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POSITIVE SOLUTIONS FOR SEMI-LINEAR ELLIPTIC
EQUATIONS IN EXTERIOR DOMAINS

HABIB MÂAGLI, SAMEH TURKI, NOUREDDINE ZEDDINI

Abstract. We prove the existence of a solution, decaying to zero at infinity,

for the second order differential equation

1

A(t)
(A(t)u′(t))′ + φ(t) + f(t, u(t)) = 0, t ∈ (a,∞).

Then we give a simple proof, under some sufficient conditions which unify
and generalize most of those given in the bibliography, for the existence of a

positive solution for the semilinear second order elliptic equation

∆u + ϕ(x, u) + g(|x|)x.∇u = 0,

in an exterior domain of the Euclidean space Rn, n ≥ 3.

1. Introduction

The semilinear elliptic equation

∆u + ϕ(x, u) + g(|x|)x.∇u = 0, x ∈ Gδ = {x ∈ Rn : |x| > δ > 0}, (1.1)

constitutes the object of numerous investigations in the last few years (see [1, 4, 5,
6, 7, 8, 9, 13, 14]). The function ϕ is nonnegative and locally Hölder continuous
in Gδ × R for which there exist two continuous functions q : [δ,∞) → [0,∞) and
ω : [0,∞) → [0,∞) such that

0 ≤ ϕ(x, t) ≤ q(|x|)ω(t), t ∈ [0,∞), x ∈ Gδ .

So far, the optimal sufficient condition stated to ensure the existence of a positive
solution, decaying to zero at infinity, for (1.1) in some GB with B > δ is∫ ∞

δ

r
[
q(r) + g−(r)

]
dr < ∞ , (1.2)

where g−(r) = max(−g(r), 0) for r ≥ δ.
To apply the method of sub-solutions and super-solutions developed in [13] and

other works, the scaling function |x| = r = β(s) = ( s
n−2 )1/(n−2) plays a capital role

in finding a radial super-solution for (1.1) of the form u(x) = h(|x|) = h(r), where
h is chosen so that y(s) = sh(β(s)) satisfies a nonlinear differential equation

y′′(s) + G(s, y(s), y′(s)) = 0 s ≥ s0 = (n− 2)δn−2. (1.3)
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As a sub-solution of (1.1) we understand any function ω ∈ C2(GB) ∩ C(GB) such
that ∆ω(x) + ϕ(x, ω(x)) + g(|x|)x · ∇ω(x) ≥ 0 in GB . For the super-solution, the
sign of the inequality should be reversed.

Our aim in this paper is twofold. Firstly, we study in section 2 the existence of
solutions, having a nonnegative limit at infinity, for the problem

1
A(t)

(A(t)u′(t))′ + φ(t) + f(t, u(t)) = 0, t ∈ (a,∞), (1.4)

where A and f satisfy some hypothesis stated in the next section. Secondly, in
section 3, we omit the scaling function β defined before and we give a simple proof
for the existence of positive solutions, decaying to zero at infinity, in some GB ,
B > δ for the semi-linear elliptic equation (1.1). This will be done under sufficient
conditions given by the hypotheses (A3)-(A4) below, which improve and generalize
(1.2). More precisely we will prove the existence of a positive solution to (1.1) even
when

∫∞
δ

r g−(r) dr = ∞.

2. Positive solutions of second-order ODEs

In this section, we are concerned with the existence of positive solutions for the
problem

1
A(t)

(A(t)u′(t))′ + φ(t) + f(t, u(t)) = 0, for t ≥ a > 1

Au′(a) = −α ≤ 0 , lim
t→∞

u(t) = λ ≥ 0 , with α + λ > 0 ,
(2.1)

where A is a positive and differentiable function on [1,∞), φ is a nonnegative
continuous function on [1,∞) and f : [1,∞) × [0,∞) → [0,∞) is continuous such
that f(x, 0) = 0.

In the sequel we suppose that
∫∞
1

1
A(t) dt < ∞ and we denote by

G(t) = A(t)
( ∫ ∞

t

1
A(s)

ds
)

for t ≥ 1. The following hypotheses satisfied by A, φ and f throughout this section:
(A1)

∫∞
1

G(t)φ(t) dt < ∞;
(A2) For each c > 0, there exists a continuous function k : [1,∞) → [0,∞) such

that

|f(t, u)− f(t, v)| ≤ k(t)|u− v| for any (t, u, v) ∈ [1,∞)× [0, c]× [0, c]

and
∫∞
1

G(t) k(t) dt < ∞.
Our first existence result is the following.

Theorem 2.1. Let α ≥ 0 and λ ≥ 0 with α + λ > 0. Under the hypotheses
(A1)-(A2), there exists a > 1 such that (2.1) has a unique positive solution u ∈
C1([a,∞), R).

Proof. Let

c > M := λ + α

∫ ∞

1

1
A(t)

dt +
∫ ∞

1

G(t)φ(t) dt.

