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TWIN PERIODIC SOLUTIONS OF PREDATOR-PREY
DYNAMIC SYSTEM ON TIME SCALES

RONG-HUA HE, HONG-XU LI, LIANG ZHANG

Abstract. In this article, we consider a delayed predator-prey dynamic sys-

tem with type IV functional responses on time scales. Sufficient criteria for the

existence of at least two periodic solutions are established by using the well-
known continuation theorem due to Mawhin. An example is given to illustrate

the main result.

1. Introduction

In studying the interaction between predators and their prey, it is crucial to
determine what specific form of the functional response that describes the mount
of prey consumed per predator per unit of time is biological plausible provides a
sound basis for theoretical development.

In this paper, we consider the following delay predator-prey dynamic equation
with type IV functional responses on time scale T:

y∆
1 (t) = b1(t)− a1(t) exp{y1(t− τ1(t))} −

c(t) exp{y2(t− γ(t))}
exp{2y1(t)}/n + exp{y1(t)}+ a

,

y∆
2 (t) = −b2(t) +

a2(t) exp{y1(t− τ2(t))}
exp{2y1(t)(t− τ2(t))}/n + exp{y1(t− τ2(t))}+ a

,

(1.1)

where for i = 1, 2; c, γ, ai, bi, τi ∈ Crd(T) are ω-priodic functions with c(t) ≥
0, γ(t) ≥ 0, ai(t) ≥ 0, τi(t) ≥ 0, c > 0, and b̄i > 0, n and a are positive constants,
Crd(T) will be defined later.

Calculus on time scales was initiated by Stefan Hilger in 1990 with the moti-
vation of providing a unified approach to continuous and discrete analysis. Since
then the theory of dynamic equations on time scales has become a new impor-
tant mathematical branch, and it has been applied in various directions (see, eg.,
[1, 2, 3, 4, 5, 9, 11, 12, 14, 15, 16, 17, 18, 19, 20] and the refs cited therein).

On the other hand, the Mawhin’s continuation is a powerful tool when deal with
the existence of periodic solutions for population models, and much work have been
done (see, e.g., [6, 10, 13, 17, 21] and the references cited therein). However, to the
best of our knowledge, the study on the existence of multiple periodic solutions for
population models on time scales are scarce.
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Motivated and inspired by the above excellent work, in this paper, we establish
some sufficient criteria for the existence of at least two periodic solutions for system
(1.1) by using Mawhin technique.

2. Preliminaries

We first provide without proof several definitions and results from the calculus
on time scales which are useful in the following argument. For more details, we
refer the authors to [5].

A time scale T is an arbitrary nonempty closed subset of the real numbers, and
it inherits the topology from the real numbers with the standard topology. Let
ω > 0 is a constant. Throughout this paper, the time scale we considered is always
assumed to be ω-priodic (i.e., t ∈ T implies t ± ω ∈ T) and unbounded above and
below. Set

κ = min{R+ ∩ T}, Iω = [κ, κ + ω] ∩ T.

Definition 2.1. The forward jump operator σ : T → T and the backward jump
operator ρ : T → T are defined by

σ(t) := inf{s ∈ T : s ≥ t}, ρ(t) := sup{s ∈ T : s ≤ t},

respectively, for any t ∈ T. If σ(t) = t, then t is called right-dense (otherwise: right-
scattered), and if ρ(t) = t, then t is called left–dense (otherwise left-scattered).

Definition 2.2. Assume that f : T → R and fix t ∈ T. Then f is called differ-
ential at t ∈ T if there exists c ∈ R such that given any ε > 0, there is an open
neighborhood U of t satisfying

|[f(σ(t))− f(s)]− c[σ(t)− s]| ≤ ε|σ(t)− s|, s ∈ U.

In this case, c is called the delta (or Hilger) derivative of f at t ∈ T, and is denoted
by c = f∆(t).

Remark 2.3. We say that f is delta (Hilger) differential on T if f∆(t) exists for
all t ∈ T. A function F : T → R is called an antiderivative of f : T → R provided
that F∆(t) = f(t) for all t ∈ T. Then we define∫ s

r

f(t)∆t = F (s)− F (r), r, s ∈ T.

Definition 2.4. A function f : T → R is called rd-continuous if it is continuous
at right-dense points in T and its left-sided limits exist(finite) at left-dense points
in T. The set of rd-continuous functions f : T → R will be denoted by Crd =
Crd(T) = Crd[T, R).

