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BOUNDEDNESS AND EXPONENTIAL STABILITY OF HIGHLY
NONLINEAR STOCHASTIC DIFFERENTIAL EQUATIONS

RUIHUA LIU, YOUSSEF RAFFOUL

Abstract. In this article we consider nonlinear stochastic differential systems

and use Lyapunov functions to study the boundedness and exponential asymp-
totic stability of solutions. We provide several examples in which we consider

stochastic systems with unbounded terms.

1. Introduction

The method of Lyapunov functions has been an important tool in the devel-
opment of stability theory for nonlinear deterministic dynamical systems. There
is also large body of literature on the boundedness and stability using Lyapunov
functions or functionals, see for example [1]–[5] and [7]. Erhart [11] used Lya-
punov functions to obtained sufficient conditions for the existence of solution of a
dynamical system on time scales. Since Itô introduced the stochastic integral, Lya-
punov functions have been employed to study various qualitative and quantitative
properties including stochastic stability and stochastic boundedness of stochastic
differential equations (SDE). See for example, Kushner [8], Mao [9, 10], Hasminskii
[6] and the references therein. The report in [13] presents an interesting survey of
Lyapunov functions techniques in stochastic differential equations.

In a recent work Raffoul [12] considered the deterministic nonlinear system

ẋ = f(t, x), t ≥ 0,

x(t0) = x0, t0 ≥ 0, x0 ∈ Rn

where x ∈ Rn, f : R+ × Rn → Rn is a given nonlinear continuous function in
t and x, where t ∈ R+. There non-negative Lyapunov functions are used for
establishing sufficient conditions for the boundedness and exponential asymptotic
stability of deterministic nonlinear differential dynamic systems with unbounded
forcing terms. It makes sense to ask that if the solutions of the deterministic
systems are bounded or exponentially stable then whether or not the same would
hold for the solutions of the stochastic system, created from the deterministic one
by adding a nonlinear stochastic term to it. To answer this question we will have
to generalize the definitions and results in [12] to a class of nonlinear stochastic
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differential equations and prove several theorems that can be used to verify the
stochastic boundedness and exponential asymptotic stability. As an application to
results obtained, we furnish several examples.

As a motivational example, consider the one-dimensional stochastic differential
equation

dx(t) = −a(t)x(t)dt+ g(x(t), t)dB(t), t ≥ t0 ≥ 0, (1.1)
with initial condition x(t0) = x0 ∈ R, where B(t) is a one-dimensional standard
Brownian motion. We assume that the function a(t) and g(x, t) satisfy g2(x, t) ≤
λ2(t)x2 + h2(t) and 2a(t) ≥ λ2(t) for some function λ(t) and h(t). Let α(t) =
2a(t) − λ2(t) and choose the Lyapunov function V (x, t) = x2. Then along the
solutions x := x(t) of (1.1), we have

dV (x, t) ≤ −α(t)V (x, t)dt+ h2(t)dt+ 2xg(x, t)dB(t). (1.2)

Multiply both sides of (1.2) with the integrating factor e
R t

t0
α(s)ds and then integrate

from t0 to t to obtain

V (x, t) ≤ e
−

R t
t0

α(s)ds
V (x0, t0) +

∫ t

t0

e−
R t

u
α(s)dsh2(u) du

+ 2
∫ t

t0

e−
R t

u
α(s)dsx(u)g(x(u), u)dB(u).

(1.3)

We note that inequality (1.3) was readily available due to the form (1.2). However,
in general to find a Lyapunov function that satisfies (1.2) is extremely difficult and
may requires strong conditions on the known coefficients. This brings us to the
following question: What can be said about the boundedness of solutions when
along the solutions of (1.1), V satisfies

dV (x) ≤ −α(t)W (x)dt+h2(t)dt+2xg(x, t)dB(t),W (x) 6= V (x) for x 6= 0? (1.4)

Here α : [0,∞) → [0,∞) is continuous and W : [0,∞) → [0,∞) is continuous with
W (0) = 0, W (x) is strictly increasing, and W (x) →∞ as x→∞. Such a function
is called a wedge.

