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EXISTENCE AND MULTIPLICITY RESULTS FOR SINGULAR
φ-LAPLACIAN BVPS ON THE POSITIVE HALF-LINE

SMAÏL DJEBALI, KARIMA MEBARKI

Abstract. This work proves the existence and multiplicity of positive so-

lutions for a second-order nonlinear three-point φ-Laplacian boundary-value

problem posed on the positive half-line. The nonlinearity depends on the
solution and its derivative and may exhibit a time singularity at the origin.

Existence of single and multiple nontrivial positive solutions is proved using

fixed point index theory.

1. Introduction

This paper concerns the existence of positive solutions to the following three-
point φ-Laplacian boundary value problem posed on the positive half-line:

−(φ(y′))′(t) = m(t)f(t, y(t), y′(t)), t ∈ I

y(0) = αy′(η), lim
t→+∞

y′(t) = 0,
(1.1)

where α ≥ 0 and η ∈ (0,∞) are given real numbers. The interval I := (0,+∞)
denotes the set of positive real numbers and R+ := [0,+∞). The function f :
I × R+ × R → R+ is continuous; the function m : I → R+ is continuous but is
allowed to have a singularity at t = 0. φ is a nonlinear operator of derivation
generalizing the p-Laplacian operator.

Boundary value problems on the half-line arise in many applications of physical
phenomena and in chemistry and biology. A general survey of existence theory
is well developed in the books by Agarwal et al [2, 3]. In case of second-order
differential equations corresponding to φ = Id , Problem (1.1) has been extensively
studied in the literature. Using the theory of fixed point index on cones of Banach
spaces, the authors obtained in [8, 9] some existence results for the generalized
Fisher equation −y′′ + cy′ + λy = f(t, y(t), y′(t)) (c, λ > 0) subject to Dirichlet or
Neumann limit condition at positive infinity; see also [23] for the case of a multi-
point condition at the origin. Indeed, since the pioneer works of Gupta [15, 16, 25],
much attention has been devoted to three-point and more generally to multi-point
boundary value problems (see [12, 18]). When the derivative operator is generalized
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to (q(t)x′(t))′ and f depends on the first derivative, the Mawhin coinc̈ıdence theory
is applied in [20] to get the existence of at least one solution.

However, some interesting recent works have been developed for the case of the
so-called p-Laplacian operator φp(s) = |s|p−1s (p > 1). While the theory is well
developed for p-Laplacian problems on bounded intervals (see e.g., [4, 5] and the
references therein), less results are known for BVPs posed on infinite intervals.
By means of the three-functional fixed point theorem, existence of three positive
solutions are obtained in [13] when the nonlinearity depends on the first derivative
and in [19] when it does not; some local growth conditions are assumed on the
nonlinearity. Using the upper and lower solution technique, existence results of
single and double solutions are obtained in [10]. The nonlinear alternative of Leray
and Schauder has been recently employed in [24] to prove existence of positive
solutions for a multi-point boundary-value problem associated with the equation(

ρ(t)|x′(t)p−2|x′(t)
)′ + f(t, x(t), x′(t)) = 0

on (0,+∞) when ρ ∈ C[0,+∞) ∩ C1(0,+∞) is positive and satisfies∫ ∞

0

φ−1
p (1/ρ(t))dt < ∞.

In this work, we assume that the nonlinear map φ : R → R is an increasing
homeomorphism such that φ(0) = 0 and

|φ−1(x)| ≤ φ−1(|x|), ∀x ∈ R. (1.2)

In the second part of this paper, we further assume that φ is sub-multiplicative;
i.e.,

∀α, β ∈ R+, φ(αβ) ≤ φ(α)φ(β). (1.3)
Note that if φ is sub-multiplicative, then the converse φ−1 is super-multiplicative,

that is
∀α, β ∈ R+, φ−1(αβ) ≥ φ−1(α)φ−1(β). (1.4)

Clearly, φ is an extension of the usual p-Laplacian nonlinear operator which is
sub-multiplicative and super-multiplicative, hence multiplicative.

Finally, recall that various physiological processes are modelled by singular dif-
ferential equations. For instance, the electrical potential in an isolated neutral
atom is governed by the following problem derived in 1927 by L.H. Thomas [22]
and Fermi [11],

y′′ =
√

y3/t

y(0) = 1, y(+∞) = 0.

