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This inequality provides an upper bound for two successive zeros of an oscillatory
solution of (1.1). Indeed, if p(t) = p > 0, then (b−a) ≤ π/(p)1/2. Fink [8], obtained
both upper and lower bounds of (b− a)

∫ b

a
p(t)dt, where p(t) ≥ 0 is linear. Indeed,

he showed that
9
8
λ2

0 ≤ (b− a)
∫ b

a

p(t)dt ≤ π2

and that these are the best possible bounds, where λ0 is the first positive zero of
J1/3 and Jn is the Bessel function. The constant 9

8λ2
0 = 9.478132 . . . and π2 =

9.869604 . . . , so that it gives a delicate test for the spacing of the zeros for linear p.
Fink [9] investigated the behaviour of the functional (b− a)

∫ b

a
p(t)dt, where p is in

a certain class of sub or supper functions. Eliason [4, 5] obtained upper and lower
bounds of the functional (b−a)

∫ b

a
p(t)dt, where p(t) is concave or convex. St Marry

and Eliason [16] considered the same problem for (1.5). Bailey and Waltman [1]
applied different techniques to obtain both upper and lower bounds for the distance
between two successive zeros of solution of (1.5). They also considered nonlinear
equations. In a recent paper, Brown and Hinton [2] used Opial’s inequality to obtain
lower bounds for the spacing of the zeros of a solution of (1.1) and lower bounds of
the spacing β − α, where y(t) is a solution of (1.1) satisfying y(α) = 0 = y′(β) and
y′(α) = 0 = y(β)(α < β).

Inequality (1.2) is generalized to second order nonlinear differential equation by
Eliason [5], to delay differential equations of second order in [6, 7] and by Dahiya
and Singh [3], and to higher order differential equation by Pachpatte [18]. In a
recent work [20], the authors have obtained a Liapunov-type inequality for third
order differential equations of the form

y′′′ + p(t)y = 0, (1.7)

where p ∈ L1
loc. The inequality is used to study many interesting properties of the

zeros of an oscillatory solution of (1.7) (see [20, Theorems 5, 6]). Indeed, Pachpatte
derived Liapunov-type inequalities for the equation of the form

Dn[r(t)Dn−1(p(t)g(y′(t)))] + y(t)f(t, y(t)) = Q(t),

Dn[r(t)Dn−1(p(t)h(y(t))y′(t))] + y(t)f(t, y(t)) = Q(t),

Dn[r(t)Dn−1(p(t)h(y(t))g(y′(t)))] + y(t)f(t, y(t)) = Q(t),

(1.8)

under appropriate conditions, where n ≥ 2 is an integer and D = dn/dtn. It is
clear that the results in [18] are not applicable to odd order equations. Further-
more, he has taken the restriction on the zeros of higher order derivatives [18,
Theorem 1]. We may observe that in [18, p.530, Example], y′′′(3π/4) 6= 0 because
y′′′(t) = 2e−t(cos t− sin t). On the other hand, y′′′(π/4) = 0 but π/4 /∈ (π/2, 3π/2)
and y′′′(5π/4) = 0 but 5π/4 < π. Although this example does not illustrate [18,
Theorem 1], it has motivated us to remove the restriction on the zeros of higher
order derivatives of the solution of (1.5).

The objective of this paper is to obtain Liapunov-type integral inequality for the
nth-order differential equation( 1

rn−1(t)
. . .

( 1
r2(t)

( 1
r1(t)

|y′(t)|p−2y′(t)
)′)′

. . .
)′

+ |y(t)|p−2f(t, y(t))y = Q(t),

(1.9)
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under appropriate assumptions on ri(t), 1 ≤ i ≤ n− 1, f and Q. Here n ≥ 2, p > 1
are even and odd integers. In this work we remove this restriction on the zeros of
higher order derivatives. Further, we show that every oscillatory solution of (1.9)
converges to zero as t → ∞ with the help of Liapunov-type inequality. We also
generalize a theorem of Patula [22, Theorem 2] to higher order equations. A criteria
for diconjugacy of nonlinear homgeneous equation is obtained in an interval [a, b]
by the help of the inequality.