In the next section we present our main results and in Section 3 we give examples
as application of the theory.

2. Main Results

Let B(t) = (B1(t), B2(t), . . . , Bm(t))T be an m-dimensional standard Brownian
motion defined on a complete probability space (Ω,F ,P). We consider the n-
dimensional stochastic differential equation

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t), t ≥ 0, (2.1)

with initial condition x(t0) = x0 ∈ Rn. Here x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ Rn,
t0 ≥ 0, f : Rn×R+ → Rn and g : Rn×R+ → Rn×m are given nonlinear continuous
functions such that (2.1) has a solution on some small interval. In what follows we
use x(t, t0, x0) or simply x(t) for a solution of (2.1). We also use ‖x‖ to denote the
Euclidean norm for vector x ∈ Rn.

Definition 2.1. A solution x(t, t0, x0) to (2.1) is said to be stochastically bounded,
or bounded in probability, if it satisfies

Ex0‖x(t, t0, x0)‖ ≤ C(‖x0‖, t0), for all t ≥ t0, (2.2)
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where Ex0 denotes the expectation operator with respect to the probability law
associated with x0, C : R+ × R+ → R+ is a constant depending on t0 and x0. We
say that solutions of (2.1) are uniformly stochastically bounded if C is independent
of t0.

Let C2,1(Rn × R+; R+) denote the family of non-negative functions V (x, t) de-
fined on Rn × R+ that are twice continuously differentiable in x and continuously
differentiable in t. Define an operator L on functions in C2,1(Rn × R+; R+) by

LV (x, t) = Vt(x, t) +
n∑

i=1

Vxi(x, t)fi(x, t) +
1
2

n∑
i=1

n∑
j=1

m∑
k=1

Vxixj (x, t)gik(x, t)gjk(x, t),

(2.3)
where fi is the ith component of vector f and gij is the ij-entry of matrix g. Let
C(R+; R+) denote the family of continuous functions with non-negative domain
and non-negative range.

In this article we assume that the function V (x, t) chosen from C2,1(Rn×R+; R+)
satisfies the following assumption.

Assumption 2.2. We assume that for any solution x(t) of (2.1) and for any fixed
0 ≤ t0 ≤ T <∞, the following conditions hold:

Ex0
{ ∫ T

t0

V 2
xi

(x(t), t)g2
ik(x(t), t) dt

}
<∞, 1 ≤ i ≤ n, 1 ≤ k ≤ m. (2.4)

Remark 2.3. A special case of the general condition (2.4) is the following condi-
tion. Assume that there exists a function σ(t) such that

|Vxi
(x, t)gik(x, t)| ≤ σ(t), x ∈ Rn, 1 ≤ i ≤ n, 1 ≤ k ≤ m, (2.5)

and for any fixed 0 ≤ t0 ≤ T <∞,∫ T

t0

σ2(t) dt <∞. (2.6)

We will present examples in which conditions (2.5) and (2.6) are satisfied.

Theorem 2.4. Assume there exists a function V (x, t) in C2,1(Rn × R+; R+) sat-
isfying Assumption 2.2, such that for all (x, t) ∈ Rn × R+,

W (‖x‖) ≤ V (x, t) ≤ φ(‖x‖), (2.7)

LV (x, t) ≤ −α(t)ψ(‖x‖) + β(t), (2.8)

V (x, t)− ψ(φ−1(V (x, t))) ≤ γ, (2.9)

where W,φ, ψ, α, β ∈ C(R+; R+), W,φ, ψ are strictly increasing, W is convex, and
γ is a non-negative constant. Then all solutions of (2.1) satisfy

Ex0‖x(t, t0, x0)‖ ≤W−1
{
V (x0, t0)e

−
R t

t0
α(s) ds +

∫ t

t0

(
γα(u)+β(u)

)
e−

R t
u

α(s) ds du
}
,

(2.10)
for all t ≥ t0.