Remark 2.5. Every rd-continuous function has an antiderivative. Every continu-
ous function is rd-continuous.

Lemma 2.6. If a, b ∈ T, α, β ∈ R and f, g ∈ Crd(T), then

(C1)
∫ b

a
[αf(t) + βg(t)]∆t = α

∫ b

a
f(t)∆t + β

∫ b

a
g(t)∆t;

(C2) if f(t) ≥ 0 for all a ≤ t ≤ b, then
∫ b

a
f(t)∆t ≥ 0;

(C3) if |f(t)| ≤ g(t) on [a, b) := {t ∈ T : a ≤ t < b}, then |
∫ b

a
f(t)∆t| ≤∫ b

a
g(t)∆t.
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Lemma 2.7 ([3]). Let t1, t2 ∈ Iω and t ∈ T. If g : T → R is ω − periodic, then

g(t) ≤ g(t1) +
∫

Iω

|g∆(s)|∆s and g(t) ≥ g(t2)−
∫

Iω

|g∆(s)|∆s.

In the remainder of this section we list well known elements and result which
can be found in [8]. Let X and Z are two Banach spaces. Consider a operator
equation:

Lx = λNx, λ ∈ (0, 1), (2.1)

where L : DomL ∩ X → Z is a linear operator, N : X → Z is a continuous
operator and λ is a parameter. Let P and Q denote two projectors P : X → X and
Q : Z → Z such that Im P = KerL and Im L = KerQ = Im(I −Q). It follows that
L|Dom L∩Ker P : (I − P )X → Im L is invertible. We denote the inverse of this map
by Kp. If Ω is a bounded open subset of X, the mapping N is called L-compact
on Ω if QN(Ω) is bounded and Kp(I −Q)N : Ω → X is compact. Because Im Q is
isomorphic to KerL, there exists an isomorphism J : Im Q → KerL.

Recall that operator L will be called a Fredholm operator of index zero if
dim Ker L = codim Im L < ∞, and ImL is closed in Z.

Lemma 2.8 (Continuation Theorem [8]). Let L be a Fredholm mapping of index
zero and let N be L− compact on Ω. Suppose

(a) for each λ ∈ (0, 1), every solution x of Lx = λNx is such that x /∈ ∂Ω;
(b) QNx 6= 0 for each x ∈ ∂Ω ∩KerL;
(c) deg{JQN, Ω, θ} 6= 0.

Then the equation Lx = Nx has at least one solution lying in Dom L ∩ Ω̄.

To facilitate the discussion below, throughout this paper we adopt the following
notation

ḡ =
1
ω

∫
Iω

g(s)∆s, |b̄i| =
1
ω

∫
Iω

|bi(s)|∆s,

where i=1, 2; g ∈ Crd(T) is an ω-periodic real function, i.e., g(t + ω) = g(t) for all
t ∈ T. And the other symbols appearing in the sequel are denoted accordingly. Set

u1± :=
n(ā2 − b̄2)±

√
n2(ā2 − b̄2)2 − 4b̄2

2an

2b2

,

l± :=
1

2b̄2

(
n[ā2 exp{(b̄1 + |b̄1|)ω} − b̄2]

±
√

n2[ā2 exp{(b̄1 + |b̄1|)ω} − b̄2]2 − 4b̄2
2an
)
,

v± :=
1

2b̄2 exp{ω(b̄1 + |b̄1|)}

(
n[ā2 − b̄2 exp{(b̄1 + |b̄1|)ω}]

±
√

n2[ā2 − b̄2 exp{(b̄1 + |b̄1|)ω}]2 − 4b̄2
2an exp{2ω(|b̄1|+ b̄1)}

)
.

From the above six positive numbers, one obtains

l− < u1− < v− < v+ < u1+ < l+. (2.2)
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3. Main result

In this section, our emphasis is focused on the existence of at least two periodic
solutions for (1.1). Before formulate the main result, we first embed our problem
into the frame of Lemma 2.8. Set

X = Z = {y = (y1(t), y2(t))T ∈ C(T, R2)|yi(t + ω) = yi(t), i = 1, 2, t ∈ T}.

