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HIGHER-ORDER LINEAR MATRIX DESCRIPTOR
DIFFERENTIAL EQUATIONS OF APOSTOL-KOLODNER TYPE

GRIGORIS I. KALOGEROPOULOS, ATHANASIOS D. KARAGEORGOS,
ATHANASIOS A. PANTELOUS

Abstract. In this article, we study a class of linear rectangular matrix de-

scriptor differential equations of higher-order whose coefficients are square con-
stant matrices. Using the Weierstrass canonical form, the analytical formulas

for the solution of this general class is analytically derived, for consistent and

non-consistent initial conditions.

1. Introduction

Linear Descriptor Matrix Differential Equations (LDMDEs) are inherent in many
physical, engineering, mechanical, and financial/actuarial models. LDMDEs, which
are also known in the literature as functional matrix differential equations, are a
special and commonly used class of matrix differential equations. Having in mind
the applications of LDMDEs, for instance in finance, we provide the well-known
input-output Leondief model and its several important extensions, advice [3]. In
this article, our long-term purpose is to study the solution of LDMDES of higher
order (1.1) into the mainstream of matrix pencil theory. This effort is significant,
since there are numerous applications. Thus, we consider

FX(r)(t) = GX(t) (1.1)

where F,G ∈ M(n× n; F), (i.e. the algebra of square matrices with elements in
the field F) with detF = 0 (0 is the zero element of M(n = 1, F)), and X ∈
C∞(F,M(n×m; F)). For the sake of simplicity we set Mn = M(n× n; F) and
Mnm = M(n×m; F).

Matrix pencil theory has been extensively used for the study of Linear Descriptor
Differential Equations (LDDEs) with time invariant coefficients, see for instance
[3], [7]-[9]. Systems of type (1.1) are more general, including the special case when
F = In, where In is the identity matrix of Mn, since the well-known class of
higher-order linear matrix differential equations of Apostol-Kolodner type is derived
straightforwardly, see [1] for r = 2, [2] and [10].

The paper is organized as follows: In Section 2 some notations and the necessary
preliminary concepts from matrix pencil theory are presented. Section 3 contains
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the case that system (1.1) has consistent initial conditions. In Section 4 the non
consistent initial condition case is fully discussed. In this case, the arbitrarily chosen
initial conditions which have physical meaning for descriptor (regular) systems, in
some sense, can be created or structurally changed at a fixed time t = t0. Hence,
it is derived that (1.1) should adopt a generalized solution, in the sense of Dirac
δ-solutions.

2. Mathematical Background and Notation

This brief section introduces some preliminary concepts and definitions from ma-
trix pencil theory, which are being used throughout the paper. Descriptor systems
of type (1.1) are closely related to matrix pencil theory, since the algebraic geo-
metric, and dynamic properties stem from the structure by the associated pencil
sF −G.

Definition 2.1. Given F,G ∈Mnm and an indeterminate s ∈ F, the matrix pencil
sF −G is called regular when m = n and det(sF −G) 6= 0. In any other case, the
pencil will be called singular.

Definition 2.2. The pencil sF − G is said to be strictly equivalent to the pencil
sF̃ − G̃ if and only if there exist nonsingular P ∈Mn and Q ∈Mm such as

P (sF −G)Q = sF̃ − G̃.

In this article, we consider the case that pencil is regular. Thus, the strict
equivalence relation can be defined rigorously on the set of regular pencils as follows.
Here, we regard (2.1) as the set of pair of nonsingular elements of Mn

g := {(P,Q) : P,Q ∈Mn, P,Q nonsingular} (2.1)

and a composition rule ∗ defined on g as follows:

∗ : g × g such that (P1, Q1) ∗ (P2, Q2) := (P1 · P2, Q2 ·Q1). (2.2)

It can be easily verified that (g, ∗) forms a non-abelian group. Furthermore, an
action ◦ of the group (g, ∗) on the set of regular matrix pencils Lreg

n is defined as
◦ : g × Lreg

n → Lreg
n such that

((P,Q), sF −G) → (P,Q) ◦ (sF −G) := P (sF −G)Q.