Proof. Let x(t) := x(t, t0, x0) be any solution of (2.1). For notational brevity, let

dBx(t) =
n∑

i=1

Vxi
(x(t), t)

m∑
k=1

gik(x(t), t)dBk(t).
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Applying Itô’s formula to e
R t

t0
α(s) ds

V (x(t), t) give

d
(
e

R t
t0

α(s) ds
V (x(t), t)

)
= e

R t
t0

α(s) ds
(
α(t)V (x(t), t) + LV (x(t), t)

)
dt+ e

R t
t0

α(s) ds
dBx(t)

≤ e
R t

t0
α(s) ds

(
α(t)V (x(t), t)− α(t)ψ(‖x(t)‖) + β(t)

)
dt+ e

R t
t0

α(s) ds
dBx(t)

by (2.8)

≤ e
R t

t0
α(s) ds

(
α(t)[V (x(t), t)− ψ(φ−1(V (x(t), t)))] + β(t)

)
dt+ e

R t
t0

α(s) ds
dBx(t)

by (2.7)

≤ e
R t

t0
α(s) ds

(
γα(t) + β(t)

)
dt+ e

R t
t0

α(s) ds
dBx(t) by (2.9).

Integrating both sides from t0 to t, we have

e
R t

t0
α(s) ds

V (x(t), t)

≤ V (x0, t0) +
∫ t

t0

e
R u

t0
α(s) ds

(
γα(u) + β(u)

)
du+

∫ t

t0

e
R u

t0
α(s) ds

dBx(u).

Dividing both sides by e
R t

t0
α(s) ds,

V (x(t), t) ≤ e
−

R t
t0

α(s) ds
V (x0, t0) +

∫ t

t0

e−
R t

u
α(s) ds

(
γα(u) + β(u)

)
du

+
∫ t

t0

e−
R t

u
α(s) dsdBx(u).

(2.11)

Taking expectation of both sides and noting that Ex0
{ ∫ t

t0
e−

R t
u

α(s) dsdBx(u)
}

= 0,
we have in view of (2.4) that

Ex0 [V (x(t), t)] ≤ e
−

R t
t0

α(s) ds
V (x0, t0) +

∫ t

t0

e−
R t

u
α(s) ds

(
γα(u) + β(u)

)
du. (2.12)

Finally, since W is convex, by Jensen’s Inequality for expectation, we have,

W (Ex0‖x(t)‖) ≤ Ex0 [W (‖x(t)‖)] ≤ Ex0 [V (x(t), t)],

which, when combined with (2.12), yields (2.10). �

Theorem 2.5. Assume there exists a function V (x, t) in C2,1(Rn × R+; R+) sat-
isfying Assumption 2.2, such that for all (x, t) ∈ Rn × R+,

‖x‖p ≤ V (x, t) ≤ ‖x‖q, (2.13)

LV (x, t) ≤ −α(t)‖x‖r + β(t), (2.14)

V (x, t)− V r/q(x, t) ≤ γ, (2.15)

where α, β ∈ C(R+; R+), p, q, r are positive constants, p ≥ 1, and γ is a non-
negative constant. Then all solutions of (2.1) satisfy

Ex0‖x(t, t0, x0)‖ ≤
{
V (x0, t0)e

−
R t

t0
α(s) ds +

∫ t

t0

(γα(u) + β(u)) e−
R t

u
α(s) ds du

}1/p
,

(2.16)
for all t ≥ t0.
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Proof. If we chose W (x) = xp, φ(x) = xq and ψ(x) = xr, then the conditions
(2.7)-(2.9) reduce to (2.13)-(2.15). Also note that xp is convex for p ≥ 1. It then
follows from Theorem 2.4 that (2.16) holds. �

The proof of the next theorem is similar to that of Theorem 2.4 and hence
omitted.

