Electronic Journal of Differential Equations, Vol. 2009(2009), No. 108, pp. 1-6. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

POSITIVE SOLUTIONS FOR SEMI-LINEAR ELLIPTIC EQUATIONS IN EXTERIOR DOMAINS

HABIB MÂAGLI, SAMEH TURKI, NOUREDDINE ZEDDINI

Abstract

We prove the existence of a solution, decaying to zero at infinity, for the second order differential equation $$
\frac{1}{A(t)}\left(A(t) u^{\prime}(t)\right)^{\prime}+\phi(t)+f(t, u(t))=0, \quad t \in(a, \infty)
$$

Then we give a simple proof, under some sufficient conditions which unify and generalize most of those given in the bibliography, for the existence of a positive solution for the semilinear second order elliptic equation $$
\Delta u+\varphi(x, u)+g(|x|) x \cdot \nabla u=0,
$$ in an exterior domain of the Euclidean space $\mathbb{R}^{n}, n \geq 3$.

1. Introduction

The semilinear elliptic equation

$$
\begin{equation*}
\Delta u+\varphi(x, u)+g(|x|) x . \nabla u=0, \quad x \in G_{\delta}=\left\{x \in \mathbb{R}^{n}:|x|>\delta>0\right\} \tag{1.1}
\end{equation*}
$$

constitutes the object of numerous investigations in the last few years (see [1, 4, 5, [6, 7, 8, 9, 13, 14). The function φ is nonnegative and locally Hölder continuous in $G_{\delta} \times \mathbb{R}$ for which there exist two continuous functions $q:[\delta, \infty) \rightarrow[0, \infty)$ and $\omega:[0, \infty) \rightarrow[0, \infty)$ such that

$$
0 \leq \varphi(x, t) \leq q(|x|) \omega(t), \quad t \in[0, \infty), x \in G_{\delta}
$$

So far, the optimal sufficient condition stated to ensure the existence of a positive solution, decaying to zero at infinity, for (1.1) in some G_{B} with $B>\delta$ is

$$
\begin{equation*}
\int_{\delta}^{\infty} r\left[q(r)+g^{-}(r)\right] d r<\infty \tag{1.2}
\end{equation*}
$$

where $g^{-}(r)=\max (-g(r), 0)$ for $r \geq \delta$.
To apply the method of sub-solutions and super-solutions developed in 13 and other works, the scaling function $|x|=r=\beta(s)=\left(\frac{s}{n-2}\right)^{1 /(n-2)}$ plays a capital role in finding a radial super-solution for 1.1) of the form $u(x)=h(|x|)=h(r)$, where h is chosen so that $y(s)=\operatorname{sh}(\beta(s))$ satisfies a nonlinear differential equation

$$
\begin{equation*}
y^{\prime \prime}(s)+G\left(s, y(s), y^{\prime}(s)\right)=0 \quad s \geq s_{0}=(n-2) \delta^{n-2} \tag{1.3}
\end{equation*}
$$

2000 Mathematics Subject Classification. 34A12, 35J60.
Key words and phrases. Positive solutions; nonlinear elliptic equations; exterior domain. (C) 2009 Texas State University - San Marcos.

Submitted August 12, 2009. Published September 10, 2009.

As a sub-solution of (1.1) we understand any function $\omega \in C^{2}\left(G_{B}\right) \cap C\left(\overline{G_{B}}\right)$ such that $\Delta \omega(x)+\varphi(x, \omega(x))+g(|x|) x \cdot \nabla \omega(x) \geq 0$ in G_{B}. For the super-solution, the sign of the inequality should be reversed.

Our aim in this paper is twofold. Firstly, we study in section 2 the existence of solutions, having a nonnegative limit at infinity, for the problem

$$
\begin{equation*}
\frac{1}{A(t)}\left(A(t) u^{\prime}(t)\right)^{\prime}+\phi(t)+f(t, u(t))=0, \quad t \in(a, \infty) \tag{1.4}
\end{equation*}
$$

where A and f satisfy some hypothesis stated in the next section. Secondly, in section 3 , we omit the scaling function β defined before and we give a simple proof for the existence of positive solutions, decaying to zero at infinity, in some G_{B}, $B>\delta$ for the semi-linear elliptic equation (1.1). This will be done under sufficient conditions given by the hypotheses (A3)-(A4) below, which improve and generalize (1.2). More precisely we will prove the existence of a positive solution to (1.1) even when $\int_{\delta}^{\infty} r g^{-}(r) d r=\infty$.

