Electronic Journal of Differential Equations, Vol. 2009(2009), No. 108, pp. 1–6. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

POSITIVE SOLUTIONS FOR SEMI-LINEAR ELLIPTIC EQUATIONS IN EXTERIOR DOMAINS

HABIB MÂAGLI, SAMEH TURKI, NOUREDDINE ZEDDINI

ABSTRACT. We prove the existence of a solution, decaying to zero at infinity, for the second order differential equation

$$\frac{1}{A(t)}(A(t)u'(t))' + \phi(t) + f(t, u(t)) = 0, \quad t \in (a, \infty).$$

Then we give a simple proof, under some sufficient conditions which unify and generalize most of those given in the bibliography, for the existence of a positive solution for the semilinear second order elliptic equation

 $\Delta u + \varphi(x, u) + g(|x|)x.\nabla u = 0,$

in an exterior domain of the Euclidean space $\mathbb{R}^n, n \geq 3$.

1. INTRODUCTION

The semilinear elliptic equation

$$\Delta u + \varphi(x, u) + g(|x|)x \cdot \nabla u = 0, \quad x \in G_{\delta} = \{x \in \mathbb{R}^n : |x| > \delta > 0\}, \tag{1.1}$$

constitutes the object of numerous investigations in the last few years (see [1, 4, 5, 6, 7, 8, 9, 13, 14]). The function φ is nonnegative and locally Hölder continuous in $G_{\delta} \times \mathbb{R}$ for which there exist two continuous functions $q : [\delta, \infty) \to [0, \infty)$ and $\omega : [0, \infty) \to [0, \infty)$ such that

$$0 \le \varphi(x,t) \le q(|x|)\omega(t), \quad t \in [0,\infty), \ x \in G_{\delta}.$$

So far, the optimal sufficient condition stated to ensure the existence of a positive solution, decaying to zero at infinity, for (1.1) in some G_B with $B > \delta$ is

$$\int_{\delta}^{\infty} r \left[q(r) + g^{-}(r) \right] dr < \infty , \qquad (1.2)$$

where $g^{-}(r) = \max(-g(r), 0)$ for $r \ge \delta$.

To apply the method of sub-solutions and super-solutions developed in [13] and other works, the scaling function $|x| = r = \beta(s) = (\frac{s}{n-2})^{1/(n-2)}$ plays a capital role in finding a radial super-solution for (1.1) of the form u(x) = h(|x|) = h(r), where h is chosen so that $y(s) = sh(\beta(s))$ satisfies a nonlinear differential equation

$$y''(s) + G(s, y(s), y'(s)) = 0 \quad s \ge s_0 = (n-2)\delta^{n-2}.$$
(1.3)

Key words and phrases. Positive solutions; nonlinear elliptic equations; exterior domain. ©2009 Texas State University - San Marcos.

 $^{2000\} Mathematics\ Subject\ Classification.\ 34A12,\ 35J60.$

Submitted August 12, 2009. Published September 10, 2009.

As a sub-solution of (1.1) we understand any function $\omega \in C^2(G_B) \cap C(\overline{G_B})$ such that $\Delta \omega(x) + \varphi(x, \omega(x)) + g(|x|)x \cdot \nabla \omega(x) \ge 0$ in G_B . For the super-solution, the sign of the inequality should be reversed.

Our aim in this paper is twofold. Firstly, we study in section 2 the existence of solutions, having a nonnegative limit at infinity, for the problem

$$\frac{1}{A(t)}(A(t)u'(t))' + \phi(t) + f(t,u(t)) = 0, \quad t \in (a,\infty),$$
(1.4)

where A and f satisfy some hypothesis stated in the next section. Secondly, in section 3, we omit the scaling function β defined before and we give a simple proof for the existence of positive solutions, decaying to zero at infinity, in some G_B , $B > \delta$ for the semi-linear elliptic equation (1.1). This will be done under sufficient conditions given by the hypotheses (A3)-(A4) below, which improve and generalize (1.2). More precisely we will prove the existence of a positive solution to (1.1) even when $\int_{\delta}^{\infty} r g^{-}(r) dr = \infty$.