Theorem 2.6. Assume there exists a function V (x, t) in C2,1(Rn × R+; R+) sat-
isfying Assumption 2.2, such that for all (x, t) ∈ Rn × R+,

‖x‖p ≤ V (x, t), (2.17)

LV (x, t) ≤ −α(t)V q(x, t) + β(t), (2.18)

V (x, t)− V q(x, t) ≤ γ, (2.19)

where α, β ∈ C(R+; R+), p, q are positive constants, p ≥ 1, and γ is a non-negative
constant. Then all solutions of (2.1) satisfy

Ex0‖x(t, t0, x0)‖ ≤
{
V (x0, t0)e

−
R t

t0
α(s) ds +

∫ t

t0

(γα(u) + β(u)) e−
R t

u
α(s) ds du

}1/p
,

(2.20)
for all t ≥ t0.

Definition 2.7. Suppose f(0, t) = 0 and g(0, t) = 0. We say that the zero solution
of (2.1) is α-exponentially asymptotically stable in probability, if there exists a
positive continuous function α(t) such that

∫ t

t0
α(s) ds→∞ as t→∞ and constants

d, C ∈ R+ such that for any solution x(t, t0, x0) of (2.1),

Ex0‖x(t, t0, x0)‖ ≤ C(‖x0‖, t0)
(
e
−

R t
t0

α(s) ds
)d

, for all t ≥ t0, (2.21)

where the constant C may depend on t0 and x0. The zero solution of (2.1) is
said to be α-uniformly exponentially asymptotically stable in probability if C is
independent of t0.

Corollary 2.8. (1) Assume either of the hypothesis Theorem 2.4 or Theorem 2.5
hold. In addition,∫ t

t0

(γα(u) + β(u)) e−
R t

u
α(s) ds du ≤M, ∀t ≥ t0 ≥ 0, (2.22)

for some positive constant M , then all solutions of (2.1) are uniformly stochastically
bounded.

(2) Assume the hypothesis of Theorem 2.6 hold. If condition (2.22) is satisfied,
then all solutions of (2.1) are stochastically bounded.

Proof. If the hypothesis of Theorem 2.4 hold, then by (2.10) and (2.22), we have

Ex0‖x(t)‖ ≤W−1
{
V (x0, t0)e

−
R t

t0
α(s) ds +M

}
≤W−1{φ(‖x0‖) +M} := C(‖x0‖),

by (2.7). If the hypothesis of Theorem 2.5 hold, then by (2.16) and (2.22), we have

Ex0‖x(t)‖ ≤
{
V (x0, t0)e

−
R t

t0
α(s) ds +M

}1/p ≤ {‖x0‖q +M}1/p := C(‖x0‖),

by (2.13). By Definition 2.1, all solutions of (2.1) are uniformly stochastically
bounded in either case.
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If the hypothesis of Theorem 2.6 hold, then by (2.20) and (2.22), we have

Ex0‖x(t)‖ ≤
{
V (x0, t0)e

−
R t

t0
α(s) ds +M

}1/p ≤ {V (x0, t0) +M}1/p := C(‖x0‖, t0),

which implies that all solutions of (2.1) are stochastically bounded. �

Corollary 2.9. Assume f(0, t) = 0 and g(0, t) = 0. Assume∫ t

t0

(
γα(u) + β(u)

)
e

R u
t0

α(s) ds
du ≤M, ∀t ≥ t0 ≥ 0, (2.23)

for some positive constant M , and∫ t

t0

α(s) ds→∞, as t→∞. (2.24)

(1) If the hypothesis of Theorem 2.5 hold, then the zero solution of (2.1) is
α-uniformly exponentially asymptotically stable in probability with d = 1/p.

(2) If the hypothesis of Theorem 2.6 hold, then the zero solution of (2.1) is
α-exponentially asymptotically stable in probability with d = 1/p.