2. Main results

Equation (1.9) may be written as

Dny + yf(t, y)|y(t)|p−2 = Q(t), (2.1)

where n ≥ 2 is an integer,

Dy =
1

r1(t)
|y′(t)|p−2y′(t), Diy =

1
ri(t)

(Di−1y)′,

2 ≤ i ≤ n, and rn(t) ≡ 1. We assume that
(C1) ri : I → R is continuous and ri(t) > 0, 1 ≤ i ≤ n − 1 and Q : I → R is

continuous, where I is a real interval.
(C2) f : I × R → R is continuous such that |f(t, y)| ≤ W (t, |y|), where W : I ×

R+ → R+ is continuous, W (t, u) ≤ W (t, v) for 0 ≤ u ≤ v and R+ = [0,∞].
We define

E(t, r2(t), r3(s2), . . . , rn−1(sn−2); z(sn−1))

= r2(t)
∫ t

α1

r3(s2)
∫ s2

α2

r4(s3) . . .∫ sn−3

αn−3

rn−1(sn−2)
∫ sn−2

αn−2

z(sn−1)dsn−1dsn−2 . . . ds2,

where z(t) is a real valued continuous function defined on [a, b] ⊂ I(a < b) and
α1, α2, . . . , αn−2 are suitable points in [a, b], and

E(t, r2(t), r3(s2), . . . , rn−1(sn−2); z(sn−1))

= r2(t)
∣∣∣ ∫ t

α1

r3(s2)
∣∣∣ ∫ s2

α2

r4(s3) . . .
∣∣∣ ∫ sn−3

αn−3

rn−1(sn−2)
∣∣∣ ∫ sn−2

αn−2

z(sn−1)dsn−1

∣∣∣dsn−2

∣∣∣
. . .

∣∣∣ds2

∣∣∣.
Theorem 2.1. Suppose that (C1)-(C2) hold. Let α1, α2, . . . , αn−2 ∈ [a, b], where
α1, α2, . . . , αn−2 are the zeros of D2y(t), D3y(t), . . . , Dn−2y(t), Dn−1y(t) respec-
tively, [a, b] ⊂ I(a < b) and y(t) is a nontrivial solution of (2.1) with y(a) = 0 =
y(b). If c is a point in (a, b) where |y(t)| attains maximum and M = max{|y(t)| :
t ∈ [a, b]} = |y(c)|, then

1 <
(1
2
)p

( ∫ b

a

(r1(s1))1/(p−1)ds1

)p−1( ∫ b

a

[
E(s1, r2(s1), r3(s2), . . . , rn−1(sn−2);

W (sn−1,M)) +
1

Mp−1
E(s1, r2(s1), r3(s2), . . . , rn−1(sn−2); |Q(sn−1)|)

]
ds1

)
,

(2.2)
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for n ≥ 3 and

1 <
(1
2
)p

( ∫ b

a

(r1(t))1/(p−1)dt
)p−1[ ∫ b

a

W (t, M)dt +
1

Mp−1

∫ b

a

|Q(t)|dt
]
, (2.3)

for n = 2.

Proof. Let n ≥ 3. Integrating (2.1) from αn−2 to t ∈ [a, b], we obtain

Dn−1y(t) +
∫ t

αn−2

y(sn−1)f(sn−1, y(sn−1))|y(sn−1)|p−2dsn−1

=
∫ t

αn−2

Q(sn−1)dsn−1;

that is,

(Dn−2y(t))′ + rn−1(t)
∫ t

αn−2

y(sn−1)f(sn−1, y(sn−1))|y(sn−1)|p−2dsn−1

= rn−1(t)
∫ t

αn−2

Q(sn−1)dsn−1.

Further integration from αn−3 to t ∈ [a, b] yields

Dn−2y(t)

+
∫ t

αn−3

rn−1(sn−2)
( ∫ sn−2

αn−2

y(sn−1)f(sn−1, y(sn−1))|y(sn−1)|p−2dsn−1

)
dsn−2

=
∫ t

αn−3

rn−1(sn−2)
( ∫ sn−2

αn−2

Q(sn−1)dsn−1

)
dsn−2.

Proceeding as above we obtain

D2y(t) +
∫ t

α1

r3(s2)
∫ s2

α2

r4(s3) . . .∫ sn−3

αn−3

rn−1(sn−2)
∫ sn−2

αn−2

y(sn−1)f(sn−1, y(sn−1))|y(sn−1)|p−2dsn−1dsn−2 . . . ds2,

=
∫ t

α1

r3(s2)
∫ s2

α2

r4(s3) . . .