2. Positive solutions of second-order ODEs

In this section, we are concerned with the existence of positive solutions for the problem

$$\frac{1}{A(t)}(A(t)u'(t))' + \phi(t) + f(t, u(t)) = 0, \quad \text{for } t \ge a > 1$$

$$4u'(a) = -\alpha \le 0, \quad \lim_{t \to \infty} u(t) = \lambda \ge 0, \quad \text{with } \alpha + \lambda > 0,$$
(2.1)

where A is a positive and differentiable function on $[1,\infty)$, ϕ is a nonnegative continuous function on $[1,\infty)$ and $f:[1,\infty)\times[0,\infty)\to[0,\infty)$ is continuous such that f(x,0)=0.

In the sequel we suppose that $\int_1^\infty \frac{1}{A(t)} dt < \infty$ and we denote by

$$G(t) = A(t) \left(\int_t^\infty \frac{1}{A(s)} \, ds \right)$$

for $t \ge 1$. The following hypotheses satisfied by A, ϕ and f throughout this section: (A1) $\int_{1}^{\infty} G(t)\phi(t) dt < \infty$;

(A2) For each c > 0, there exists a continuous function $k : [1, \infty) \to [0, \infty)$ such that

$$\begin{aligned} |f(t,u) - f(t,v)| &\leq k(t)|u-v| \quad \text{for any } (t,u,v) \in [1,\infty) \times [0,c] \times [0,c] \\ \text{and } \int_1^\infty G(t) \, k(t) \, dt < \infty. \end{aligned}$$

Our first existence result is the following.

Theorem 2.1. Let $\alpha \geq 0$ and $\lambda \geq 0$ with $\alpha + \lambda > 0$. Under the hypotheses (A1)-(A2), there exists a > 1 such that (2.1) has a unique positive solution $u \in C^1([a, \infty), \mathbb{R})$.

Proof. Let

$$c > M := \lambda + \alpha \int_1^\infty \frac{1}{A(t)} dt + \int_1^\infty G(t)\phi(t) dt$$

From (A2), there exists a k such that $|f(s,u)-f(s,v)| \le k(s)|u-v|$ for any $(s,u,v) \in [1,\infty) \times [0,c] \times [0,c]$ and $\int_1^\infty G(t) k(t) dt < \infty$. Let a > 1 such that

$$\int_{a}^{\infty} G(t)k(t) \, dt < 1 - \frac{M}{c} := \sigma.$$

EJDE-2009/108

We denote by $C_b([a, \infty), \mathbb{R})$ the set of continuous bounded real valued functions on $[a, \infty)$ and by

$$\Gamma := \{ u \in C_b([a,\infty), \mathbb{R}) : \lambda \le u \le c \}.$$

Then Γ endowed with the supremum norm is a Banach space. To apply a fixed point argument, we define the operator T on Γ by

$$Tu(r) = \lambda + \alpha \int_r^\infty \frac{1}{A(t)} dt + \int_r^\infty \frac{1}{A(t)} \left(\int_a^t A(s) [\phi(s) + f(s, u(s))] ds \right) dt.$$
(2.2)

First, we claim that $T(\Gamma) \subset \Gamma$. Indeed, from (A2) and Fubini theorem, we get that for each $u \in \Gamma$ any $r \geq a$,

$$\begin{split} \lambda &\leq Tu(r) \leq \lambda + \alpha \int_{a}^{\infty} \frac{1}{A(t)} dt + \int_{a}^{\infty} \frac{1}{A(t)} \Big[\int_{a}^{t} A(s) \big(\phi(s) + ck(s) \big) \, ds \Big] \, dt \\ &\leq \lambda + \alpha \int_{a}^{\infty} \frac{1}{A(t)} dt + \int_{a}^{\infty} G(s) \phi(s) \, ds + c \int_{a}^{\infty} G(s) k(s) \, ds \leq c. \end{split}$$