Proof. From (2.12) we have

Ex0 [V (x(t), t)] ≤
{
V (x0, t0) +

∫ t

t0

e
R u

t0
α(s) ds(

γα(u) + β(u)
)
du

}
e
−

R t
t0

α(s) ds
.

Then by (2.23),

Ex0 [V (x(t), t)] ≤
{
V (x0, t0) +M

}
e
−

R t
t0

α(s) ds
. (2.25)

Note that xp is convex for p ≥ 1. By Jensen’s Inequality, we have (Ex0‖x(t)‖)p ≤
Ex0(‖x(t)‖p) ≤ Ex0 [V (x(t), t)]. It follows that

Ex0‖x(t)‖ ≤
{
V (x0, t0) +M

}1/p
(
e
−

R t
t0

α(s) ds
)1/p

:= C(‖x0‖, t0)
(
e
−

R t
t0

α(s) ds
)1/p

,

(2.26)
which implies that the zero solution of (2.1) is α-exponentially asymptotically stable
in probability with d = 1/p.

If the hypothesis of Theorem 2.5 hold, then using (2.13) in (2.26), we can further
obtain

Ex0‖x(t)‖ ≤
{
‖x0‖q +M

}1/p
(
e
−

R t
t0

α(s) ds
)1/p

:= C(‖x0‖)
(
e
−

R t
t0

α(s) ds
)1/p

.

In this case, the zero solution of (2.1) is α-uniformly exponentially asymptotically
stable in probability with d = 1

p . �

3. Examples

In this section we provide three examples to illustrate the application of the
results we obtained in the previous section.
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Example 1. For a(t), b(t), h(t) ≥ 0, consider the scalar stochastic differential equa-
tion

dx(t) =
[
−

(
a(t)+

7
6
)
x(t)+b(t)x

1
3 (t)+h(t)

]
dt+g(x(t), t)dB(t), t ≥ t0 ≥ 0, (3.1)

with initial condition x(t0) = x0, where B(t) is a one-dimensional standard Brow-
nian motion.

Let V (x, t) = x2. Then along any solution x := x(t) of (3.1), we have

LV (x, t) = Vxf +
1
2
Vxxg

2(x, t)

= −2
(
a(t) +

7
6
)
x2 + 2b(t)x4/3 + 2xh(t) + g2(x, t)

≤ −2
(
a(t) +

7
6
)
x2 + 2b(t)x4/3 + x2 + h2(t) + g2(x, t).

To further simplify LV (x, t), we make use of Young’s inequality, which says for any
two nonnegative real numbers w and z, we have

wz ≤ we

e
+
zf

f
, with

1
e

+
1
f

= 1.

Thus, for e = 3/2 and f = 3, we obtain

2|b(t)|x4/3 ≤ 2
[1
3
|b(t)|3 +

(x4/3)3/2

3/2

]
=

4
3
x2 +

2
3
|b(t)|3.

As a result, we have

LV (x, t) ≤ −2a(t)x2 +
2
3
b3(t) + h2(t) + g2(x, t). (3.2)

Let g(x, t) = t1/2x/(x2 + 1). Then

Vxg(x, t) = 2t1/2 x2

x2 + 1
≤ 2t1/2 := σ(t).

Hence conditions (2.5) and (2.6) are satisfied. We also have g2(x, t) = tx2/(x2 +
1)2 ≤ t/4. It follows that

LV (x, t) ≤ −α(t)x2 + β(t), (3.3)

where α(t) = 2a(t), β(t) = 2
3b

3(t) + h2(t) + t
4 . We can easily check that conditions

(2.13)-(2.15) of Theorem 2 are satisfied with p = q = r = 2 and γ = 0. Specifically,
let a(t) = t

2 , b(t) = t
1
3 , and h(t) = t1/2. Then, α(t) = t, β(t) = 23

12 t and (3.3)
becomes

LV (x, t) ≤ −tx2 +
23
12
t.