From (A2), there exists a k such that |f(s, u)−f(s, v)| ≤ k(s)|u−v| for any (s, u, v) ∈
[1,∞)× [0, c]× [0, c] and

∫∞
1

G(t) k(t) dt < ∞. Let a > 1 such that∫ ∞

a

G(t)k(t) dt < 1− M

c
:= σ.
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We denote by Cb([a,∞), R) the set of continuous bounded real valued functions on
[a,∞) and by

Γ := {u ∈ Cb([a,∞), R) : λ ≤ u ≤ c} .

Then Γ endowed with the supremum norm is a Banach space. To apply a fixed
point argument, we define the operator T on Γ by

Tu(r) = λ + α

∫ ∞

r

1
A(t)

dt +
∫ ∞

r

1
A(t)

( ∫ t

a

A(s)[φ(s) + f(s, u(s))]ds
)
dt. (2.2)

First, we claim that T (Γ) ⊂ Γ. Indeed, from (A2) and Fubini theorem, we get that
for each u ∈ Γ any r ≥ a,

λ ≤ Tu(r) ≤ λ + α

∫ ∞

a

1
A(t)

dt +
∫ ∞

a

1
A(t)

[ ∫ t

a

A(s)
(
φ(s) + ck(s)

)
ds

]
dt

≤ λ + α

∫ ∞

a

1
A(t)

dt +
∫ ∞

a

G(s)φ(s) ds + c

∫ ∞

a

G(s)k(s) ds ≤ c.

Now, we have to show that T is a contraction on (Γ, ‖.‖∞). Indeed, let u, v ∈ Γ
and r ∈ [a,∞). Then by the assumption (A2) and Fubini theorem we have

|Tu(r)− Tv(r)| ≤
∫ ∞

r

1
A(t)

( ∫ t

a

A(s)k(s)|u(s)− v(s)| ds
)
dt

≤ ‖u− v‖∞
∫ ∞

a

A(s)k(s)
( ∫ ∞

s

1
A(t)

dt
)
ds,

which implies that ‖Tu − Tv‖∞ ≤ σ ‖u− v‖∞. Thus, by the Banach fixed point
theorem, there exists a unique point u ∈ (Γ, ‖.‖∞) such that Tu = u. It is easy to
verify that u is the unique solution in C1([a,∞), R) for (2.1). This completes the
proof. �

It is worth pointing out that for any given u(a) ≥ 0 and u′(a) ≤ 0, the cor-
responding solution to the equation is unique and defined for all times (that is,
blowup is not possible), see [2, 3, 11]. Also and under more restrictive conditions,
the asymptotic behavior of the solutions have been studied, see [12].

Example 2.2. Let σ > 0 and θ : [1,∞) → R be a continuous function such that
limt→∞ θ(t) = 0. Let A(t) = tσ+1 exp

( ∫ t

1
θ(s)

s ds
)
. Then limt→∞

t A′(t)
A(t) = σ+1 > 1.

So
∫∞
1

1
A(s)ds < ∞ and we have

∫∞
t

1
A(s) ds ∼ t

σ A(t) as t → ∞. Consequently
G(t) ∼ t

σ as t →∞.
Let q, ρ be respectively two nontrivial nonnegative continuous function on [1,∞)

and [0,∞) such that
∫∞
1

t q(t)dt < ∞ and put f(t, u) = q(t)
∫ u

0
ρ(s)ds. Then for

each nonnegative continuous function φ on [1,∞) satisfying
∫∞
1

t φ(t)dt < ∞, there
exists a > 1 such that (2.1) has a unique positive solution u ∈ C1([a,∞), R).

3. Applications to elliptic equations

In this section, we are concerned with the nonlinear second order elliptic equation
(1.1) in an exterior domain Gδ = {x ∈ Rn : |x| > δ}, where n ≥ 3 and δ ≥ 0. We
prove, under some assumptions on the functions ϕ, g, that (1.1) has a positive
solution in GB for B ≥ δ decaying to zero as |x| tends to infinity. More precisely,
we omit the function β defined in section 1 and we apply the result in section 2 to
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give a simple proof for the existence of positive solution, decaying to zero, for (1.1)
in GB with B large enough.

To this aim, we consider two continuous functions ϕ and g satisfying

(A3) ϕ ∈ C(Gδ × R, R+) and there exists a nonnegative continuous function f
on [δ,∞)× R such that f(t, 0) = 0 and a nonnegative continuous function
φ on [δ,∞) such that 0 ≤ ϕ(x, u) ≤ f(|x|, u) + φ(|x|). Moreover for each
c > 0, there exists a nontrivial nonnegative continuous function k defined
on [δ,∞) such that,

|f(t, u)− f(t, v)| ≤ k(t)|u− v|, ∀u, v ∈ [0, c], ∀t ≥ δ;

(A4) ∫ ∞

δ

[k(t) + φ(t)]A(t)
( ∫ ∞

t

1
A(r)

dr
)
dt < ∞,

where A(t) = tn−1 exp
(
−

∫ t

δ
ξ g−(ξ)dξ

)
and g− = max(−g, 0).