This group has the following properties:
(a) (P1, Q1) ◦ [(P2, Q2) ◦ (sF −G)] = (P1, Q1) ∗ (P2, Q2) ◦ (sF −G) for every

nonsingular P1, P2 ∈Mn and Q1, Q2 ∈Mn.
(b) eg ◦ (sF −G) = sF −G, sF −G ∈ Lreg

n where eg = (In, In) is the identity
element of the group (g, ∗) on the set of Lreg

n defines a transformation group
denoted by N , see [6].

For sF −G ∈ Lreg
n , the subset

g ◦ (sF −G) := {(P,Q) ◦ (sF −G) : (P,Q) ∈ g} ⊆ Lreg
n

will be called the orbit of sF −G at g. Also N defines an equivalence relation on
Lreg

n which is called a strict-equivalence relation and is denoted by Es−e.
So, (sF −G)Es−e(sF̃ − G̃) if and only if P (sF −G)Q = sF̃ − G̃ , where P,Q ∈

Mn are nonsingular elements of algebra Mn.
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The class of Es−e(sF −G) is characterized by a uniquely defined element, known
as a complex Weierstrass canonical form, sFw−Qw, see [6], specified by the complete
set of invariants of Es−e(sF −G).

This is the set of elementary divisors (e.d.) obtained by factorizing the invariant
polynomials fi(s, ŝ) into powers of homogeneous polynomials irreducible over field
F. In the case where sF −G is a regular, we have e.d. of the following type:

• e.d. of the type sp are called zero finite elementary divisors (z. f.e.d.)
• e.d. of the type (s−a)π, a 6= 0 are called nonzero finite elementary divisors

(nz. f.e.d.)
• e.d. of the type ŝq are called infinite elementary divisors (i.e.d.).

Let B1, B2, . . . , Bn be elements of Mn. The direct sum of them denoted by B1 ⊕
B2 ⊕ · · · ⊕Bn is the block diag{B1, B2, . . . , Bn}.

Then, the complex Weierstrass form sFw − Qw of the regular pencil sF − G is
defined by sFw − Qw := sIp − Jp ⊕ sHq − Iq, where the first normal Jordan type
element is uniquely defined by the set of f.e.d.

(s− a1)p1 , . . . , (s− aν)pν ,
ν∑

j=1

pj = p (2.3)

of sF −G and has the form

sIp − Jp := sIp1 − Jp1(a1)⊕ · · · ⊕ sIpν − Jpν (aν). (2.4)

And also the q blocks of the second uniquely defined block sHq − Iq correspond to
the i.e.d.

ŝq1 , . . . , ŝqσ ,
σ∑

j=1

qj = q (2.5)

of sF −G and has the form

sHq − Iq := sHq1 − Iq1 ⊕ · · · ⊕ sHqσ
− Iqσ

. (2.6)

Thus, Hq is a nilpotent element of Mn with index q̃ = max{qj : j = 1, 2, . . . , σ},
where

H q̃
q = O,

and Ipj
, Jpj

(aj),Hqj
are defined as

Ipj
=


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 ∈Mpj
, Jpj

(aj) =


aj 1 0 . . . 0
0 aj 1 . . . 0
...

...
. . .

...
...

0 0 0 aj 1
0 0 0 0 aj

 ∈Mpj

Hqj
=


0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

...
...

0 0 0 0 1
0 0 0 0 0

 ∈Mqj
.

(2.7)
In the last part of this section, some elements for the analytic computation of
eA(t−t0), t ∈ [t0,∞) are provided. To perform this computation, many theoretical
and numerical methods have been developed. Thus, the interesting readers might
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consult papers [2, 4, 10, 11, 13] and the references therein. In order to have com-
putational formulas, see the following Sections 3 and 4, the following known results
should firstly be mentioned.

Lemma 2.3 ([4]). eJpj
(aj)(t−t0) = (dk1k2)pj

, where

dk1k2 =

eaj(t−t0)
(t− t0)k2−k1

(k2 − k1)!
, 1 ≤ k1 ≤ k2 ≤ pj

0, otherwise

Another expression for the exponential matrix of Jordan block, see (2.7), is
provided by the following Lemma.

