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MILD SOLUTIONS FOR SEMILINEAR FRACTIONAL
DIFFERENTIAL EQUATIONS

GISÈLE M. MOPHOU, GASTON M. N’GUÉRÉKATA

Abstract. This paper concerns the existence of mild solutions for fractional

semilinear differential equation with non local conditions in the α-norm. We
prove existence and uniqueness, assuming that the linear part generates an

analytic compact bounded semigroup, and the nonlinear part is a Lipschitz

continuous function with respect to the fractional power norm of the linear
part.

1. Introduction

During the past decades, fractional differential equations have attracted many
authors (see for instance [16, 17, 18, 19, 21, 22, 24, 26, 27] and references therein).
This, mostly because it efficiently describes many phenomena arising in Engineer-
ing, Physics, Economy, and Science.

Our aim in this paper is to discuss the existence and the uniqueness of the mild
solution for fractional semilinear differential equation with nonlocal conditions :

Dqx(t) = −Ax(t) + f(t, x(t), Bx(t)), t ∈ [0, T ],

x(0) + g(x) = x0
(1.1)

where T > 0, 0 < q < 1, −A generates an analytic compact semigroup (S(t))t≥0 of
uniformly bounded linear operators on a Banach space X. The term Bx(t) which
may be interpreted as a control on the system is defined by:

Bx(t) :=
∫ t

0

K(t, s)x(s)ds,

where K ∈ C(D, R+), the set of all positive function continuous on D := {(t, s) ∈
R2 : 0 ≤ s ≤ t ≤ T} and

B∗ = sup
t∈[0,T ]

∫ t

0

K(t, s)ds < ∞, (1.2)
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f and g are continuous. The derivative Dq is understood here in the Riemann-
Liouville sense. The non local condition

g(x) =
p∑

k=1

ckx(tk),

where ck, k = 1, 2, . . . p, are given constants and 0 < t1 < t2 < · · · < tp ≤
T . Let us recall that such local conditions were first used by Deng in [4]. In
his paper, Deng indicated that using the nonlocal condition x(0) + g(x) = x0 to
describe for instance, the diffusion phenomenon of a small amount of gas in a
transparent tube can give better result than using the usual local Cauchy Problem
x(0) = x0. Let’s observe also that since Deng’s paper, such problem has also
attracted several authors including Aizicovici, Byszewski, Ezzinbi, Fan, Liu, Liang,
Lin, Xiao, Hernández, Lee, etc..(see for instance [1, 2, 3, 4, 13, 11, 6, 12, 22, 19]
and the references therein).

However, among the previous research on nonlocal cauchy problems, few are con-
cerned with mild solutions of fractional semilinear differential equations. Recently,
in [14], the authors prove the existence and uniqueness of a mild solution for the
semilinear initial value problem of non-integer order when the linear part generates
a strongly continuous semigroup. In [20], we considered the fractional semilinear
differential equation with nonlocal conditions

Dqx(t) = Ax(t) + tnf(t, x(t), Bx(t)), t ∈ [0, T ], n ∈ Z+

x(0) = x0 + g(x)
(1.3)

where T is a positive real, 0 < q < 1, A is the generator of a C0-semigroup (S(t))t≥0

on a Banach space X, Bx(t) :=
∫ t

0
K(t, s)x(s)ds, K ∈ C(D, R+) with D := {(t, s) ∈

R2 : 0 ≤ s ≤ t ≤ T} and B∗ = sup
t∈[0,T ]

∫ t

0

K(t, s)ds < ∞, f : R × X × X → X is

a nonlinear function, g : C([0, T ], X) → D(A) is continuous and 0 < q < 1. The
derivative Dq is understood here in the Riemann-Liouville sense.

We used the Krasnoselkii and the contraction mapping principle to show the
existence and uniqueness of a mild solution for a fractional semilinear differential
equation with non local conditions.

In this paper, motivated by [8, 13], we investigate the existence and the unique-
ness of a mild solution for the fractional semilinear differential equation (1.1), as-
suming that f is defined on [0, T ]×Xα×Xα where Xα = D(Aα), for some 0 < α < 1,
the domain of the fractional power of A.

The rest of this paper is organized as follows. In section 2 we give some known
preliminary results on the fractional powers of the generator of an analytic compact
semigroup. In Section 3, we study the existence and the uniqueness of the mild
solution for the fractional semilinear differential equation (1.1).