2. Positive solutions of second-order ODEs

In this section, we are concerned with the existence of positive solutions for the problem

$$
\begin{gather*}
\frac{1}{A(t)}\left(A(t) u^{\prime}(t)\right)^{\prime}+\phi(t)+f(t, u(t))=0, \quad \text { for } t \geq a>1 \tag{2.1}\\
A u^{\prime}(a)=-\alpha \leq 0, \quad \lim _{t \rightarrow \infty} u(t)=\lambda \geq 0, \quad \text { with } \alpha+\lambda>0
\end{gather*}
$$

where A is a positive and differentiable function on $[1, \infty), \phi$ is a nonnegative continuous function on $[1, \infty)$ and $f:[1, \infty) \times[0, \infty) \rightarrow[0, \infty)$ is continuous such that $f(x, 0)=0$.

In the sequel we suppose that $\int_{1}^{\infty} \frac{1}{A(t)} d t<\infty$ and we denote by

$$
G(t)=A(t)\left(\int_{t}^{\infty} \frac{1}{A(s)} d s\right)
$$

for $t \geq 1$. The following hypotheses satisfied by A, ϕ and f throughout this section:
(A1) $\int_{1}^{\infty} G(t) \phi(t) d t<\infty$;
(A2) For each $c>0$, there exists a continuous function $k:[1, \infty) \rightarrow[0, \infty)$ such that

$$
\begin{aligned}
& |f(t, u)-f(t, v)| \leq k(t)|u-v| \quad \text { for any }(t, u, v) \in[1, \infty) \times[0, c] \times[0, c] \\
& \quad \text { and } \int_{1}^{\infty} G(t) k(t) d t<\infty
\end{aligned}
$$

Our first existence result is the following.
Theorem 2.1. Let $\alpha \geq 0$ and $\lambda \geq 0$ with $\alpha+\lambda>0$. Under the hypotheses (A1)-(A2), there exists $a>1$ such that 2.1 has a unique positive solution $u \in$ $C^{1}([a, \infty), \mathbb{R})$.
Proof. Let

$$
c>M:=\lambda+\alpha \int_{1}^{\infty} \frac{1}{A(t)} d t+\int_{1}^{\infty} G(t) \phi(t) d t
$$

From (A2), there exists a k such that $|f(s, u)-f(s, v)| \leq k(s)|u-v|$ for any $(s, u, v) \in$ $[1, \infty) \times[0, c] \times[0, c]$ and $\int_{1}^{\infty} G(t) k(t) d t<\infty$. Let $a>1$ such that

$$
\int_{a}^{\infty} G(t) k(t) d t<1-\frac{M}{c}:=\sigma
$$

We denote by $C_{b}([a, \infty), \mathbb{R})$ the set of continuous bounded real valued functions on $[a, \infty)$ and by

$$
\Gamma:=\left\{u \in C_{b}([a, \infty), \mathbb{R}): \lambda \leq u \leq c\right\}
$$

Then Γ endowed with the supremum norm is a Banach space. To apply a fixed point argument, we define the operator T on Γ by

$$
\begin{equation*}
T u(r)=\lambda+\alpha \int_{r}^{\infty} \frac{1}{A(t)} d t+\int_{r}^{\infty} \frac{1}{A(t)}\left(\int_{a}^{t} A(s)[\phi(s)+f(s, u(s))] d s\right) d t \tag{2.2}
\end{equation*}
$$

First, we claim that $T(\Gamma) \subset \Gamma$. Indeed, from (A2) and Fubini theorem, we get that for each $u \in \Gamma$ any $r \geq a$,

$$
\begin{aligned}
\lambda \leq T u(r) & \leq \lambda+\alpha \int_{a}^{\infty} \frac{1}{A(t)} d t+\int_{a}^{\infty} \frac{1}{A(t)}\left[\int_{a}^{t} A(s)(\phi(s)+c k(s)) d s\right] d t \\
& \leq \lambda+\alpha \int_{a}^{\infty} \frac{1}{A(t)} d t+\int_{a}^{\infty} G(s) \phi(s) d s+c \int_{a}^{\infty} G(s) k(s) d s \leq c
\end{aligned}
$$