Lemma 2.4 ([13]).

eJpj
(aj)(t−t0) =

pj−1∑
i=0

fi(t− t0)[Jpj
(aj)]i (2.8)

where the fi(t− t0)’s are given analytically by the following pj equations:

fpj−1−k(t− t0) = eaj(t−t0)
k∑

i=0

bk,ia
k−i
j

(t− t0)pj−1−i

(pj − 1− i)!
, k = 0, 1, 2, . . . , pj − 1 (2.9)

where

bk,i =
k−i∑
l=0

(
pj

l

)(
k − l

i

)
(−1)l

and
[Jpj

(aj)]i = (c(i)
k1k2

)pj
, for 1 ≤ k1, k2 ≤ pj (2.10)

where

c
(i)
k1k2

=
(

i

k2 − k1

)
a

i−(k2−k1)
j .

3. Solution space form of consistent initial conditions

In this section, the main results for consistent initial conditions are analytically
presented for the regular case. The whole discussion extends the existing litera-
ture; see for instance [2]. Moreover, it should be stressed out that these results
offer the necessary mathematical framework for interesting applications, see also
introduction. Now, in order to obtain a unique solution, we deal with consistent
initial value problem. More analytically, we consider the system

FX(r)(t) = GX(t), (3.1)

with known initial conditions

X(t0), X ′(t0), . . . , X(r−1)(t0). (3.2)

From the regularity of sF −G, there exist nonsingular M(n×n, F) matrices P and
Q such that (see also section 2), such as

PFQ = Fw = Ip ⊕Hq, (3.3)

PGQ = Gw = Jp ⊕ Iq, (3.4)
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where Ip, Jp,Hq and Iq are given by (2.7) where

Ip = Ip1 ⊕ . . .⊕ Ipν
,

Jp = Jp1(a1)⊕ . . .⊕ Jpν
(aν),

Hq = Hq1 ⊕ . . .⊕Hqσ
,

Iq = Iq1 ⊕ . . .⊕ Iqσ
.

Note that
∑ν

j=1 pj = p and
∑σ

j=1 qj = q, where p + q = n.

Lemma 3.1. System (3.1) is divided into two subsystems: The so-called slow sub-
system

Y (r)
p (t) = JpYp(t), (3.5)

and the relative fast subsystem

HqY
(r)
q (t) = Yq(t). (3.6)

Proof. Consider the transformation

X(t) = QY (t). (3.7)

Substituting the previous expression into (3.1) we obtain

FQY (r)(t) = GQY (t).

Whereby, multiplying by P , we arrive at

FwY (r)(t) = GwY (t).

Moreover, we can write Y (t) as Y (t) =
[
Yp(t)
Yq(t)

]
∈ Mnm. Taking into account the

above expressions, we arrive easily at (3.5) and (3.6). �

Remark 3.2. System (3.5) is the standard form of higher-order linear matrix
differential equations of Apostol-Kolodner type, which may be treated by classical
methods, see for instance [1, 2], [4] and [10] and references therein. Moreover, it
should be also mentioned that section 5 of [13] describes a method for solving higher-
order equations of the form q(D)X(t) = AX(t) where q is a scalar polynomial, D
is differentiation with respect to t and A is a square matrix. Such equations clearly
include the standard form equations of the Apostol-Kolodner type. Thus, it is
convenient to define new variables as

Z1(t) = Yp(t),

Z2(t) = Y ′
p(t),

. . .

Zr(t) = Y (r−1)
p (t).

Then, we have the system of ordinary differential equations

Z ′1(t) = Z2(t),

Z ′2(t) = Z3(t),
. . .

Z ′r(t) = JpZ1(t).

(3.8)

Now, (3.8) can be expressed using vector-matrix equations,

Z′(t) = AZ(t) (3.9)
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where Z(t) = [ZT
1 (t)ZT

2 (t) . . . ZT
r (t)]T (where ( )T is the transpose tensor) and the

coefficient matrix A is given by

A =


O Ip O . . . O
O O Ip . . . O
...