Then X, Z are Banach spaces endowed with the norm ‖y‖ =
∑2

i=1 maxt∈Iω |yi(t)|.
Define

Ny(t) = (Φ1(t),Φ2(t))T , Ly(t) = (y∆
1 (t), y∆

2 (t))T ,

Py = Qy =
( 1

ω

∫
Iω

y1(t)∆t,
1
ω

∫
Iω

y2(t)∆t
)T

,

where y ∈ X,

Φ1(t) = b1(t)− a1(t) exp{y1(t− τ1(t))} −
c(t) exp{y2(t− γ(t))}

exp{2y1(t)}/n + exp{y1(t)}+ a
,

Φ2(t) = −b2(t) +
a2(t) exp{y1(t− τ2(t))}

exp{2y1(t− τ2(t))}/n + exp{y1(t− τ2(t))}+ a
.

Obviously,

KerL = {y ∈ X : y = h = (h1, h2)T ∈ R2, t ∈ T},

Im L =
{
y ∈ Z :

∫
Iω

yi(t)∆t = 0, t ∈ T, i = 1, 2
}
,

P,Q are continuous projectors such that

Im P = KerL, Im L = KerQ = Im(I −Q),

the set Im L is closed in Z, and

dim KerL = 2 = codim Im L.

Hence, L is a Fredholm mapping of index zero. Furthermore, the generalized inverse
(to L) Kp : Im L → Dom L ∩KerP exists and is given by

Kpy =
(∫ t

κ

y1(s)∆s− 1
ω

∫
Iω

∫ t

κ

y1(s)∆s∆t,

∫ t

κ

y2(s)∆s− 1
ω

∫
Iω

∫ t

κ

y2(s)∆s∆t
)T

.

Thus

QNy =
( 1

ω

∫
Iω

Φ1(s)∆s,
1
ω

∫
Iω

Φ2(s)∆s
)T

,

Kp(I −Q)Ny =
(
Θ1(t),Θ2(t)

)T

,

where,

Θ1(t) =
∫ t

κ

Φ1(s)∆s− 1
ω

∫
Iω

∫ t

κ

Φ1(s)∆s∆t−
(
t− κ− 1

ω

∫
Iω

(t− κ)∆t
)
Φ̄1,

Θ2(t) =
∫ t

κ

Φ2(s)∆s− 1
ω

∫
Iω

∫ t

κ

Φ2(s)∆s∆t−
(
t− κ− 1

ω

∫
Iω

(t− κ)∆t
)
Φ̄2.

It is easy to show that QN and Kp(I −Q) are continuous. By using the Arzela-
Ascoli theorem, one can show that Kp(I−Q)(Ω̄) is relatively compact for any open
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bounded set Ω ∈ X. Moreover, QN(Ω̄) is bounded. Thus, N is L-compact on Ω̄
for any open bounded set Ω ⊂ X.

After the above preparations, we now state and prove our main result.

Theorem 3.1. System (1.1) has at least two ω-periodic solutions if the following
conditions hold.

(i) ā2 > b̄2(1 + 2
√

a
n ) exp{(|b̄1|+ b̄1)ω};

(ii) b̄1 > ā1l+ exp{(|b̄1|+ b̄1)ω}.

Proof. Corresponding to the operator equation (2.1) we have

(y∆
1 (t), y∆

2 (t))T = λ(Φ1(t),Φ2(t))T . (3.1)

Suppose that y ∈ X is a solution of system (3.1) for a certain λ ∈ (0, 1). Integrating
(3.1) over set Iω, we obtain

b̄1ω =
∫

Iω

[
a1(t) exp{y1(t− τ1(t))}+

c(t) exp{y2(t− γ(t))}
exp{2y1(t)}/n + exp{y1(t)}+ a

]
∆t, (3.2)

b̄2ω =
∫

Iω

[ a2(t) exp y1(t− τ2(t))
exp{2y1(t− τ2(t))}/n + exp y1(t− τ2(t)) + a

]
∆t. (3.3)

From (3.1)–(3.3), we have∫
Iω

|y∆
1 (t)|∆t ≤ λ

{∫
Iω

|b1(t)|∆t +
∫

Iω

[−Φ1(t) + b1(t)]∆t
}

< (|b̄1|+ b̄1)ω, (3.4)∫
Iω

|y∆
2 (t)|∆t ≤ λ

{∫
Iω

|b2(t)|∆t +
∫

Iω

[Φ2(t) + b2(t)]∆t
}

< (|b̄2|+ b̄2)ω. (3.5)

Because y = (y1(t), y2(t))T ∈ X, there exist ξi, ηi ∈ Iω, i = 1, 2 such that

yi(ξi) = min
t∈Iω

{yi(t)}, yi(ηi) = max
t∈Iω

{yi(t)}. (3.6)