A more general survey on singular boundary value problems can be found in [21].
This is our main motivation of considering the case when the factor m is time-
singular. Our objective is then to prove some existence results of nontrivial positive
solutions for Problem (1.1) under suitable conditions on the functions f and m.
Throughout, by a solution we mean a positive solution y ∈ C1[0,+∞) such that
φ(y′) ∈ C1(0,+∞) with y(t) ≥ 0 on [0,+∞) and the equation in (1.1) is satisfied.
Some preliminaries including the main assumptions, the problem transformation
and a compactness criterion are gathered together in Section 2. Section 3 is devoted
to proving two existence theorems, one of a single positive solution and the other
one of three positive solutions. An example of application with a nonlinear operator
of derivation ends this paper in Section 4.
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2. Preliminaries

2.1. Functional framework. In this section, we present some definitions and lem-
mas we need in the proofs of the main results. For some real parameter θ > 0,
consider the space

X =
{
y ∈ C1([0,∞), R) : lim

t→+∞

y(t)
eθt

exists and lim
t→+∞

y′(t) = 0
}

with the norm

‖y‖θ = max
{
‖y‖1, ‖y‖2

}
,

where

‖y‖1 = sup
t∈[0,∞)

|y(t)|
eθt

, ‖y‖2 = sup
t∈[0,∞)

|y′(t)| .

Remark 2.1. Clearly X is a Banach space. Moreover, if y ∈ X is such that
y(0) = αy′(η), then

y(t)
eθt

= e−θt
{ ∫ t

0

y′(s) ds + y(0)
}

= e−θt
{ ∫ t

0

y′(s) ds + αy′(η)
}

≤ e−θt
{
t‖y‖2 + α‖y‖2

}
=

t + α

eθt
‖y‖2, ∀ t ∈ R+.

Hence ‖y‖1 ≤ K‖y‖2 where K = supt∈R+ γ(t) with γ(t) = t+α
eθt ; more precisely,

K =

{
α, if θα ≥ 1
γ
(

1−θα
θ

)
, if 0 ≤ θα < 1.

As a consequence

‖y‖2 ≤ ‖y‖θ ≤ max{1,K}‖y‖2

and limt→+∞
y(t)
eθt = 0.

2.2. Integral formulation. In order to transform (1.1) into a fixed point problem,
we need the following auxiliary lemma the proof of which is omitted.

Lemma 2.1. Let v ∈ L1(I). Then y ∈ C1(I) is a solution of

−(φ(y′))′(t) = v(t), t ∈ I

y(0) = αy′(η), lim
t→+∞

y′(t) = 0 (2.1)

if and only if

y(t) = C +
∫ t

0

φ−1
( ∫ +∞

s

v(τ) dτ
)
ds, t ∈ I, (2.2)

where C = αφ−1
( ∫ +∞

η
v(τ) dτ

)
.
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2.3. General assumptions and a fixed point operator. Assume first that the
nonlinearity satisfies the following hypotheses:

(H1) The function f : I×R+×R → R+ is continuous and when y, z are bounded,
f(t, eθty, z) is bounded on [0,+∞).

(H2) The function m : I → R+ is continuous and does not vanish identically on
any subinterval of I. It may be singular at t = 0 but satisfies

A :=
∫ +∞

0

m(s)ds < ∞. (2.3)

The first hypothesis means that f is bounded in term of the variable t and is justified
by the fact the unboundedness of the nonlinearity is carried by the singular factor
m. The second hypothesis means that the singularity is integrably bounded.

For a bounded subset Ω ⊂ X, define the integral operator

Fy(t) = C +
∫ t

0

φ−1
( ∫ +∞

s

m(τ)f(τ, y(τ), y′(τ))dτ
)
ds, t ∈ I, (2.4)

where C = αφ−1
( ∫ +∞

η
m(τ)f(τ, y(τ), y′(τ))dτ

)
. By Lemma 2.1, all solutions of

(1.1) are fixed points of F on X and conversely. Define the cone

P :=
{
y ∈ X : y(t) ≥ 0 on R+ with y(0) = αy′(η)

}
.

We have

Lemma 2.2. Under Assumptions (H1), (H2), F maps the set Ω ∩ P into P .

Proof. First we show that F : Ω ∩ P → X is well defined. Let y ∈ Ω ∩ P . Then,
there exists M > 0 such that ‖y‖θ ≤ M . By Assumption (H1), let

SM = sup{f(t, eθty, z), t ∈ I, (y, |z|) ∈ [0,M ]2}.
Since, for any t ≥ 0, 0 ≤ y(t)e−θt ≤ M and |y′(t)| ≤ M , Assumption (H2) implies∫ +∞

0

m(τ)f(τ, y(τ), y′(τ))dτ =
∫ +∞

0

m(τ)f
(
τ, eθτy(τ)e−θτ , y′(τ)

)
dτ ≤ ASM .

Hence for any fixed t ∈ (0,+∞),∫ t

0

φ−1
( ∫ +∞

s

m(τ)f(τ, y(τ), y′(τ))dτ
)
ds ≤

∫ t

0

φ−1(ASM )ds < ∞.