∫ sn−3

αn−3

rn−1(sn−2)
∫ sn−2

αn−2

Q(sn−1)dsn−1dsn−2 . . . ds2;

that is,

(Dy(t))′ + E(t, r2(t), r3(s2), . . . , rn−1(sn−2); y(sn−1)f(sn−1, y(sn−1))|y(sn−1)|p−2)

= E(t, r2(t), r3(s2), . . . , rn−1(sn−2);Q(sn−1)).

Hence
|(Dy(t))′| ≤ Mp−1E(t, r2(t), r3(s2), . . . , rn−1(sn−2);W (sn−1,M))

+ E(t, r2(t), r3(s2), . . . , rn−1(sn−2); |Q(sn−1)|).
(2.4)

Since

M = |y(c)| =
∣∣∣ ∫ c

a

y′(s1)ds1

∣∣∣ ≤ ∫ c

a

|y′(s1)|ds1,

M = |y(c)| =
∣∣∣ ∫ b

c

y′(s1)ds1

∣∣∣ ≤ ∫ b

c

|y′(s1)|ds1,
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it follows that

2M ≤
∫ b

a

|y′(s1)|ds1.

First, using Hölders inequality with indices p and p/(p − 1) and then integrating
by parts we obtain

Mp ≤
(1
2
)p

( ∫ b

a

|y′(s1)|ds1

)p

=
(1
2
)p

( ∫ b

a

(r1(s1))1/p(r1(s1))−1/p|y′(s1)|ds1

)p

≤
(1
2
)p

( ∫ b

a

(r1(s1))1/(p−1)ds1

)p−1( ∫ b

a

(r1(s1))−1|y′(s1)|pds1

)
=

(1
2
)p

( ∫ b

a

(r1(s1))1/(p−1)ds1

)p−1(
[(r1(s1))−1|y′(s1)|p−2y′(s1)y(s1)]ba

−
∫ b

a

[(r1(s1))−1|y′(s1)|p−2y′(s1)]′y(s1)ds1

)
= −

(1
2
)p

( ∫ b

a

(r1(s1))1/(p−1)ds1

)p−1
∫ b

a

(Dy)′(s1)y(s1)ds1

≤
(1
2
)p

( ∫ b

a

(r1(s1))1/(p−1)ds1

)p−1
∫ b

a

|(Dy)′(s1)||y(s1)|ds1.

(2.5)

Using (2.4),

Mp <
(1
2
)p

( ∫ b

a

(r1(s1))1/(p−1)ds1

)p−1

×
[
Mp

∫ b

a

E(s1, r2(s1), r3(s2), . . . , rn−1(sn−2);W (sn−1,M))ds1

+ M

∫ b

a

E(s1, r2(s1), r3(s2), . . . , rn−1(sn−2); |Q(sn−1)|)ds1

]
;

that is,

1 <
(1
2
)p

( ∫ b

a

(r1(s1))1/(p−1)ds1

)p−1

×
[ ∫ b

a

E(s1, r2(s1), r3(s2), . . . , rn−1(sn−2);W (sn−1,M))ds1

+
1

Mp−1

∫ b

a

E(s1, r2(s1), r3(s2), . . . , rn−1(sn−2); |Q(sn−1)|)ds1

]
.

When n = 2, (2.1) has the form

(Dy)′(t) + y(t)f(t, y(t))|y(t)|p−2 = Q(t).

Hence (2.5) yields

Mp <
(1
2
)p

( ∫ b

a

(r1(s1))1/(p−1)ds1

)p−1[ ∫ b

a

|y(t)|p|f(t, y(t))|dt+
∫ b

a

|y(t)||Q(t)|dt
]
;
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that is,

1 <
(1
2
)p

( ∫ b

a

(r1(t))1/(p−1)dt
)p−1[ ∫ b

a

W (t, M)dt +
1

Mp−1

∫ b

a

|Q(t)|dt
]
.

Thus the proof is complete. �

Remarks. If ri(t) = 1; i = 1, 2, . . . , n − 1; p = 2; f(t, y) = p(t) and n = 2, 3; then
inequalities (2.3) and (2.2) reduce respectively, to the inequalities (1.2) and∫ b

a

|p(t)|dt > 4/(b− a)2.