In the particular case when
∫∞

δ
r g−(r) dr < ∞, hypothesis (A4) reduces to∫∞

δ
t [k(t) + φ(t)] dt < ∞. So hypothesis (A4) is weaker than the condition (1.2)

given in the introduction where φ = 0.
Next, we recall the following two lemmas needed to achieve the proof of our

second main result.

Lemma 3.1 ([13]). If for some B ≥ δ, there exists a nonnegative sub-solution w
and a nonnegative super-solution v to (1.1) in GB, such that w(x) ≤ v(x) for all
x ∈ GB, then (1.1) has a solution u in GB, such that w ≤ u ≤ v in GB and u = v
on SB = {x ∈ Rn/|x| = B}.

Lemma 3.2 ([10, Theorem 3.5]). Let £ be a uniformly elliptic operator on a domain
Ω. Let u ∈ C2(Ω) such that £u ≥ 0 in Ω. If there exists x0 ∈ Ω satisfying
supx∈Ω u(x) = u(x0), then u is constant in all Ω.

Now, we give our main result in this section.

Theorem 3.3. Let δ > 0 and assume (A3)-(A4). Then (1.1) has a positive solution
u in GB for some B ≥ δ, such that limx→∞ u(x) = 0.

Proof. We will apply Lemma 3.1. Clearly the trivial function w = 0 is a sub-solution
of (1.1) in Gδ. Next, we try to find a positive radial super-solution y(r) = y(|x|) for
(1.1) with limr→∞ y(r) = 0. Taking into account (A3), it suffices to find a function
y such that

y′′ + [
n− 1

r
+ rg(r)]y′ + f(r, y) + φ(r) ≤ 0 for r > B > δ

lim
r→∞

y(r) = 0.

Now, taking into account of Theorem 2.1, it suffices to find B > δ and a solution
for the problem

y′′ + [
n− 1

r
− rg−(r)]y′ + f(r, y) + φ(r) = 0, r > B

y′(r) < 0, r > B, lim
r→∞

y(r) = 0.



EJDE-2009/108 POSITIVE SOLUTIONS 5

Or equivalently,
1

A(r)
(A(r)y′(r))′ + f(r, y) + φ(r) = 0, r > B

y′(r) < 0, r > B, lim
r→∞

y(r) = 0 ,
(3.1)

where

A(r) = rn−1 exp
(
−

∫ r

δ

ξg−(ξ)dξ
)
.

So it follows from hypotheses (A3)-(A4) and Theorem 2.1 that there exists B > δ
such that (3.1) has a positive solution y(r) on [B,∞). Obviously y is a super-
solution for (1.1) in GB . Hence, by Lemma 3.1, problem (1.1) has a solution u in
GB such that 0 ≤ u(x) ≤ y(|x|) in GB and u = y > 0 on SB .

Next, we prove that the solution u is positive in GB . Suppose that there exists
x0 ∈ GB such that u(x0) = 0. Then, the uniformly elliptic operator £u := ∆u +
g(|x|)x.∇u satisfies £(−u) ≥ ϕ(x, u) ≥ 0 in GB and supx∈GB

(−u(x)) = −u(x0) =
0. Hence by Lemma 3.2 we obtain u = 0 in GB . From the continuity of u in
GB , this contradicts the fact that u > 0 on SB and shows that u(x) > 0, for all
x ∈ GB . �

Example 3.4. In the sequel, we define by Log0 t = t and Logm t = Log(Logm−1 t)
for m ∈ N? and t large enough. Let δm > 0 such that Logm(δm) = 1 and let g be
a continuous function on [δm,∞) such that

g−(r) = max(−g(r), 0) =
γ

r
∏m

k=0 Logk(r)
, (3.2)

where γ > 0 if m ∈ N? and 0 < γ < n− 2 if m = 0. Then t g−(t) = γ d
dt (Logm+1 t)

and so

exp
( ∫ t

δm

s g−(s) ds
)

= (Logm t)γ .

Thus,
∫∞

δm
r g−(r) dr = ∞ and (A4) is satisfied if and only if∫ ∞

δm

t[k(t) + φ(t)]dt < ∞.

Indeed, this follows from Example 2.2 with θ(s) = −s2 g−(s), σ = n− 2 if m ∈ N?

and θ = 0, σ = n− 2− γ if m = 0.
Now, using this fact we deduce that if g is a function where g− is given by

(3.2), if φ and k are two nonnegative continuous functions on [δm,∞) satisfying∫∞
δm

t [k(t) + φ(t)] dt < ∞ and if 0 ≤ ϕ(x, u) ≤ k(|x|)uα + φ(|x|) for α ≥ 1, then
there exists B > δm such that (1.1) has a positive solution u on GB decaying to
zero at infinity.
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