We note that∫ t

t0

(
γα(u) + β(u)

)
e−

R t
u

α(s)ds du =
23
12

∫ t

t0

ue−
R t

u
sds du ≤ 23

12
,

for all t ≥ t0 ≥ 0. Thus condition (2.22) holds. By Corollary 2.8 all solutions of

dx(t) =
[
−

( t
2

+
7
6
)
x(t) + t

1
3x

1
3 (t) + t1/2

]
dt+

t1/2x(t)
x2(t) + 1

dB(t),

x(t0) = x0, t ≥ t0 ≥ 0,
(3.4)
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are uniformly stochastically bounded and satisfy

Ex0‖x(t, t0, x0)‖ ≤
{
x2

0 +
23
12

}1/2
, ∀t ≥ t0 ≥ 0.

Next, if we take a(t) = t/2, b(t) = e−κ1t/3, h(t) = 0, and g(x, t) = e−κ2T/2x/(x2+
1), κ1, κ2 > 1, then conditions (2.5) and (2.6) are satisfied. We have α(t) = t and
β(t) = 2

3e
−κ1t + 1

4e
−κ2t for inequality (3.3). Using them in (2.23), we have∫ t

t0

(
γα(u) + β(u)

)
e

R u
t0

α(s) ds
du =

∫ t

t0

(2
3
e−κ1t +

1
4
e−κ2t

)
e

R u
t0

ds
du

≤ 2
3(κ1 − 1)

+
1

4(κ2 − 1)
,

for all t ≥ t0 ≥ 0. Hence condition (2.23) is satisfied. We can easily see that
condition (2.24) is also satisfied. By Corollary 2.9 we know that the zero solution
of

dx(t) =
[
−

( t
2

+
7
6
)
x(t) + e−

κ1
3 tx

1
3 (t)

]
dt+ e−

κ2
2 t x(t)
x2(t) + 1

dB(t),

x(t0) = x0, t ≥ t0 ≥ 0,
(3.5)

is α-uniformly exponentially asymptotically stable in probability with d = 1/2.
We note that in Example 1 the condition (2.15) did not come into play due to

the fact that r = q = 2. In the next example, we consider a non-linear stochastic
differential equation in which the condition (2.15) naturally comes into play.

Example 2. Consider the stochastic differential equation

dx(t) =
[
− a(t)x3(t) + b(t)x

1
3 (t) + h(t)

]
dt+ g(x(t), t)dB(t), t ≥ t0 ≥ 0, (3.6)

with initial condition x(t0) = x0, where function a(t), b(t), h(t) and g(x, t) will be
specified later. Use the same function V (x, t) = x2 as in Example 1. Then along
any solution x := x(t) of (3.6), we have

LV (x, t) = −2a(t)x4 + 2b(t)x4/3 + 2xh(t) + g2(x, t).

Using Young’s inequality for term b(t)x4/3 with e = 3 and f = 3
2 , we have

|b(t)||x|4/3 ≤ x4

3
+

2
3
|b(t)|3/2.

Using Young’s inequality for term xh(t) with e = 4 and f = 4/3, we have

|x||h(t)| ≤ x4

4
+

3
4
|h(t)|4/3.

It follows that

LV (x, t) ≤
(
− 2a(t) +

7
6
)
x4 +

4
3
|b(t)|3/2 +

3
2
|h(t)|4/3 + g2(x, t). (3.7)

Let g(x, t) = t1/2x/(x2 + 1). Then

LV (x, t) ≤ −α(t)x4 + β(t), (3.8)

where α(t) = 2a(t)− 7
6 , β(t) = 4

3 |b(t)|
3/2 + 3

2 |h(t)|
4/3 + 1

4 t. Hence we have p = q = 2
and r = 4.