Now, we have to show that T is a contraction on $(\Gamma, \|.\|_{\infty})$. Indeed, let $u, v \in \Gamma$ and $r \in [a, \infty)$. Then by the assumption (A2) and Fubini theorem we have

$$\begin{aligned} |Tu(r) - Tv(r)| &\leq \int_{r}^{\infty} \frac{1}{A(t)} \Big(\int_{a}^{t} A(s)k(s)|u(s) - v(s)|\,ds \Big) dt \\ &\leq \|u - v\|_{\infty} \int_{a}^{\infty} A(s)k(s) \Big(\int_{s}^{\infty} \frac{1}{A(t)}\,dt \Big) ds, \end{aligned}$$

which implies that $||Tu - Tv||_{\infty} \leq \sigma ||u - v||_{\infty}$. Thus, by the Banach fixed point theorem, there exists a unique point $u \in (\Gamma, ||.||_{\infty})$ such that Tu = u. It is easy to verify that u is the unique solution in $C^1([a, \infty), \mathbb{R})$ for (2.1). This completes the proof.

It is worth pointing out that for any given $u(a) \ge 0$ and $u'(a) \le 0$, the corresponding solution to the equation is unique and defined for all times (that is, blowup is not possible), see [2, 3, 11]. Also and under more restrictive conditions, the asymptotic behavior of the solutions have been studied, see [12].

Example 2.2. Let $\sigma > 0$ and $\theta : [1, \infty) \to \mathbb{R}$ be a continuous function such that $\lim_{t\to\infty} \theta(t) = 0$. Let $A(t) = t^{\sigma+1} \exp\left(\int_1^t \frac{\theta(s)}{s} ds\right)$. Then $\lim_{t\to\infty} \frac{tA'(t)}{A(t)} = \sigma+1 > 1$. So $\int_1^\infty \frac{1}{A(s)} ds < \infty$ and we have $\int_t^\infty \frac{1}{A(s)} ds \sim \frac{t}{\sigma A(t)}$ as $t \to \infty$. Consequently $G(t) \sim \frac{t}{\sigma}$ as $t \to \infty$.

Let q, ρ be respectively two nontrivial nonnegative continuous function on $[1, \infty)$ and $[0, \infty)$ such that $\int_1^\infty t q(t) dt < \infty$ and put $f(t, u) = q(t) \int_0^u \rho(s) ds$. Then for each nonnegative continuous function ϕ on $[1, \infty)$ satisfying $\int_1^\infty t \phi(t) dt < \infty$, there exists a > 1 such that (2.1) has a unique positive solution $u \in C^1([a, \infty), \mathbb{R})$.

3. Applications to elliptic equations

In this section, we are concerned with the nonlinear second order elliptic equation (1.1) in an exterior domain $G_{\delta} = \{x \in \mathbb{R}^n : |x| > \delta\}$, where $n \geq 3$ and $\delta \geq 0$. We prove, under some assumptions on the functions φ, g , that (1.1) has a positive solution in G_B for $B \geq \delta$ decaying to zero as |x| tends to infinity. More precisely, we omit the function β defined in section 1 and we apply the result in section 2 to

give a simple proof for the existence of positive solution, decaying to zero, for (1.1) in G_B with B large enough.

To this aim, we consider two continuous functions φ and g satisfying

(A3) $\varphi \in C(G_{\delta} \times \mathbb{R}, \mathbb{R}_{+})$ and there exists a nonnegative continuous function f on $[\delta, \infty) \times \mathbb{R}$ such that f(t, 0) = 0 and a nonnegative continuous function ϕ on $[\delta, \infty)$ such that $0 \leq \varphi(x, u) \leq f(|x|, u) + \phi(|x|)$. Moreover for each c > 0, there exists a nontrivial nonnegative continuous function k defined on $[\delta, \infty)$ such that,

$$|f(t,u) - f(t,v)| \le k(t)|u-v|, \quad \forall u,v \in [0,c], \; \forall t \ge \delta;$$

(A4)

$$\int_{\delta}^{\infty} [k(t) + \phi(t)] A(t) \Big(\int_{t}^{\infty} \frac{1}{A(r)} dr \Big) dt < \infty,$$

where $A(t) = t^{n-1} \exp \left(-\int_{\delta}^{t} \xi g^{-}(\xi) d\xi \right)$ and $g^{-} = \max(-g, 0)$.