From (3.3) and (3.6) we get

b̄2ω ≤
∫

Iω

[ a2(t) exp{y1(η1)}
exp{2y1(ξ1)}/n + exp{y1(ξ1)}+ a

]
∆t

=
ā2ω exp{y1(η1)}

exp{2y1(ξ1)}/n + exp{y1(ξ1)}+ a
,

which implies

y1(η1) ≥ ln
[ b̄2

ā2
(exp{2y1(ξ1)}/n + exp y1(ξ1) + a)

]
. (3.7)

By virtue of (3.4), (3.7) and Lemma 2.7, we get

y1(t) ≥ y1(η1)−
∫

Iω

|y∆
1 (t)|∆t

> ln[
b̄2

ā2
(exp{2y1(ξ1)}/n + exp y1(ξ1) + a)]− (|b̄1|+ b̄1)ω.

In particular,

y1(ξ1) > ln
[ b̄2

ā2
(exp{2y1(ξ1)}/n + exp y1(ξ1) + a)

]
− (|b̄1|+ b̄1)ω.
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or
b̄2

n
exp{2y1(ξ1)} −

(
ā2 exp{(|b̄1|+ b̄1)ω} − b̄2

)
exp{y1(ξ1)}+ b̄2a < 0. (3.8)

According to (i), we have

ln l− < y1(ξ1) < ln l+. (3.9)

From (3.3), we have

b̄2ω ≥
∫

Iω

[ a2(t) exp{y1(ξ1)}
exp{2y1(η1)}/n + exp{y1(η1)}+ a

]
∆t

=
ā2ω exp{y1(ξ1)}

exp{2y1(η1)}/n + exp{y1(η1)}+ a
;

that is,

y1(ξ1) < ln
[ b̄2

ā2
(exp{2y1(η1)}/n + exp y1(η1) + a)

]
.

Which together with (3.4) and Lemma 2.7 lead to

y1(t) ≤ y1(ξ1) +
∫

Iω

|y∆
1 (t)|∆t

< ln
[ b2

a2
(exp{2y1(η1)}/n + exp y1(η1) + a)

]
+ (|b̄1|+ b̄1)ω.

Hence, we have

y1(η1) < ln
[ b̄2

ā2
(exp{2y1(η1)}/n + exp y1(η1) + a)

]
+ (|b̄1|+ b̄1)ω.

or
b̄2

n
exp{2y1(η1)} −

(
ā2 exp{−(|b̄1|+ b̄1)ω} − b̄2

)
exp{y1(η1)}+ b̄2a > 0.

Similarly, we can show that

y1(η1) < ln v− or y1(η1) > ln v+. (3.10)

From (3.4), (3.9) and Lemma 2.7,

y1(t) ≤ y1(ξ1) +
∫

Iω

|y∆
1 (t)|∆t < ln l+ + (|b̄1|+ b̄1)ω := P1. (3.11)

On the other hand, (3.2) and (3.6) yield

b̄1ω ≥ c̄ω exp{y2(ξ2)}
exp{2P1}/n + exp{P1}+ a

, (3.12)

b̄1ω ≤ ā1ω exp{P1}+
c̄ω exp{y2(η2)}

a
. (3.13)

It follows from (3.12) that

y2(ξ2) ≤ ln
[ b̄1

c̄
(exp{2P1}/n + exp{P1}+ a)

]
.

This, together with (3.5) and Lemma 2.7, yields

y2(t) ≤ y2(ξ2) +
∫

Iω

|y∆
2 (t)|∆t

< ln
[ b̄1

c̄
(exp{2P1}/n + exp{P1}+ a)

]
+ (|b̄2|+ b̄2)ω := P2.

(3.14)
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Moreover, because of (ii), it follows from (3.13) that

y2(η2) ≥ ln
[a
c̄
(b̄1 − exp{(B̄1 + b̄1)ωā1l+})

]
,

which, combined with Lemma 2.7, gives

y2(t) ≥ y2(η2)−
∫

Iω

|y∆
2 (t)|∆t

> ln[
a

c̄
(b̄1 − exp{(B̄1 + b̄1)ωā1l+})]− (|b̄2|+ b̄2)ω := P3.