...
...

. . .
...

O O O . . . Ip

Jp O O . . . O

 (3.10)

with corresponding dimension of A and Z(t), pr × pr and pr ×m, respectively.
Equation (3.9) is a linear ordinary differential system and has a unique solution

for any initial condition

Z(t0) =


Z1(t0)
Z2(t0)

. . .
Zr(t0)

 =


Yp(t0)
Y ′

p(t0)
. . .

Y
(r−1)
p (t0)

 ∈Mpr×m. (3.11)

It is well-known that the solution of (3.11) has the form

Z(t) = eA(t−t0)Z(t0). (3.12)

Then Yp(t) = Z1(t) = LZ(t), where

L = [IpO . . . O] ∈Mp×pr. (3.13)

Finally, by combining (3.11)-(3.12) and (3.13), we obtain

Yp(t) = LeA(t−t0)Z(t0) (3.14)

To obtain a more analytic formula for the solution of (3.12), we should compute
analytically the matrix eA(t−t0) ∈Mpr, see [2], [4], [10], [11] and [13].

First, considering the Jordan canonical form, there exists a nonsingular matrix
R ∈ Mpr such that J = R−1AR, where J ∈ Mpr is the Jordan Canonical form of
matrix A. Afterwards, defining

Z(t) = RΘ(t)

then, combining (3.2) and (3.9), we obtain

RΘ′(t) = ARΘ(t).

Finally, multiplying the above expression by R−1, we take

Θ′(t) = JΘ(t).

It is well-known that the solution of (3.2) is given by

Θ(t) = eJ(t−t0)Θ(t0),

where

Θ(t0) = R−1Z(t0) = R−1


Yp(t0)
Y ′

p(t0)
. . .

Y
(r−1)
p (t0)

 ∈Mpr×m
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Proposition 3.3. The characteristic polynomial matrix A is given by

ϕ(λ) = det(λIpr −A) =
v∏

i=1

(λr − aj)pj , (3.15)

where
∑v

j=1 pj = p.

Proof. We obtain the characteristic polynomial of matrix A

ϕ(λ) = det(λIpr −A) = det


λIp −Ip O . . . O
O λIp −Ip . . . O
O O λIp . . . O
...

...
...

. . .
...

−Jp O O . . . λIp

 .

Afterwards, we consider some simple transformations. Thus, we multiply the first
block by λ and we add it to the second one. Moreover, we multiply the second
block by λ and we add it to the third one. Continuing as above, we finally obtain
that 

λIp −Ip O . . . O
O λIp −Ip . . . O
O O λIp . . . O
...

...
...

. . .
...

−Jp O O . . . λIp

 ∼


λIp −Ip O . . . O
λ2Ip O −Ip . . . O
λ3Ip O O . . . O

...
...

...
. . .

...
λrIp − Jp O O . . . O

 .

Now we make p row transformations to the determinant, as follows

(−1)p det


λrIp − Jp O O . . . O

λ2Ip O −Ip . . . O
λ3Ip O O . . . O

...
...

...
. . .

...
λIp −Ip O . . . O

 .

Continuing as above, we transfer the above determinant into the form

(−1)p(−1)p . . . (−1)p︸ ︷︷ ︸
(r−1)−times

det


λrIp − Jp O O . . . O

λIp −Ip O . . . O
λ2Ip O −Ip . . . O

...
...

...
. . .

...
λr−1Ip O O . . . −Ip


= (−1)(r−1)p|λrIp − Jp| |−Ip| . . . |−Ip|︸ ︷︷ ︸

(r−1)−times

= (−1)2(r−1)p|λrIp − Jp| = |λrIp − Jp|.
Thus, we obtain the expression

ϕ(λ) = det(λIpr −A) = |λrIp − Jp|.
Moreover, we recall that Jp = Jp1(a1)⊕ · · · ⊕ Jpv (av). Thus

|λrIp − Jp| =
v∏

j=1

|λrIpj
− Jpj

(aj)|.
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Note also that

|λrIpj
− Jpj

(aj)| = det


λr − aj −1 0 . . . 0

0 λr − aj −1 . . . 0
...