Now, we have to show that T is a contraction on $\left(\Gamma,\|\cdot\|_{\infty}\right)$. Indeed, let $u, v \in \Gamma$ and $r \in[a, \infty)$. Then by the assumption (A2) and Fubini theorem we have

$$
\begin{aligned}
|T u(r)-T v(r)| & \leq \int_{r}^{\infty} \frac{1}{A(t)}\left(\int_{a}^{t} A(s) k(s)|u(s)-v(s)| d s\right) d t \\
& \leq\|u-v\|_{\infty} \int_{a}^{\infty} A(s) k(s)\left(\int_{s}^{\infty} \frac{1}{A(t)} d t\right) d s
\end{aligned}
$$

which implies that $\|T u-T v\|_{\infty} \leq \sigma\|u-v\|_{\infty}$. Thus, by the Banach fixed point theorem, there exists a unique point $u \in\left(\Gamma,\|\cdot\|_{\infty}\right)$ such that $T u=u$. It is easy to verify that u is the unique solution in $C^{1}([a, \infty), \mathbb{R})$ for 2.1 . This completes the proof.

It is worth pointing out that for any given $u(a) \geq 0$ and $u^{\prime}(a) \leq 0$, the corresponding solution to the equation is unique and defined for all times (that is, blowup is not possible), see [2, 3, 11. Also and under more restrictive conditions, the asymptotic behavior of the solutions have been studied, see [12].

Example 2.2. Let $\sigma>0$ and $\theta:[1, \infty) \rightarrow \mathbb{R}$ be a continuous function such that $\lim _{t \rightarrow \infty} \theta(t)=0$. Let $A(t)=t^{\sigma+1} \exp \left(\int_{1}^{t} \frac{\theta(s)}{s} d s\right)$. Then $\lim _{t \rightarrow \infty} \frac{t A^{\prime}(t)}{A(t)}=\sigma+1>1$. So $\int_{1}^{\infty} \frac{1}{A(s)} d s<\infty$ and we have $\int_{t}^{\infty} \frac{1}{A(s)} d s \sim \frac{t}{\sigma A(t)}$ as $t \rightarrow \infty$. Consequently $G(t) \sim \frac{t}{\sigma}$ as $t \rightarrow \infty$.

Let q, ρ be respectively two nontrivial nonnegative continuous function on $[1, \infty)$ and $[0, \infty)$ such that $\int_{1}^{\infty} t q(t) d t<\infty$ and put $f(t, u)=q(t) \int_{0}^{u} \rho(s) d s$. Then for each nonnegative continuous function ϕ on $[1, \infty)$ satisfying $\int_{1}^{\infty} t \phi(t) d t<\infty$, there exists $a>1$ such that 2.1) has a unique positive solution $u \in C^{1}([a, \infty), \mathbb{R})$.

3. Applications to elliptic equations

In this section, we are concerned with the nonlinear second order elliptic equation (1.1) in an exterior domain $G_{\delta}=\left\{x \in \mathbb{R}^{n}:|x|>\delta\right\}$, where $n \geq 3$ and $\delta \geq 0$. We prove, under some assumptions on the functions φ, g, that (1.1) has a positive solution in G_{B} for $B \geq \delta$ decaying to zero as $|x|$ tends to infinity. More precisely, we omit the function β defined in section 1 and we apply the result in section 2 to
give a simple proof for the existence of positive solution, decaying to zero, for 1.1 in G_{B} with B large enough.

To this aim, we consider two continuous functions φ and g satisfying
(A3) $\varphi \in C\left(G_{\delta} \times \mathbb{R}, \mathbb{R}_{+}\right)$and there exists a nonnegative continuous function f on $[\delta, \infty) \times \mathbb{R}$ such that $f(t, 0)=0$ and a nonnegative continuous function ϕ on $[\delta, \infty)$ such that $0 \leq \varphi(x, u) \leq f(|x|, u)+\phi(|x|)$. Moreover for each $c>0$, there exists a nontrivial nonnegative continuous function k defined on $[\delta, \infty)$ such that,

$$
|f(t, u)-f(t, v)| \leq k(t)|u-v|, \quad \forall u, v \in[0, c], \forall t \geq \delta
$$

$$
\begin{equation*}
\int_{\delta}^{\infty}[k(t)+\phi(t)] A(t)\left(\int_{t}^{\infty} \frac{1}{A(r)} d r\right) d t<\infty \tag{A4}
\end{equation*}
$$

where $A(t)=t^{n-1} \exp \left(-\int_{\delta}^{t} \xi g^{-}(\xi) d \xi\right)$ and $g^{-}=\max (-g, 0)$.
In the particular case when $\int_{\delta}^{\infty} r g^{-}(r) d r<\infty$, hypothesis (A4) reduces to $\int_{\delta}^{\infty} t[k(t)+\phi(t)] d t<\infty$. So hypothesis (A4) is weaker than the condition 1.2 given in the introduction where $\phi=0$.