In the particular case when $\int_{\delta}^{\infty} r g^{-}(r) dr < \infty$, hypothesis (A4) reduces to $\int_{\delta}^{\infty} t [k(t) + \phi(t)] dt < \infty$. So hypothesis (A4) is weaker than the condition (1.2) given in the introduction where $\phi = 0$.

Next, we recall the following two lemmas needed to achieve the proof of our second main result.

Lemma 3.1 ([13]). If for some $B \ge \delta$, there exists a nonnegative sub-solution wand a nonnegative super-solution v to (1.1) in G_B , such that $w(x) \le v(x)$ for all $x \in \overline{G_B}$, then (1.1) has a solution u in G_B , such that $w \le u \le v$ in $\overline{G_B}$ and u = von $S_B = \{x \in \mathbb{R}^n / |x| = B\}$.

Lemma 3.2 ([10, Theorem 3.5]). Let \pounds be a uniformly elliptic operator on a domain Ω . Let $u \in C^2(\Omega)$ such that $\pounds u \geq 0$ in Ω . If there exists $x_0 \in \Omega$ satisfying $\sup_{x \in \Omega} u(x) = u(x_0)$, then u is constant in all Ω .

Now, we give our main result in this section.

Theorem 3.3. Let $\delta > 0$ and assume (A3)-(A4). Then (1.1) has a positive solution u in G_B for some $B \ge \delta$, such that $\lim_{x\to\infty} u(x) = 0$.

Proof. We will apply Lemma 3.1. Clearly the trivial function w = 0 is a sub-solution of (1.1) in G_{δ} . Next, we try to find a positive radial super-solution y(r) = y(|x|) for (1.1) with $\lim_{r\to\infty} y(r) = 0$. Taking into account (A3), it suffices to find a function y such that

$$y'' + \left[\frac{n-1}{r} + rg(r)\right]y' + f(r,y) + \phi(r) \le 0 \quad \text{for } r > B > \delta$$
$$\lim_{r \to \infty} y(r) = 0.$$

Now, taking into account of Theorem 2.1, it suffices to find $B > \delta$ and a solution for the problem

$$y'' + \left[\frac{n-1}{r} - rg^{-}(r)\right]y' + f(r,y) + \phi(r) = 0, \quad r > B$$
$$y'(r) < 0, \quad r > B, \quad \lim_{r \to \infty} y(r) = 0.$$

EJDE-2009/108

Or equivalently,

$$\frac{1}{A(r)}(A(r)y'(r))' + f(r,y) + \phi(r) = 0, \quad r > B$$

$$y'(r) < 0, \quad r > B, \quad \lim_{r \to \infty} y(r) = 0,$$

(3.1)

where

$$A(r) = r^{n-1} \exp\left(-\int_{\delta}^{r} \xi g^{-}(\xi) d\xi\right).$$

So it follows from hypotheses (A3)-(A4) and Theorem 2.1 that there exists $B > \delta$ such that (3.1) has a positive solution y(r) on $[B, \infty)$. Obviously y is a supersolution for (1.1) in G_B . Hence, by Lemma 3.1, problem (1.1) has a solution u in G_B such that $0 \le u(x) \le y(|x|)$ in G_B and u = y > 0 on S_B .

Next, we prove that the solution u is positive in G_B . Suppose that there exists $x_0 \in G_B$ such that $u(x_0) = 0$. Then, the uniformly elliptic operator $\pounds u := \Delta u + g(|x|)x.\nabla u$ satisfies $\pounds(-u) \ge \varphi(x, u) \ge 0$ in G_B and $\sup_{x \in G_B} (-u(x)) = -u(x_0) = 0$. Hence by Lemma 3.2 we obtain u = 0 in G_B . From the continuity of u in $\overline{G_B}$, this contradicts the fact that u > 0 on S_B and shows that u(x) > 0, for all $x \in G_B$.