2. Preliminaries

For the rest of this article, we set I = [0, T ]. We denote by X a Banach space
with norm ‖ · ‖ and −A : D(A) → X is the infinitesimal generator of a compact
analytic semigroup of uniformly bounded linear operators (S(t))t≥0. This means
that there exists M > 1 such that

‖S(t)‖ ≤ M (2.1)
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We assume without loss of generality that 0 ∈ ρ(A). This allows us to define the
fractional power Aα for 0 < α < 1, as a closed linear operator on its domain D(Aα)
with inverse A−α(see [8]). We have the following basic properties Aα.

Theorem 2.1 ([23, pp. 69-75]). (1) Xα = D(Aα) is a Banach space with the
norm ‖x‖α := ‖Aαx‖ for x ∈ D(Aα).

(2) S(t) : X → Xα for each t > 0.
(3) AαS(t)x = S(t)Aαx for each x ∈ D(Aα) and t ≥ 0.
(4) For every t > 0, AαS(t) is bounded on X and there exist Mα > 0 and δ > 0

such that

‖AαS(t)‖ ≤ Mα

tα
e−δt (2.2)

(5) A−α is a bounded linear operator in X with D(Aα) = Im(A−α).
(6) If 0 < α ≤ β, then D(Aβ) ↪→ D(Aα).

Remark 2.2. Observe as in [13] that by Theorem 2.1 (ii) and (iii), the restriction
Sα(t) of S(t) to Xα is exactly the part of S(t) in Xα. Let x ∈ Xα. Since

‖S(t)x‖α = ‖AαS(t)x‖ = ‖S(t)Aαx‖ ≤ ‖S(t)‖‖Aαx‖ = ‖S(t)‖‖x‖α,

and as t decreases to 0

‖S(t)x− x‖α = ‖AαS(t)x−Aαx‖ = ‖S(t)Aαx−Aαx‖ → 0,

for all x ∈ Xα, it follows that (S(t))t≥0 is a family of strongly continuous semigroup
on Xα and ‖Sα(t)‖ ≤ ‖S(t)‖ for all t ≥ 0.

We have the the following result from [13].

Lemma 2.3. (Sα(t))t≥0 is an immediately compact semigroup in Xα, and hence it
is immediately norm-continuous.

Definition 2.4 ([14]). A continuous function x : I → X satisfying the equation

x(t) = S(t)(x0 − g(x)) +
1

Γ(q)

∫ t

0

(t− s)q−1S(t− s)(f(s, x(s), Bx(s)) ds (2.3)

for t ∈ [0, T ] is called a mild solution of the equation (1.1)

In the sequel, we will also use ‖f‖p to denote the Lp norm of f whenever f ∈
Lp(0, T ) for some p with 1 ≤ p < ∞. We will set α ∈ (0, 1) and we will denote by
Cα, the Banach space C([0, T ], Xα) endowed with the supnorm given by

‖x‖∞ := sup
t∈I

‖x‖α, for x ∈ C.

3. Main Results

We assume the following conditions:
(H1) The function f : I×Xα×Xα → X is continuous, and there exists a positive

function µ ∈ L1
loc(I, R+) such that

‖f(t, x, y)‖ ≤ µ(t), (3.1)

(H2) g ∈ C(Cα, Xα) is completely continuous and there exist λ, γ > 0 such that

‖g(x)‖α ≤ λ‖x‖∞ + γ.
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Theorem 3.1. Suppose that assumptions (H1), (H2) hold. If x0 ∈ Xα and

Mλ <
1
2

(3.2)

then (1.1) has a mild solution on [0, T ].

Proof. We define the function F : Cα → Cα by

(Fx)(t) = S(t)(x0 − g(x)) +
1

Γ(q)

∫ t

0

(t− s)q−1S(t− s)f(s, x(s), Bx(s)) ds,

and we choose r such that

r ≥ 2
( MαT q−α

(1− α)Γ(q)
‖µ‖L1

loc(I,R+) + M(‖x0‖α + γ)
)
.

Let Br = {x ∈ Cα : ‖x‖∞ ≤ r}. Then we proceed in three steps.
Step 1. We show that FBr ⊂ Br. Let x ∈ Br. Then for t ∈ I, we have

‖(Fx)(t)‖α

≤ ‖S(t)(x0 − g(x))‖α +
1

Γ(q)
‖

∫ t

0

(t− s)q−1S(t− s)f(s, x(s), Bx(s)) ds‖α

≤ ‖S(t)‖‖x0 − g(x)‖α +
1

Γ(q)

∫ t

0

‖(t− s)q−1AαS(t− s)f(s, x(s), Bx(s))‖ds

≤ ‖S(t)‖(‖x0‖α + λ‖x‖∞ + γ) +
T q−1

Γ(q)