Next, we recall the following two lemmas needed to achieve the proof of our second main result.

Lemma 3.1 ([13]). If for some $B \geq \delta$, there exists a nonnegative sub-solution w and a nonnegative super-solution v to 1.1 in G_{B}, such that $w(x) \leq v(x)$ for all $x \in \overline{G_{B}}$, then (1.1) has a solution u in $\overline{G_{B}}$, such that $w \leq u \leq v$ in $\overline{G_{B}}$ and $u=v$ on $S_{B}=\left\{x \in \mathbb{R}^{n} /|x|=B\right\}$.

Lemma 3.2 ([10, Theorem 3.5]). Let $£$ be a uniformly elliptic operator on a domain Ω. Let $u \in C^{2}(\Omega)$ such that $£ u \geq 0$ in Ω. If there exists $x_{0} \in \Omega$ satisfying $\sup _{x \in \Omega} u(x)=u\left(x_{0}\right)$, then u is constant in all Ω.

Now, we give our main result in this section.
Theorem 3.3. Let $\delta>0$ and assume (A3)-(A4). Then 1.1) has a positive solution u in G_{B} for some $B \geq \delta$, such that $\lim _{x \rightarrow \infty} u(x)=0$.

Proof. We will apply Lemma3.1. Clearly the trivial function $w=0$ is a sub-solution of (1.1) in G_{δ}. Next, we try to find a positive radial super-solution $y(r)=y(|x|)$ for (1.1) with $\lim _{r \rightarrow \infty} y(r)=0$. Taking into account (A3), it suffices to find a function y such that

$$
\begin{gathered}
y^{\prime \prime}+\left[\frac{n-1}{r}+r g(r)\right] y^{\prime}+f(r, y)+\phi(r) \leq 0 \quad \text { for } r>B>\delta \\
\lim _{r \rightarrow \infty} y(r)=0
\end{gathered}
$$

Now, taking into account of Theorem 2.1, it suffices to find $B>\delta$ and a solution for the problem

$$
\begin{array}{r}
y^{\prime \prime}+\left[\frac{n-1}{r}-r g^{-}(r)\right] y^{\prime}+f(r, y)+\phi(r)=0, \quad r>B \\
y^{\prime}(r)<0, \quad r>B, \quad \lim _{r \rightarrow \infty} y(r)=0
\end{array}
$$

Or equivalently,

$$
\begin{gather*}
\frac{1}{A(r)}\left(A(r) y^{\prime}(r)\right)^{\prime}+f(r, y)+\phi(r)=0, \quad r>B \tag{3.1}\\
y^{\prime}(r)<0, \quad r>B, \quad \lim _{r \rightarrow \infty} y(r)=0,
\end{gather*}
$$

where

$$
A(r)=r^{n-1} \exp \left(-\int_{\delta}^{r} \xi g^{-}(\xi) d \xi\right)
$$

So it follows from hypotheses (A3)-(A4) and Theorem 2.1 that there exists $B>\delta$ such that (3.1) has a positive solution $y(r)$ on $[B, \infty)$. Obviously y is a supersolution for (1.1) in G_{B}. Hence, by Lemma 3.1, problem (1.1) has a solution u in G_{B} such that $0 \leq u(x) \leq y(|x|)$ in G_{B} and $u=y>0$ on S_{B}.

Next, we prove that the solution u is positive in G_{B}. Suppose that there exists $x_{0} \in G_{B}$ such that $u\left(x_{0}\right)=0$. Then, the uniformly elliptic operator $£ u:=\Delta u+$ $g(|x|) x . \nabla u$ satisfies $£(-u) \geq \varphi(x, u) \geq 0$ in G_{B} and $\sup _{x \in G_{B}}(-u(x))=-u\left(x_{0}\right)=$ 0 . Hence by Lemma 3.2 we obtain $u=0$ in G_{B}. From the continuity of u in $\overline{G_{B}}$, this contradicts the fact that $u>0$ on S_{B} and shows that $u(x)>0$, for all $x \in G_{B}$.