...
...

. . .
...

0 0 0 . . . −1
0 0 0 . . . λr − aj

 = (λr − aj)pj ,

for j = 1, 2, . . . , ν. Consequently, the characteristic polynomial (3.15) is derived.
�

Remark 3.4. The eigenvalues of matrix A are given by (3.16)

λjk = r

√
|aj |

(
cos

2kπ + ϕj

r
+ z sin

2kπ + ϕj

r

)
, (3.16)

where aj = |aj |(cos ϕj + z sinϕj) and z2 = −1 for every j = 1, 2, . . . , ν and k =
0, 1, 2, . . . , r − 1.

Remark 3.5. The characteristic polynomial is ϕ(λ) =
∏ν

j=1 (λr − aj)pj , with
ai 6= aj for i 6= j and

∑ν
j=1 pj = p. Without loss of generality, we define that

d1 = τ1, d2 = τ2, . . . , dl = τl, and dl+1 < τl+1, . . . , dν < τν

where dj , τj , j = 1, 2, . . . , ν is the geometric and algebraic multiplicity of the given
eigenvalues aj , respectively.
• Consequently, when dj = τj ,

Jjk(λjκ) =


λjk

λjk

. . .
λjk

 ∈Mτjk
,

is also a diagonal matrix with diagonal elements the eigenvalue λjk, for j = 1, . . . , l.
• When dj < τj ,

Jjk,zj
=



λjk 1
λjk 1

λjk
. . .
. . . 1

λjk

 ∈Mzj

for j = l + 1, l + 2, . . . , ν, and zj = 1, 2, . . . , dj .

Proposition 3.6. The fast subsystem (3.6) has only the zero solution.

Proof. By successively taking r-th derivatives with respect to t on both sides of
(3.6) and multiplying by left by the matrix Hq, q∗− 1, times (where q∗ is the index
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of the nilpotent matrix Hq, i.e. Hq∗

q = O), we obtain the following equations

HqY
(r)
q (t) = Yq(t),

H2
q Y (2r)

q (t) = HqY
(r)
q (t),

H3
q Y (3r)

q (t) = H2
q Y (2r)

q (t),
. . .

Hq∗

q Y (q∗r)
q (t) = Hq∗−1

q Y ((q∗−1)r)
q (t).

The conclusion, i.e. Yq(t) = O, is obtained by repetitively substitution of each
equation in the next one, and using the fact that Hq∗

q = O. �

Hence, the set of consistent initial conditions for system FwY (r)(t) = GwY (t)
has the form {

Y (k)(t0) =
[
Y

(k)
p (t0)
Oq

]
, k = 0, 1, . . . , r − 1

}
. (3.17)

Theorem 3.7. The analytic solution of (3.1) is given by

X(t) = Qn,pLR
ν
⊕

j=1

r−1
⊕

k=0
eJjk(λjk)(t−t0)R−1Z(t0). (3.18)

where L = [IpO . . . O] ∈ Mp×pr; R ∈ Mpr such that J = R−1AR, where J ∈ Mpr

is the Jordan Canonical form of matrix A; and

Z(t0) =
[
Y T

q (t0) Y ′T
q (t0) . . . Y (r−1)T

p (t0)
]T ∈Mm×pr.

Proof. Combining (3.2), (3.2) and the above discussion, the solution is

Θ(t) =
ν
⊕

j=1

r−1
⊕

k=0
eJjk(λjk)(t−t0)Θ(t0).

Then, multiplying by R and bearing in mind that Θ(t0) = R−1Z(t0), we obtain

Z(t) = RΘ(t) = R
ν
⊕

j=1

r−1
⊕

k=0
eJjk(λjk)(t−t0)Θ(t0) = R

ν
⊕

j=1

r−1
⊕

k=0
eJjk(λjk)(t−t0)R−1Z(t0).