Example 3.4. In the sequel, we define by $\log_0 t = t$ and $\log_m t = \log(\log_{m-1} t)$ for $m \in \mathbb{N}^*$ and t large enough. Let $\delta_m > 0$ such that $\log_m(\delta_m) = 1$ and let g be a continuous function on $[\delta_m, \infty)$ such that

$$g^{-}(r) = \max(-g(r), 0) = \frac{\gamma}{r \prod_{k=0}^{m} \log_{k}(r)},$$
 (3.2)

where $\gamma > 0$ if $m \in \mathbb{N}^*$ and $0 < \gamma < n-2$ if m = 0. Then $t g^-(t) = \gamma \frac{d}{dt}(\operatorname{Log}_{m+1} t)$ and so

$$\exp\left(\int_{\delta_m}^t s g^-(s) \, ds\right) = (\operatorname{Log}_m t)^{\gamma}.$$

Thus, $\int_{\delta_m}^{\infty} r g^-(r) dr = \infty$ and (A4) is satisfied if and only if

$$\int_{\delta_m}^{\infty} t[k(t) + \phi(t)]dt < \infty.$$

Indeed, this follows from Example 2.2 with $\theta(s) = -s^2 g^-(s), \sigma = n-2$ if $m \in \mathbb{N}^*$ and $\theta = 0, \sigma = n-2-\gamma$ if m = 0.

Now, using this fact we deduce that if g is a function where g^- is given by (3.2), if ϕ and k are two nonnegative continuous functions on $[\delta_m, \infty)$ satisfying $\int_{\delta_m}^{\infty} t \left[k(t) + \phi(t)\right] dt < \infty$ and if $0 \le \varphi(x, u) \le k(|x|)u^{\alpha} + \phi(|x|)$ for $\alpha \ge 1$, then there exists $B > \delta_m$ such that (1.1) has a positive solution u on G_B decaying to zero at infinity.

Acknowledgements. The authors want to thank the anonymous referee for his/her careful reading of the original manuscript and the helpful suggestions.

References

- R. P. Agarwal, O. G. Mustafa: Riccatian approach to the decay of solutions of certain semilinear PDE's, Appl. Math. Lett. 20 (2007), 1206–1210.
- S. R. Bernfeld: The extendability of solutions of perturbed scalar differential equations, Pacific J. Math. 42 (1972), 277–288.

- [3] A. Constantin: Global existence of solutions for perturbed differential equations, Ann. Mat. Pura Appl. 168 (1995), 237–299.
- [4] A. Constantin: Existence of positive solutions of quasilinear elliptic equations, Bull. Austral. Math. Soc. 54 (1996) 147–154.
- [5] A. Constantin: Positive solutions of quasilinear elliptic equations, J. Math. Anal. Appl. 213 (1997) 334–339.
- [6] A. Constantin: On the existence of positive solutions of second order differential equations, Ann. Mat. Pura App. 184 (2005) 131–138.
- [7] M. Ehrnström: On radial solutions of certain semi-linear elliptic equations, Nonlinear. Anal. TMA .64 (2006) 1578–1586.
- [8] M. Ehrnström: Positive solutions for second-order nonlinear differential equations, Nonlinear. Anal. TMA .64 (2006) 1608–1620.
- M. Ehrnström, O. G. Mustafa: On positive solutions of a class of nonlinear elliptic equations, Nonlinear Anal. 67 (2007) 1147–1154.
- [10] D. Gilbarg, N. S. Trudinger: Elliptic partial differential equations of second order, Springer (1983).
- [11] T. Hara, T. Yoneyama and J. Sugie: Continuability of solutions of perturbed differential equations, Nonlinear Anal. 8 (1984), 963–975.
- [12] O. Lipovan: On the asymptotic behavior of the solutions to a class of second order nonlinear differential equations, Glasgow Math. J. 45 (2003), 179–187.
- [13] E. S. Noussair, C. A. Swanson: Positive solutions of quasilinear elliptic equations in exterior domains, J. Math. Anal. Appl. 75 (1980), 121–133.
- [14] F. H. Wong, S. P. Wang, and C. C. Yeh: Positive solutions of nonlinear elliptic equations, Appl. Math. Lett. 21 (2008), 298–302.

Habib Mâagli

Département de Mathématiques, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia

E-mail address: habib.maagli@fst.rnu.tn

Sameh Turki

Département de Mathématiques, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia

E-mail address: sameh.turki@ipein.rnu.tn

Noureddine Zeddini

Département de Mathématiques, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia

E-mail address: noureddine.zeddini@ipein.rnu.tn