∫ t

0

‖AαS(t− s)‖‖f(s, x(s), Bx(s))‖ ds,

which according to (2.1), (2.2), (3.1) and (3.2) gives

‖(Fx)(t)‖α

≤ ‖S(t)‖ (‖x0‖α + λ‖x‖∞ + γ) +
T q−1

Γ(q)

∫ t

0

Mα(t− s)−αe−δ(t−s)µ(s) ds

≤ ‖S(t)‖ (‖x0‖α + λ‖x‖∞ + γ) +
MαT q−1

Γ(q)

∫ t

0

(t− s)−αµ(s) ds

≤ M (‖x0‖α + λ‖x‖∞ + γ) +
MαT q−α

(1− α)Γ(q)
‖µ‖L1

loc(I,R+) ≤ r

for t ∈ I. Hence, we deduce ‖Fx‖∞ ≤ r.
Step 2. We prove that F is continuous. Let (xn) be a sequence of Br such that
xn → x in Br. Then

f(s, xn(s), Bxn(s)) → f(s, x(s), Bx(s)), n →∞
because the function f is continuous on I × Xα × Xα. Now, for t ∈ I, we have

‖Fxn − Fx‖α

≤ ‖S(t)(g(xn)− g(x))‖α

+
∥∥ 1

Γ(q)

∫ t

0

(t− s)q−1S(t− s) (f(s, xn(s), Bxn(s))− f(s, x(s), Bx(s))) ds
∥∥

α
,

which in view of (2.1) and (2.2) gives

‖Fxn − Fx‖α

≤ ‖S(t)‖‖g(xn)− g(x)‖α
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+
T q−1

Γ(q)

∫ t

0

‖AαS(t− s)‖‖f(s, xn(s), Bxn(s))− f(s, x(s), Bx(s))‖ ds

≤ M‖g(xn)− g(x)‖α

+
MαT q−1

Γ(q)

∫ t

0

(t− s)−α‖f(s, xn(s), Bxn(s))− f(s, x(s), Bx(s))‖ ds

≤ M‖g(xn)− g(x)‖α

+
MαT q−1

Γ(q)

∫ t

0

(t− s)−α‖f(s, xn(s), Bxn(s))− f(s, x(s), Bx(s))‖ ds

for t ∈ I. Therefore, using on the one hand the fact that

‖f(s, xn(s), Bxn(s))− f(s, x(s), Bx(s))‖ ≤ 2µ(s) for s ∈ I,

and for each t ∈ I since f satisfies (H1) and on the other hand the fact that the
function s 7→ 2µ(s)(t−s)−α is integrable on I, by means of the Lebesgue Dominated
Convergence Theorem one proves that∫ t

0

(t− s)−α‖f(s, xn(s), Bxn(s))− f(s, x(s), Bx(s))‖ ds → 0.

Hence, since g(xn) → g(x) as n →∞ because g is completely continuous on Cα, it
can easily been shown that

lim
n→∞

‖Fxn − Fx‖∞ = 0, as n →∞.

In other words F is continuous.
Step 3. We show that F is compact. To this end, we use the Ascoli-Arzela’s
theorem. We first prove that {(Fx)(t) : x ∈ Br} is relatively compact in Xα, for all
t ∈ I. Obviously, {(Fx)(0) : x ∈ Br} is compact. Let t ∈ (0, T ]. For each h ∈ (0, t)
and x ∈ Br, we define the operator Fh by

(Fhx)(t) = S(t)(x0 − g(x)) +
1

Γ(q)

∫ t−h

0

(t− s)q−1S(t− s)f(s, x(s), Bx(s)) ds

= S(t)(x0 − g(x)) +
S(h)
Γ(q)

∫ t−h

0

(t− s)q−1S(t− h− s)f(s, x(s), Bx(s)) ds.

Then the sets {(Fhx)(t) : x ∈ Br} are relatively compact in Xα since by Lemma
2.3, the operators Sα(t), t ≥ 0 are compact on Xα. Moreover, using (H1) and (2.2),
we have

‖(Fx)(t)− (Fhx)(t)‖α ≤
1

Γ(q)

∫ t

t−h

(t− s)q−1‖S(t− s)f(s, x(s), Bx(s))‖α ds

≤ T q−1

Γ(q)

∫ t

t−h

‖AαS(t− s)‖‖f(s, x(s), Bx(s))‖ ds

≤ T q−1Mα

Γ(q)
‖µ‖L1

loc(I,R+)

∫ t

t−h

(t− s)−α ds

≤
T q−1Mα‖µ‖L1

loc(I,R+)