Now, consider (3.13), then we obtain

Yp(t) = LZ(t) ⇔ Yp(t) = LR
ν
⊕

j=1

r−1
⊕

k=0
eJjk(λjk)(t−t0)R−1Z(t0).

Using the results of Proposition 2; i.e., that the second (fast) sub-system (3.6) has
only the zero solution, we obtain

X(t) = QY (t) = [Qn,p Qn,q]
[
Yp(t)

O

]
= Qn,pYp(t).

Finally, (3.18) is obtained. �

The next remark presents the set of consistent initial condition for system (3.1).

Remark 3.8. Combining (3.7) and (3.17), we obtain

X(t0) = QY (t0) = [Qn,p Qn,q][
[
Yp(t0)

O

]
= Qn,pYp(t0).

Then, the set of consistent initial conditions for (3.1) is given by{
Qn,pYp(t0) Qn,pY

′
p(t0) . . . Qn,pY

(r−1)
p (t0)

}
. (3.19)
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Now, taking into consideration (3.2) and (3.19), we conclude

X(t0) = Qn,pYp(t0),

X ′(t0) = Qn,pY
′
p(t0),

. . .

X(r−1)(t0) = Qn,pY
(r−1)
p (t0).

Remark 3.9. If Q̃n,p is the existing left inverse of Qn,p, then considering (3.11),
we have

Z(t0) =


Yp(t0)
Y ′

p(t0)
...

Y
(r−1)
p (t0)

 =


Q̃p,nXp(t0)
Q̃p,nX ′

p(t0)
...

Q̃p,nX
(r−1)
p (t0)



=


Q̃p,n

Q̃p,n

. . .
Q̃p,n




Xp(t0)
X ′

p(t0)
...

X
(r−1)
p (t0)


= Q̃Ψ(t0).

Finally, the solution (3.18) is given by

X(t) = Qn,pLR
ν
⊕

j=l+1

r−1
⊕

k=0
eJjk(λjk)(t−t0)R−1Q̃Ψ(t0). (3.20)

where Ψ(t0) = [XT
p (t0) X ′T

p (t0) . . . X
(r−1)T
p (t0)]T ∈ Mm×pr and Q̃n,p is the

existing left inverse of Qn,p.

The following two expressions, i.e. (3.21) and (3.22) are based on Lemma 1 and
2, respectively. Thus, two new analytical formulas are derived which are practically
very interesting. Their proofs are straightforward exercise of Lemma 1, 2 and (3.19)

Lemma 3.10. Considering the results of Lemma 1, we obtain the expression

X(t) = Qn,pLR
[(
⊕l

j=0 ⊕r−1
k=0e

λjk(t−t0)Iτjk

)
⊕

(
⊕ν

j=l+1 ⊕r−1
k=0 ⊕

dj

zj=1 (dk1k2)zj

)]
R−1Q̃Ψ(t0).

(3.21)

where

dk1k2 =

eλjk(t−t0)
(t− t0)k2−k1

(k2 − k1)!
, 1 ≤ k1 ≤ k2 ≤ zj

0, otherwise

for j = l + 1, l + 2, . . . , ν and zj = 1, 2, . . . , dj.

Lemma 3.11. Considering the results of Lemma 2.4, we obtain the expression

X(t) = Qn,pLR
[(
⊕l

j=0 ⊕r−1
k=0e

λjk(t−t0)Iτjk

)
⊕

(
⊕ν

j=l+1 ⊕r−1
k=0 ⊕

dj

zj=1

zj−1∑
i=0

fi(t− t0)[Jzj
(λjk)]i

)]
R−1Q̃Ψ(t0).

(3.22)
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where the polynomial fi(t − t0) satisfies the following system of zj equations (for
zj = 1, 2, . . . , dj),

fzj−1−κ(t− t0) = eλjκ(t−t0)
κ∑

i=0

bκ,iλ
κ−i
jκ

(t− t0)zj−1−i

(zj − 1− i)!
, κ = 0, 1, 2, . . . , zj − 1

where

bκ,i =
κ−i∑
l=0

(
zj

l

)(
κ− l

i

)
(−1)l

and
[Jzj

(λjκ)]i = (c(i)
k1k2

)zj
, for 1 ≤ k1, k2 ≤ zj

where

c
(i)
k1k2

=
(

i

k2 − k1

)
λ

i−(k2−k1)
jκ .

