Electron. J. Diff. Equ., Vol. 2009(2009), No. 144, pp. 1-11.

Weak solutions for anisotropic nonlinear elliptic equations with variable exponents

Blaise Kone, Stanislas Ouaro, Sado Traore

Abstract:
We study the anisotropic boundary-value problem
$$\displaylines{
 -\sum^{N}_{i=1}\frac{\partial}{\partial
 x_{i}}a_{i}(x,\frac{\partial}{\partial x_{i}}u)=f
 \quad \hbox{in } \Omega, \cr
 u=0 \quad\hbox{on }\partial \Omega,
 }$$
where $\Omega$ is a smooth bounded domain in $\mathbb{R}^{N}$ $(N\geq 3)$. We obtain the existence and uniqueness of a weak energy solution for $f\in L^{\infty}(\Omega)$, and the existence of weak energy solution for general data $f$ dependent on $u$.

Submitted February 10, 2008. Published November 12, 2009.
Math Subject Classifications: 35J20, 35J25, 35D30, 35B38, 35J60.
Key Words: Anisotropic Sobolev spaces; weak energy solution; variable exponents; electrorheological fluids.

Show me the PDF file (247 KB), TEX file, and other files for this article.

Blaise Kone
Laboratoire d'Analyse Mathématique des Equations (LAME)
Institut Burkinabé des Arts et Métiers, Université de Ouagadougou
03 BP 7021 Ouaga 03, Ouagadougou, Burkina Faso
email: leizon71@yahoo.fr
Stanislas Ouaro
Laboratoire d'Analyse Mathématique des Equations (LAME)
Institut Burkinabé des Arts et Métiers, Université de Ouagadougou
03 BP 7021 Ouaga 03, Ouagadougou, Burkina Faso
email: souaro@univ-ouaga.bf, ouaro@yahoo.fr
Sado Traore
Laboratoire d'Analyse Mathématique des Equations (LAME)
Institut Burkinabé des Arts et Métiers, Université de Ouagadougou
01 BP 1091 Bobo-Dioulasso 01,
email: sado@univ-ouaga.bf

Return to the EJDE web page