This inequality provides a lower bound of the distance between consecutive zeros
of the solution y(t). For the various applications of this inequality one can see [20].

Liapunov-type integral inequalities for (1.8) can be obtained under suitable as-
sumptions on g and h.

If ri(t) = 1; i = 1, 2, . . . , n−1; n = 3, p = 2, f(t, y) = q(t)|y(t)|β−1 and Q(t) = 0,
then (2.1) reduces to

y′′′(t) + q(t)|y(t)|β−1y = 0, t ≥ 0, (2.6)

where β is a positive constant and q : [0,∞) → [0,∞) is a continuous function is
called an Emden-Fowler equations of third order. If y(t) is a solution of (2.6) with
y(a) = 0 = y(b), (a < b) and y(t) 6= 0 for t ∈ (a, b), then the spacing between zeros
of solutions of (2.6) may be computed by using (2.2).

Example 2.2. Consider

y′′′(t) + y2(t) = sin2 t− cos t, t ≥ 0. (2.7)

Clearly, y(t) = sin t is a solution of (2.7) with y(0) = 0 = y(π), y′′(0) = 0 = y′′(π).
M = maxt∈[0,π] | sin t| = 1. From Theorem 2.1 it follows that

1 <
π

4

∫ π

0

[E(s1, r2(s1),W (s2,M)) +
1
M

E(s1, r2(s1), |Q(s2)|)]ds1,

where

E(s1, r2(s1),W (s2,M)) =
∣∣∣ ∫ s1

0

Mds2

∣∣∣ =

{
s1, s1 > 0,

−s1, s1 < 0,

E(s1, r2(s1), |Q(s2)|) =
∣∣∣ ∫ s1

0

∣∣∣ sin2 s2 − cos s2

∣∣∣ds2

∣∣∣ =

{
2s1, s1 > 0,

−2s1, s1 < 0.

Hence ∫ π

0

E(s1, r2(s1),W (s2,M))ds1 =

{
π2/2, s1 > 0,

−π2/2, s1 < 0,∫ π

0

E(s1, r2(s1), |Q(s2)|)ds1 =

{
π2, s1 > 0,

−π2, s1 < 0.
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As E > 0, then s1 > 0 and∫ π

0

E(s1, r2(s1),W (s2,M))ds1 = π2/2,∫ π

0

E(s1, r2(s1), |Q(s2)|)ds1 = π2.

Thus by Theorem 2.1, 1 < 3π3/8 or 3π3 > 8, which is obviously true.

Theorem 2.3. Suppose that (C1)-(C2) hold. Let α1, α2, . . . , αn−3, αn−2 be the
zeros of D2y(t), D3y(t), . . . , Dn−2y(t), Dn−1y(t) respectively, in [a, b] ⊂ I(a < b),
where y(t) is a nontrivial solution of

Dny + yf(t, y)|y(t)|p−2 = 0

with y(a) = 0 = y(b). If c is a point in (a, b), where |y(t)| attains a maximum, then
the point ‘c’ cannot be very close to ‘a’ as well as ‘b’.

Proof. Let M = max{|y(t)| : t ∈ [a, b]} = |y(c)|. Then y′(c) = 0. Since

y(c) =
∫ c

a

y′(t)dt,

using Hölders inequality with indices p and p/(p− 1) and then integrating by parts
we obtain

Mp

≤
(1
2
)p

( ∫ c

a

|y′(t)|dt
)p

=
(1
2
)p

( ∫ c

a

r1(t)1/pr1(t)−1/p|y′(t)|dt
)p

≤
(1
2
)p

( ∫ c

a

r1(t)1/(p−1)
)p−1( ∫ c

a

r1(t)−1|y′(t)|pdt
)

=
(1
2
)p

( ∫ c

a

r1(t)1/(p−1)
)p−1([

r1(t)−1|y′(t)|p−2y′(t)y(t)
]c

a
−

∫ c

a

(Dy)′(t)y(t)dt
)

≤
(1
2
)p

( ∫ c

a

r1(t)1/(p−1)
)p−1( ∫ c

a

|(Dy)′(t)||y(t)|dt
)
.