(1− α)Γ(q)
h1−α

Therefore, we deduce that {(Fx)(t) : x ∈ Br} is relatively compact in Xα for all
t ∈ (0, T ] and since it is compact at t = 0 we have the relatively compactness in Xα

for all t ∈ I. Now, let us prove that F (Br) is equicontinuous. By the compactness
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of the set g(Br), we can prove that the functions Fx, x ∈ Br are equicontinuous a
t = 0. For 0 < t2 < t1 ≤ T , we have

‖(Fx)(t1)− (Fx)(t2)‖α

≤ ‖(S(t1)− S(t2))(x0 − g(x))‖α

+
1

Γ(q)
‖

∫ t2

0

(t1 − s)q−1 (S(t1 − s)− S(t2 − s)) f(s, x(s), Bx(s)) ds‖α

+
1

Γ(q)
‖

∫ t2

0

(
(t1 − s)q−1 − (t2 − s)q−1

)
S(t2 − s)f(s, x(s), Bx(s)) ds‖α

+
1

Γ(q)
‖

∫ t1

t2

(t1 − s)q−1S(t1 − s)f(s, x(s), Bx(s)) ds‖α

≤ I1 + I2 + I3 + I4

Where

I1 = ‖(S(t1)− S(t2))(x0 − g(x))‖α

I2 =
1

Γ(q)
‖

∫ t2

0

(t1 − s)q−1 (S(t1 − s)− S(t2 − s)) f(s, x(s), Bx(s)) ds‖α

I3 =
1

Γ(q)
‖

∫ t2

0

(
(t1 − s)q−1 − (t2 − s)q−1

)
S(t2 − s)f(s, x(s), Bx(s)) ds‖α

I4 =
1

Γ(q)
‖

∫ t1

t2

(t1 − s)q−1S(t1 − s)f(s, x(s), Bx(s)) ds‖α

Actually, I1, I2, I3 and I4 tend to 0 independently of x ∈ Br when t2 → t1. Indeed,
let x ∈ Br and G = supx∈Cα

‖g(x)‖α. We have

I1 = ‖(S(t1)− S(t2))(x0 − g(x))‖α

≤ ‖Sα(t1)− Sα(t2)‖α‖x0 − g(x)‖α

≤ ‖Sα(t1)− Sα(t2)‖α (‖x0‖α + G)

from which we deduce that limt2→t1I1 = 0 since by Lemma 2.3 the function t 7→
‖Sα(t)‖α is continuous for t ∈ (0, T ].

I2

≤ 1
Γ(q)

∫ t2

0

‖(t1 − s)q−1
(
S(t1 − s)− S(t2 − s)

)
f(s, x(s), Bx(s))‖α ds

≤ T q−1

Γ(q)

∫ t2

0

∥∥[
S

( t1 − t2
2

+
t1 − s

2
)
− S

( t2 − s

2
)]

AαS
( t2 − s

2
)
f(s, x(s), Bx(s))

∥∥ ds

≤ T q−1−α

Γ(q)
‖µ‖L1

loc(I,R+)

∫ t2

0

‖S
( t1 − t2

2
+

t1 − s

2
)
− S

( t2 − s

2
)
‖ ds.

Therefore, the continuity of the function t 7→ ‖S(t)‖ for t ∈ (0, T ) allows us to
conclude that limt2→t1I2 = 0.

I3 ≤
1

Γ(q)

∫ t2

0

‖
(
(t2 − s)q−1 − (t1 − s)q−1

)
S(t2 − s)f(s, x(s), Bx(s))‖α ds

≤ 1
Γ(q)

∫ t2

0

∣∣(t2 − s)q−1 − (t1 − s)q−1
∣∣ ‖AαS(t2 − s)‖‖f(s, x(s), Bx(s))‖ ds
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≤ 1
Γ(q)

∫ t2

0

∣∣(t2 − s)q−1 − (t1 − s)q−1
∣∣ (t2 − s)−αµ(s) ds

≤ T−α

Γ(q)
‖µ‖L1

loc(I,R+)

∫ t2

0

∣∣(t2 − s)q−1 − (t1 − s)q−1
∣∣ ds

≤ T−α

qΓ(q)
‖µ‖L1

loc(I,R+)|t1 − t2|q.

Hence limt2→t1I3 = 0.

I4 ≤
1

Γ(q)

∫ t1

t2

‖(t1 − s)q−1S(t1 − s)f(s, x(s), Bx(s))‖α ds

≤ T q−1

Γ(q)

∫ t1

t2

‖AαS(t1 − s)‖‖f(s, x(s), Bx(s))‖ ds

≤ MαT q−1

Γ(q)

∫ t1

t2

(t1 − s)−αµ(s) ds

≤ MαT q−1

(1− α)Γ(q)
‖µ‖L1

loc(I,R+)|t1 − t2|1−α.