(3.15)

It follows from (3.14) and (3.15) that

max
t∈Iω

|y2(t)| < max{|P2|, |P3|} := P. (3.16)

Obviously, ln l±, ln v±, P1 and P are independent of the choice of λ ∈ (0, 1).
Now, let’s consider QNh with h = (h1, h2)T ∈ R2. Note that

QNh =

(
b̄1 − ā1 exp{h1} − c̄ exp{h2}

exp{2h1}/n+exp{h1}+a

−b̄2 + ā2 exp{h1}
exp{2h1}/n+exp{h1}+a

)
In view of (i) and (ii), one can show that QNh = 0 has two distinct constant
solutions:

z† =
(

lnul−, ln
(b̄1 − ā1ul−)g(ul−)

c̄

)T

,

z‡ =
(

lnul+, ln
(b̄1 − ā1ul+)g(ul+)

c̄

)T

,

where, g(ul−) = u2
l−/n + ul− + a, and g(ul+) = u2

l+/n + ul+ + a. Chose M > 0
such that

M > max
{
| ln (b̄1 − ā1ul−)g(ul−)

c̄
|, | ln (b̄1 − ā1ul+)g(ul+)

c̄
|
}
. (3.17)

And set

Ω1 =
{
y = (y1(t), y2(t))T ∈ X : y1(t) ∈ (ln l−, ln v−), max

t∈Iω

|y2(t)| < P + M
}
,

Ω2 =
{
y = (y1(t), y2(t))T ∈ X : min

t∈Iω

y1(t) ∈ (ln l−, ln l+),

max
t∈Iω

y1(t) ∈ (ln v+, P1), max
t∈Iω

|y2(t)| < P + M
}
.

Then both Ω1 and Ω2 are open bounded subset of X. It follows from (2.2) and
(3.17) that z† ∈ Ω1, z

‡ ∈ Ω2. With the help of (2.2), (3.9)–(3.11), and (3.16)–(3.17),
it is not difficult to show that Ω1 ∩ Ω2 = ∅ and Ωi verifies the requirements (a) of
Lemma 2.8 for i = 1, 2. When y ∈ ∂Ωi ∩ R2, y is a constant vector in R2, then
QNy 6= 0. Moreover, after direct calculation we get the Brouwer degree

deg(JQN,Ωi ∩ ker L, θ) = (−1)i+1 6= 0,

for i = 1, 2, where the isomorphism J can be chosen to be the identity mapping,
since Im Q = KerL. Up to now, we have proved that Ωi verify all the requirements
of Lemma 2.8. Therefore, by Lemma 2.8, we derive that (1.1) has at least two
ω-periodic solutions lying in Dom L ∩ Ωi. The proof is complete. �

Remark 3.2. Assume T = Z, then (1.1) becomes a discrete analogue of (1.1)
which has been discussed in [21]. Therefore, our result obtained generalized the
result in the literature.
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4. Example

Consider the following periodic predator-prey system with a IV functional re-
sponse

y∆
1 (t) = (

1
20

+ sin t)− (
1
60

+ cos t) exp{y1(t− sin t)}

− exp{y2(t− cos t}
2 exp{y1(t)}+ 2 exp{y1(t)}+ 1

,

y∆
2 (t) = −(

1
3

+ cos t) +
2(1 + cos t) exp{y1(t− cos t)}

2 exp{y1(t− cos t)}+ 2 exp{y1(t− cos t)}+ 1
,

(4.1)

by choosing the 2π-periodic time scale

T =
⋃
s∈Z

[2(s− 1)π, 2sπ].

Then, system (4.1) has at least two 2π-periodic solutions.
Direct calculations lead to

κ = min{R+ ∩ T} = 0,

Iω = [κ, κ+ω]∩T = [0, 2π], ā1 = 1/60, ā2 = 1, b̄1 = 1/20, b̄2 = 1/3, exp{b̄1+ |b̄1|} <
1.135, l+ < 2.302. It is straight forward to check that

ā2 = 1.000 > 0.757 > b̄2

(
1 + 2

√
a/n

)
exp{(|b̄1|+ b̄1)ω},

b̄1 = 0.050 > 0.045 > ā1l+ exp{(|b̄1|+ b̄1)ω},

which show that all the conditions in Theorem 3.1 are fulfilled. By Theorem 3.1
we derive that (4.1) has at least two 2π-periodic solutions.

Remark 4.1. System (4.1) models two populations (one is the predator and the
other is the prey) that are both continuous in one period of the year, die out in other
period of the year, and their offspring are renascent after incubating or dormant in
another period of the year, both of them giving rise to non-overlapping populations.
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