Proceeding as Theorem 2.1 we obtain

|(Dy)′(t)| ≤ Mp−1E(t, r2(t), r3(s2), . . . , rn−1(sn−2);W (sn−1,M)).

Hence

1 <
(1
2
)p

( ∫ c

a

r1(t)1/(p−1)
)p−1

×
( ∫ c

a

E(t, r2(t), r3(s3), . . . , rn−1(sn−2);W (sn−1,M))dt
)
;

that is,[( ∫ c

a

r1(t)1/(p−1)
)p−1]−1

<
(1
2
)p

( ∫ c

a

E(t, r2(t), r3(s2), . . . , rn−1(sn−2);W (sn−1,M))dt
)

< ∞.

(2.8)
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Thus ‘c’ cannot be very close to ‘a’ because

lim
c→a+

[( ∫ c

a

r1(t)1/(p−1)
)p−1]−1

= ∞.

Next we have to show that ‘c’ cannot be very close to ‘b’. Since

|y(c)| =
∣∣∣ ∫ c

a

y′(t)dt
∣∣∣,

then proceeding as above to obtain

Mp ≤
(1
2
)p

( ∫ b

c

|y′(t)|dt
)p

=
(1
2
)p

( ∫ b

c

r1(t)1/(p−1)
)p−1([ ∫ b

c

r1(t)p−1|y′(t)|p−2y′(t)y(t)
]b

c

−
∫ b

c

(Dy)′(t)y(t)dt
)

≤
(1
2
)p

( ∫ b

c

r1(t)1/(p−1)
)p−1

∫ b

c

|(Dy)′(t)||y(t)|dt

< Mp
(1
2
)p

( ∫ b

c

r1(t)1/(p−1)
)p−1

×
( ∫ b

c

E(t, r2(t), r3(s2), . . . , rn−1(sn−2);W (sn−1,M))dt
)
.

Hence [( ∫ b

c

r1(t)1/(p−1)
)p−1]−1

<
(1
2
)p

( ∫ b

c

E(t, r2(t), r3(s2), . . . , rn−1(sn−2);W (sn−1,M))dt
)

< ∞.

Thus ‘c’ cannot be very close to ‘b’ because

lim
c→b−

[( ∫ b

c

r1(t)1/(p−1)
)p−1]−1

= ∞.

This completes the proof of the theorem. �

We remark that Theorem 2.3 need not hold if αi /∈ [a, b] for some i ∈ {1, 2, . . . , n−
2}.

3. Applications

In this section we present some of the applications of the Liapunov-type in-
equality obtained in Theorem 2.1 to study the asymptotic behaviour of oscillatory
solution of (2.1).
Definition. A solution y(t) of (2.1) is said to be oscillatory if there exists a
sequence < tm >⊂ [0,∞) such that y(tm) = 0, m ≥ 1 and tm →∞ as m →∞.

Theorem 3.1. Suppose that (C1)-(C2) hold. Let W (t, λ) ∈ Lσ([0,∞), R+) for all
λ > 0, where 1 ≤ σ < ∞. Let ri(t) ≤ K for t ≥ 0 and 1 ≤ i ≤ n − 1, where
K > 0 is a constant. If < tm > is an increasing sequence of zeros of an oscillatory
solution y(t) of

Dny + yf(t, y)|y(t)|p−2 = 0 t ≥ 0,
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such that α1, α2, . . . , αn−2 ∈ (tm, tm+k), 1 ≤ k ≤ n − 1, for every large m, then
(tm+k− tm) →∞, as m →∞, where α1, . . . , αn−2 are the zeros of D2y(t), D3y(t),
. . . , Dn−2y(t), Dn−1y(t), respectively.

Proof. If possible, let there exist a subsequence 〈tmi〉 of 〈tm〉 such that (tmi+k −
tmi

) ≤ M for every i, where M > 0 is a constant. Let Mmi
= max{|y(t)| : t ∈

[tmi
, tmi+k]} = |y(smi

)|, where smi
∈ (tmi

, tmi+k). Since W (t, λ) ∈ Lσ([0,∞), R+)
for all λ > 0, then ∫ ∞

0

W σ(t, λ)dt < ∞, for all λ > 0.

Hence ∫ ∞

t

W σ(t, λ)dt → 0 as t →∞.