Note that

V (x, t)− V r/q(x, t) = x2(1− x2) ≤ 1
4
, for x ∈ R.
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Hence condition (2.15) is satisfied with constant γ = 1
4 . To ensure that α(t) ≥ 0

we need a(t) ≥ 7
12 . Specifically, let a(t) = t

2 + 7
12 , b(t) = t

2
3 , and h(t) = t

3
4 . Then

we have α(t) = t, β(t) = 37
12 t and (3.8) becomes

LV (x, t) ≤ −tx4 +
37
12
t.

Consequently, (2.16) implies

Ex0‖x(t, t0, x0)‖ ≤
{
x2

0e
−

R t
t0

s ds +
∫ t

t0

(1
4
u+

37
12
u
)
e−

R t
u

s ds du
}1/2

, (3.9)

which yields

Ex0‖x(t, t0, x0)‖ ≤
{
x2

0 +
10
3

}1/2
, ∀t ≥ t0 ≥ 0. (3.10)

Therefore, all solutions of

dx(t) =
[
−

( t
2

+
7
12

)
x3(t) + t

2
3x

1
3 (t) + t

3
4
]
dt+

t1/2x(t)
x2(t) + 1

dB(t),

x(t0) = x0, t ≥ t0 ≥ 0,
(3.11)

are uniformly stochastically bounded.
As an application of Theorem 2.6, we consider a two-dimensional system in the
next example.

Example 3. Let x(t) = (x1(t), x2(t))T ∈ R2. For a(t) > 0, consider:

dx1(t) =
[
x2(t)− a(t)x1(t)|x1(t)|+

x1(t)h1(t)
1 + x2

1(t)
]
dt

+ g11(x(t), t)dB1(t) + g12(x(t), t)dB2(t),

dx2(t) =
[
− x1(t)− a(t)x2(t)|x2(t)|+

x2(t)h2(t)
1 + x2

2(t)
]
dt

+ g21(x(t), t)dB1(t) + g22(x(t), t)dB2(t),

(3.12)

with initial condition x(t0) = x0 ∈ R2. Let V (x, t) = x2
1 + x2

2. We assume that the
functions gij , i, j = 1, 2 satisfy the conditions (2.5) and (2.6), and

g2(x, t) := g2
11(x, t) + g2

12(x, t) + g2
21(x, t) + g2

22(x, t) ≤M(t).

Along the solution (x1, x2) := (x1(t), x2(t)) of (3.12), we have

LV (x, t) = −2a(t)(|x1|3 + |x2|3) +
2x2

1h1(t)
1 + x2

1

+
2x2

2h2(t)
1 + x2

2

+ g2(x, t)

≤ −4a(t)
( |x1|3

2
+
|x2|3

2
)

+ 2(|h1(t)|+ |h2(t)|) +M(t).

Using the inequality (a+ b

2
)l ≤ al

2
+
bl

2
, a, b > 0, l > 1,

we have

LV (x, t) ≤ −4a(t)
(x2

1 + x2
2)

3/2

23/2
+ 2(|h1(t)|+ |h2(t)|) +M(t)

≤ −
√

2a(t)V 3/2(x, t) + 2(|h1(t)|+ |h2(t)|) +M(t).
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Thus p = 2, q = 3
2 . Condition (2.18) is satisfied with α(t) =

√
2a(t) and β(t) =

2(|h1(t)|+|h2(t)|)+M(t). To check condition (2.19), we note that for (x1, x2) ∈ R2,

V (x, t)− V 3/2(x, t) = x2
1 + x2

2 − (x2
1 + x2

2)
3/2 ≤ 4

27
.

Thus (2.19) is satisfied with γ = 4
27 . From Theorem 2.6, we conclude that all

solutions of (3.12) satisfy (2.20). Specifically,

Ex0‖x(t, t0, x0)‖ ≤
{
‖x0‖2e−

√
2

R t
t0

a(s) ds +
∫ t

t0

(4
√

2
27

a(u) + 2(|h1(u)|+ |h2(u)|)

+M(u)
)
e−
√

2
R t

u
a(s) ds du

}1/2

,

for all t ≥ t0 ≥ 0.
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