Electron. J. Diff. Equ., Vol. 2009(2009), No. 163, pp. 1-9.

Three positive solutions for a system of singular generalized Lidstone problems

Jiafa Xu, Zhilin Yang

Abstract:
In this article, we show the existence of at least three positive solutions for the system of singular generalized Lidstone boundary value problems
$$\displaylines{
 (-1)^m x^{(2m)}=a(t)f_1(t,x,-x'',\dots,(-1)^{m-1}x^{(2m-2)},y,-y'',\cr
  \dots,(-1)^{n-1}y^{(2n-2)}),  \cr
 (-1)^n y^{(2n)}=b(t)f_2(t,x,-x'',\dots,(-1)^{m-1}x^{(2m-2)},y,-y'',\cr
  \dots,(-1)^{n-1}y^{(2n-2)}), \cr
 a_1 x^{(2i)}(0)-b_1 x^{(2i+1)}(0)=c_1x^{(2i)}(1)+d_1 x^{(2i+1)}(1)=0,\cr
 a_2y^{(2j)}(0)-b_2y^{(2j+1)}(0)=c_2y^{(2j)}(1)+d_2y^{(2j+1)}(1)=0.
 }$$
The proofs of our main results are based on the Leggett-Williams fixed point theorem. Also, we give an example to illustrate our results.

Submitted October 7, 2009. Published December 21, 2009.
Math Subject Classifications: 34A34, 34B18, 45G15, 47H10.
Key Words: Singular generalized Lidstone problem; positive solution; cone; concave functional.

Show me the PDF file (192 KB), TEX file, and other files for this article.

Jiafa Xu
Department of Mathematics, Qingdao Technological University
No 11, Fushun Road, Qingdao, China
email: xujiafa292@sina.com
Zhilin Yang
Department of Mathematics, Qingdao Technological University
No 11, Fushun Road, Qingdao, China
email: zhilinyang@sina.com

Return to the EJDE web page