4. Form on non-consistent initial condition

In this short section, we describe the impulse behavior of the original system
(3.1), at time t0. In that case, we reformulate Proposition 3.6, so the impulse
solution is finally obtained.

Proposition 4.1. The subsystem (3.6) has the solution

Yq(s) = −
r−1∑
j=0

q∗−1∑
k=0

δ(rk−1−j)(t)Hk
q Y (j)

q (t0). (4.1)

Proof. Let start by observing that –as is well known– there exists a q∗ ∈ N such
that Hq∗

q = O i.e. the q∗ is the annihilation index of Hq. Whereby taking the
Laplace transformation of (3.6), see [5], the following expression derives

Hq={Y (r)
q (t)} = ={Yq(t)}

and by defining ={Yq(t)} = Xq(s), it is obtained

Hq

(
srXq(s)−

r−1∑
j=0

sr−1−jY (j)
q (t0)

)
= Xq(s)

or equivalently

(srHq − Iq)Xq(s) = Hq

r−1∑
j=0

sr−1−jY (j)
q (t0). (4.2)

Since q∗ is the annihilation index of Hq, it is known that

(srHq − Iq)−1 = −
q∗−1∑
k=0

(srHq)k,

where H0
q = Iq, see for instance [9] and [13]. Thus, substituting the above expression

into the (4.2), the following equation is taken

Xq(s) = −
q∗−1∑
k=0

(srHq)
r−1∑
i=0

sr−1−iYq(t0)
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or equivalently, after some algebra

Xq(s) = −
r−1∑
j=0

q∗−1∑
k=0

={δ(rk−1−j)}(t)Hk
q Y (j)

q (t0). (4.3)

Since ={δ(k)(t)} = sk, the expression (4.3) is transformed into (4.4)

Xq(s) = −
r−1∑
j=0

q∗−1∑
k=0

={δ(rk−1−j)}(t)Hk
q Y (j)

q (t0). (4.4)

Now, by applying the inverse Laplace transformation to (4.4), Equation (4.1) is
derived. �

Theorem 4.2. The solution of (3.1) is given by

X(t) = Qn,pLR⊕ν
j=0 ⊕r−1

k=0e
Jjk(λjk)(t−t0)R−1Z(t0)

−Qn,q

r−1∑
j=0

q∗−1∑
k=0

δ(rk−1−j)(t)Hk
q Y (j)

q (t0).
(4.5)

where L = [IpO . . . O] ∈ Mp×pr; R ∈ Mpr such that J = R−1AR, where J ∈ Mpr

is the Jordan Canonical form of matrix A; and

Z(t0) =
[
Y T

q (t0) Y ′T
q (t0) . . . Y (r−1)T

p (t0)
]T ∈Mm×pr.

Proof. Combining the results of Theorem 3.7 and the above discussion, the solution
is provided by (4.5). �

Remark 4.3. For t > t0, it is obvious that (3.18) is satisfied. Thus, we should
stress out that the system (3.1) has the above impulse behaviour at time instant
where a non-consistent initial value is assumed, while it returns to smooth behaviour
at any subsequent time instant.

Conclusions

In this article, we study the class of linear rectangular matrix descriptor differ-
ential equations of higher-order whose coefficients are square constant matrices. By
taking into consideration that the relevant pencil is regular, we get effected by the
Weierstrass canonical form in order to decompose differential system into two sub-
systems (i.e. the slow and the fast sub-system). Afterwards, we provide analytical
formulas for that general class of Apostol-Kolodner type of equations when we have
consistent and non-consistent initial conditions. Moreover, as a further extension
of the present paper, we can discusse the case where the pencil is singular. Thus,
the Kronecker canonical form is required. The non-homogeneous case has also a
special interest, since it appears often in applications. For all these, there is some
research in progress.
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