Since 1− α > 0, we deduce that limt2→t1I4 = 0.
In summary, we have proven that F (Br) is relatively compact, for t ∈ I, {Fx :

x ∈ Br} is a family of equicontinuous functions. Hence by the Arzela-Ascoli Theo-
rem, F is compact. By Schauder fixed point theorem F has a fixed point x ∈ Br.
Consequently, (1.1) has a mild solution. �

Now we make the following assumptions.
(H1’) f : I × Xα × Xα → X is continuous and there exist functions µ1, µ2 ∈

L1
loc(I, R+) such that

‖f(t, x, u)− f(t, y, v)‖ ≤ µ1(t)‖x− y‖α + µ2(t)‖u− v‖α,

for all t ∈ I, x, y, u, v ∈ Xα.
(H2’) g : Cα → Xα is continuous and there exists a constant b such that

‖g(x)− g(y)‖α ≤ b‖x− y‖∞, for all x, y ∈ Cα.

(H3) The function Ωα,q : I → R+, 0 < α, q < 1 defined by

Ωα,q = Mb +
T q−1Mαt1−α

(1− α)Γ(q)

(
‖µ1‖L1

loc(I,R+) + B∗‖µ2‖L1
loc(I,R+)

)
satisfies 0 < Ωα,q ≤ τ < 1, for all t ∈ I.

Theorem 3.2. Assume that (H1’), (H2’), (H3) hold. If x0 ∈ Xα then (1.1) has a
unique mild solution x ∈ Cα.

Proof. Define the function F : Cα → Cα by

(Fx)(t) = S(t)(x0 − g(x)) +
1

Γ(q)

∫ t

0

(t− s)q−1S(t− s)f(s, x(s), Bx(s)) ds.

Note that F is well defined on Cα. Now take t ∈ I and x, y ∈ Cα. We have

‖(Fx)(t)− F (y)(t)‖α

≤ ‖S(t) (g(x)− g(y)) ‖α
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+
1

Γ(q)

∫ t

0

(t− s)q−1‖S(t− s) (f(s, x(s), Bx(s))− f(s, y(s), By(s))) ‖α ds

≤ ‖S(t)‖‖g(x)− g(y)‖α

+
T q−1

Γ(q)

∫ t

0

‖AαS(t− s)‖‖f(s, x(s), Bx(s))− f(s, y(s), By(s))‖ds

which according to (2.1), (2.2), (H1’), (H2’) and (1.2) gives

‖(Fx)(t)− F (y)(t)‖α

≤ Mb‖x− y‖∞ +
T q−1Mα

Γ(q)

∫ t

0

(t− s)−αµ1(s)‖x(s)− y(s)‖αds

+
T q−1Mα

Γ(q)

∫ t

0

(t− s)−αµ2(s)‖Bx(s)−By(s))‖αds

≤ Mb‖x− y‖∞

+
T q−1Mα

Γ(q)
‖µ1‖L1

loc(I,R+)

( ∫ t

0

(t− s)−α ds
)
‖x(s)− y(s)‖∞

+
T q−1Mα

Γ(q)

∫ t

0

(t− s)−αµ2(s)
[ ∫ s

0

K(s, σ)‖Aα(x(σ)− y(σ))‖dσ
]
ds

≤
(
Mb +

T q−1Mαt1−α

(1− α)Γ(q)
‖µ1‖L1

loc(I,R+)

)
‖x− y‖∞

+
T q−1MαB∗t1−α

(1− α)Γ(q)
‖µ2‖L1

loc(I,R+)‖x− y‖∞

≤
[
Mb +

T q−1Mαt1−α

(1− α)Γ(q)

(
‖µ1‖L1

loc(I,R+) + B∗‖µ2‖L1
loc(I,R+)

) ]
‖x− y‖∞

≤ Ωα,q(t)‖x− y‖∞.

So we get
‖(Fx)(t)− F (y)(t)‖∞ ≤ Ωα,q(t)‖x− y‖∞.

Therefore, assumption (H3) allows us to conclude in view of the contraction map-
ping principe that, F has a unique fixed point in Cα, and

x(t) = S(t)(x0 − g(x)) +
1

Γ(q)

∫ t

0

(t− s)q−1S(t− s)f(s, x(s), Bx(s)) ds

which is the mild solution of (1.1). �
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