Example 3.4. In the sequel, we define by $\log _{0} t=t$ and $\log _{m} t=\log \left(\log _{m-1} t\right)$ for $m \in \mathbb{N}^{\star}$ and t large enough. Let $\delta_{m}>0$ such that $\log _{m}\left(\delta_{m}\right)=1$ and let g be a continuous function on $\left[\delta_{m}, \infty\right)$ such that

$$
\begin{equation*}
g^{-}(r)=\max (-g(r), 0)=\frac{\gamma}{r \prod_{k=0}^{m} \log _{k}(r)}, \tag{3.2}
\end{equation*}
$$

where $\gamma>0$ if $m \in \mathbb{N}^{\star}$ and $0<\gamma<n-2$ if $m=0$. Then $t g^{-}(t)=\gamma \frac{d}{d t}\left(\log _{m+1} t\right)$ and so

$$
\exp \left(\int_{\delta_{m}}^{t} s g^{-}(s) d s\right)=\left(\log _{m} t\right)^{\gamma}
$$

Thus, $\int_{\delta_{m}}^{\infty} r g^{-}(r) d r=\infty$ and (A4) is satisfied if and only if

$$
\int_{\delta_{m}}^{\infty} t[k(t)+\phi(t)] d t<\infty .
$$

Indeed, this follows from Example 2.2 with $\theta(s)=-s^{2} g^{-}(s), \sigma=n-2$ if $m \in \mathbb{N}^{\star}$ and $\theta=0, \sigma=n-2-\gamma$ if $m=0$.

Now, using this fact we deduce that if g is a function where g^{-}is given by (3.2), if ϕ and k are two nonnegative continuous functions on $\left[\delta_{m}, \infty\right)$ satisfying $\int_{\delta_{m}}^{\infty} t[k(t)+\phi(t)] d t<\infty$ and if $0 \leq \varphi(x, u) \leq k(|x|) u^{\alpha}+\phi(|x|)$ for $\alpha \geq 1$, then there exists $B>\delta_{m}$ such that (1.1) has a positive solution u on G_{B} decaying to zero at infinity.

Acknowledgements. The authors want to thank the anonymous referee for his/her careful reading of the original manuscript and the helpful suggestions.

References

[1] R. P. Agarwal, O. G. Mustafa: Riccatian approach to the decay of solutions of certain semilinear PDE's, Appl. Math. Lett. 20 (2007), 1206-1210.
[2] S. R. Bernfeld: The extendability of solutions of perturbed scalar differential equations, Pacific J. Math. 42 (1972), 277-288.
[3] A. Constantin: Global existence of solutions for perturbed differential equations, Ann. Mat. Pura Appl. 168 (1995), 237-299.
[4] A. Constantin: Existence of positive solutions of quasilinear elliptic equations, Bull. Austral. Math. Soc. 54 (1996) 147-154.
[5] A. Constantin: Positive solutions of quasilinear elliptic equations, J. Math. Anal. Appl. 213 (1997) 334-339.
[6] A. Constantin: On the existence of positive solutions of second order differential equations, Ann. Mat. Pura App. 184 (2005) 131-138.
[7] M. Ehrnström: On radial solutions of certain semi-linear elliptic equations, Nonlinear. Anal. TMA . 64 (2006) 1578-1586.
[8] M. Ehrnström: Positive solutions for second-order nonlinear differential equations, Nonlinear. Anal. TMA . 64 (2006) 1608-1620.
[9] M. Ehrnström, O. G. Mustafa: On positive solutions of a class of nonlinear elliptic equations, Nonlinear Anal. 67 (2007) 1147-1154.
[10] D. Gilbarg, N. S. Trudinger: Elliptic partial differential equations of second order, Springer (1983).
[11] T. Hara, T. Yoneyama and J. Sugie: Continuability of solutions of perturbed differential equations, Nonlinear Anal. 8 (1984), 963-975.
[12] O. Lipovan: On the asymptotic behavior of the solutions to a class of second order nonlinear differential equations, Glasgow Math. J. 45 (2003), 179-187.
[13] E. S. Noussair, C. A. Swanson: Positive solutions of quasilinear elliptic equations in exterior domains, J. Math. Anal. Appl. 75 (1980), 121-133.
[14] F. H. Wong, S. P. Wang, and C. C. Yeh: Positive solutions of nonlinear elliptic equations, Appl. Math. Lett. 21 (2008), 298-302.

Habib Mâagli
Département de Mathématiques, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia

E-mail address: habib.maagli@fst.rnu.tn
Sameh Turki
Département de Mathématiques, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia

E-mail address: sameh.turki@ipein.rnu.tn
Noureddine Zeddini
Département de Mathématiques, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia

E-mail address: noureddine.zeddini@ipein.rnu.tn