Thus, for 1 < σ < ∞, we may have∫ ∞

tmi

W σ(t, λ)dt < [Kn−1Mn−1+ 1
µ ]−1

for large i, where 1
µ + 1

σ = 1. From (2.8) we obtain[ ∫ si

tmi

((r1(t)1/(p−1))p−1
]−1

<
(1
2
)p

Kn−2
(
tmi+k − tmi

)n−2
∫ tmi+k

tmi

W (t, Mmi)dt;

that is,

1 <
(1
2
)p

Kn−1
(
tmi+k − tmi

)n−1
∫ tmi+k

tmi

W (t,Mmi)dt.

The use of Hölder’s inequality yields

1 <
(1
2
)p

Kn−1
(
tmi+k − tmi

)n−1(
tmi+k − tmi

)1/µ
[ ∫ tmi+k

tmi

W σ(t, Mmi)dt
]1/σ

≤
(1
2
)p

Kn−1
(
tmi+k − tmi

)n−1+ 1
µ

[ ∫ ∞

tmi

W (t,Mmi)dt
]1/σ

<
(1
2
)p

Kn−1Mn−1+ 1
µ

[
Kn−1Mn−1+ 1

µ

]−1

=
1
2p

, .

a contradiction. For σ = 1, we can choose i large enough such that∫ ∞

tmi

W (t,Mmi
) < [Kn−1Mn−1]−1

and

1 <
(1
2
)p

Kn−1(tmi+k − tmi
)n−1

∫ tmi+k

tmi

W (t, Mmi
)dt

<
(1
2
)p

Kn−1Mn−1[Kn−1Mn−1]−1 =
1
2p

,

a contradiction. Hence the Theorem is proved. �

Theorem 3.2. Suppose that (C1)-(C2) hold with I = [0,∞). Let there exist a
continuous function H : I → R+ such that W (t, L) ≤ H(t) for every constant
L > 0. Let ∫ ∞

0

r1(t)1/(p−1)ds1 < ∞.
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If ∫ ∞

0

E(t, r2(t), r3(s2), . . . , rn−1(sn−2); |Q(sn−1)|)dt < ∞,∫ ∞

0

E(t, r2(t), r3(s2), . . . , rn−1(sn−2);H(sn−1))dt < ∞,

for n ≥ 3, and ∫ ∞

0

H(t)dt < ∞,

∫ ∞

0

|Q(t)|dt < ∞

for n = 2; then every oscillatory solution of (2.1) converges to zero as t →∞.

Proof. Let y(t) be an oscillatory solution of (2.1) on [Ty,∞), Ty ≥ 0. Hence
lim inft→∞|y(t)| = 0. To complete the proof of the theorem it is sufficient to
show that limsupt→∞|y(t)| = 0. If possible, let limsupt→∞|y(t)| = λ > 0. Choose
0 < d < λ/2. From the given assumptions it follows that it is possible to choose a
large T0 > 0 such that, for t ≥ T0,∫ ∞

t

r1(s1)1/(p−1)ds1 < 2p/(p−1),∫ ∞

t

E(s1, r2(s1), r3(s2), . . . , rn−1(sn−2); |Q(sn−1)|)ds1 < dp−1,∫ ∞

t

E(s1, r2(s1), r3(s2), . . . , rn−1(sn−2);H(sn−1))ds1 < 1

for n ≥ 3, and ∫ ∞

t

H(s)ds < dp−1,

∫ ∞

t

|Q(s)|ds < d

for n = 2. Since y(t) is oscillatory, we can find a t1 > T0 such that y(t1) = 0. Let
T ∗0 > t1 be such that α1, α2, . . . , αn−3, αn−2 ∈ [t1, T ∗0 ], where α1, α2, . . . , αn−3, αn−2

are the zeros, respectively, of D2y(t), . . . , Dn−2y(t). Further, lim supt→∞ |y(t)| > 2d
implies that we can find a T ∗∗ > t1 such that sup{|y(t) : t ∈ [t1, T ∗∗0 ]} > d. Let
T1 = max{T ∗0 , T ∗∗0 }. Let t2 > T1 such that y(t2) = 0. Let M = max{|y(t)| : t ∈
[t1, t2]}, then M > d. From Theorem 2.1 we obtain (2.2) for n ≥ 3 and (2.3) for
n = 2, with a = t1 and b = t2. Hence, For n ≥ 3,

1 <
(1
2
)p

( ∫ ∞

t1

((r1(s1))1/(p−1)ds1

)p−1

×
∫ ∞

t1

[
E(s1, r2(s1), r3(s2), . . . , rn−1(sn−2);H(sn−1))

+
1

Mp−1
E(s1, r2(s1), r3(s2), . . . , rn−1(sn−2); |Q(sn−1)|)

]
ds1

<
(1
2
)p(2p/(p−1)

)p−1[1 +
( d

M

)p−1]
< 2,

a contradiction. Hence lim supt→∞ |y(t)| = 0. Thus the proof of the theorem is
complete. �

Example 3.3. Consider

(et(ety2y′)′)′ + y3 = e−4t(8cos3t + 13sin3t + 10 cos t− 6 sin t) + e−6t sin3 t, (3.1)
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where t ≥ 0. Thus r1(t) = e−t, r2(t) = e−t, f(t, y) = 1, and hence H(t) = 1.
Clearly, y(t) = e−2t sin t is a solution of (3.1) with y(0) = 0 and (ety2(t)y′(t))′ = 0
for t = 0, π. Hence α1 = 0, π. Let α1 = 0. Since

E(s1, r2(s1);H(s2)) = s1e
−s1 for s1 > 0,

E(s1, r2(s1); |Q(s2)|) ≤ 38s1e
−s1 for s1 > 0,

it follows that ∫ ∞

0

E(s1, r2(s1);H(s2))ds1 = 1,∫ ∞

0

E(s1, r2(s1); |Q(s2)|)ds1 ≤ 38.

Again taking α1 = π, we obtain

E(s1, r2(s1);H(s2)) = (s1 − π)e−s1 for s1 > π,

E(s1, r2(s1); |Q(s2)|) ≤ 38(s1 − π)e−s1 for s1 . > π,

Then ∫ ∞

π

E(s1, r2(s1);H(s2))ds1 = e−π,∫ ∞

π

E(s1, r2(s1); |Q(s2)|)ds1 ≤ 38e−π.

From Theorem 3.2 it follows that every oscillatory solution of (3.1) tends to zero
as t tends to infinity.

Theorem 3.4. If

(1
2
)p

( ∫ b

a

r1(s1)1/(p−1)ds1

)p−1

×
∫ b

a

E(s1, r2(s1), r3(s2), . . . , rn−1(sn−2); |p(sn−1)|ds1 ≤ 1,

(3.2)

then

Dny + p(t)y|y|p−2 = 0 (3.3)

is disconjugate on [a, b], where p(t) is a real-valued continuous function on [a, b].

Definition. Equation (3.3) is said to be disconjugate in [a, b] if no non-trivial
solution of (3.3) has more than n− 1 zeros (counting multiplicities).

Proof of Theorem 3.4. Indeed, if (3.3) is not disconjugate on [a, b], then it admits
a nontrivial solution y(t) has n zeros in [a, b]. Let these zeros be given by a ≤
a1 < a2 < · · · < an−1 < an ≤ b. Then D2y(t), D3y(t), . . . , Dn−1y(t) have zeros in
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[a1, an]. From Theorem 2.1, it follows that

1 <
(1
2
)p

( ∫ an

a1

r1(s1)1/(p−1)ds1

)p−1

×
∫ an

a1

E(s1, r2(s1), r3(s2), . . . , rn−1(sn−2); |p(sn−1|)ds1

≤
(1
2
)p

( ∫ b

a

r1(s1)1/(p−1)ds1

)p−1

×
∫ b

a

E(s1, r2(s1), r3(s2), . . . , rn−1(sn−2); |p(sn−1|)ds1,

a contradiction. Hence (3.3) is disconjugate on [a, b]. �

Remark. If ri(t) = 1; i = 1, 2, . . . , n− 1; p = 2, n = 3, then (3.2) reduces to∫ b

a

|p(t)|dt ≤ 4/(b− a)2.

Thus the above inequality may be regarded as a sufficiency condition for the dis-
conjugacy of the equation (1.7).

As a final remark, we note that the results obtained in this paper generalize the
results by Pachpatte [19].

Acknowledgements. The author would like to thank the anonymous referee for
his/her valuable suggestions.
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