In addition, we can easily prove that for each y ∈ Ω ∩ P ,

Fy ∈ C1([0,∞), R), Fy(t) ≥ 0, t ∈ I,

Fy(0) = C = αφ−1
( ∫ +∞

η

m(τ)f(τ, y(τ), y′(τ))dτ
)

= α(Fy)′(η),

and

lim
t→+∞

(Fy)′(t) = lim
t→+∞

φ−1
( ∫ +∞

t

m(τ)f(τ, y(τ), y′(τ))dτ
)

= φ−1(0) = 0.

By Remark 2.1, we obtain

0 ≤ lim
t→+∞

Fy(t)
eθt

≤ lim
t→+∞

γ(t) sup
t∈[0,∞)

|(Fy)′(t)|

≤ lim
t→+∞

γ(t)φ−1(ASM ) = 0.

�
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2.4. A compactness criterion. To investigate the compactness of the operator
F , we appeal to the following result.

Lemma 2.3 ([6]). Let M ⊆ C1
∞(R+, R). Then the set M is relatively compact in

C1
∞(R+, R) if the following conditions hold:

(a) M is uniformly bounded in C1
∞(R+, R).

(b) The functions belonging to the sets

A = {y : y(t) =
x(t)
eθt

, x ∈ M} and B = {z : z(t) = x′(t), x ∈ M}

are almost equi-continuous on R+.
(c) The functions from A and B are equi-convergent at +∞.

Next, we state two compactness results depending on whether or not the function
m is singular at the origin.

Lemma 2.4 (The regular case). Assume m : [0,∞) → [0,∞) is continuous. Then,
the mapping F : Ω ∩ P → P is completely continuous.

Proof. Claim 1. F is continuous on P . Assume limn→+∞ yn → y in P ; then there
exists N > 0 independent of n such that max{‖y‖θ, supn≥1 ‖yn‖θ} ≤ N . Letting

SN = sup{f(t, eθty, z), t ∈ [0,+∞), (y, |z|) ∈ [0, N ]2},

we get ∫ +∞

0

m(s)(f(s, yn(s), y′n(s))− f(s, y(s), y′(s)))ds ≤ 2ASN .

Then, the Lebesgue’s dominated convergence theorem both with the continuity of
f and φ−1 imply

|(Fyn)′(t)− (Fy)′(t))|

=
∣∣φ−1

( ∫ +∞

t

m(τ)f(τ, yn(τ), y′n(τ))dτ
)
− φ−1

( ∫ +∞

t

m(τ)f(τ, y(τ), y′(τ))dτ
)∣∣

→ 0, as n → +∞.

Consequently,

‖Fyn − Fy‖θ ≤ max{1,K}‖Fyn − Fy‖2 → 0, as n → +∞,

yielding our claim.
Claim 2. F is compact provided it maps bounded sets into relatively compact

sets. Let Ω be any bounded subset of X; then there exists M > 0 such that
‖y‖θ ≤ M for all y ∈ Ω ∩ P . On one hand

‖Fy‖2 = φ−1
( ∫ +∞

0

m(τ)f(τ, y(τ), y′(τ)) dτ
)
≤ φ−1(ASM ), ∀ y ∈ Ω ∩ P.

Hence ‖Fy‖θ ≤ max{1,K}‖Fy‖2 ≤ max{1,K}φ−1(ASM ) which proves that F (Ω∩
P ) is uniformly bounded. On the other hand, for any y ∈ Ω ∩ P , any T ∈ (0,+∞)
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and t1, t2 ∈ [0, T ], we have

|Fy(t2)
eθt2

− Fy(t1)
eθt1

|

= |C(e−θt2 − e−θt1) + e−θt2

∫ t2

0

φ−1
( ∫ +∞

s

m(τ)f(τ, y(τ), y′(τ))dτ
)
ds

− e−θt1

∫ t1

0

φ−1
( ∫ +∞

s

m(τ)f(τ, y(τ), y′(τ))dτ
)
ds|

≤
(
C +

∫ t2

0

φ−1(ASM )ds
)
|e−θt2 − e−θt1 |+ e−θt1 |

∫ t1

t2

φ−1(ASM )ds|

which tends to 0 as |t1 − t2| → 0. Also, by the continuity of φ−1,

|(Fy)′(t2)− (Fy)′(t1)|

=
∣∣∣φ−1

( ∫ +∞

t2

m(s)f(s, y(s), y′(s))ds
)
− φ−1

( ∫ +∞

t1

m(s)f(s, y(s), y′(s))ds
)∣∣∣

=
∣∣∣φ−1

( ∫ t1

t2

m(s)f(s, y(s), y′(s))ds +
∫ +∞

t1

m(s)f(s, y(s), y′(s))ds
)

− φ−1
( ∫ +∞

t1

m(s)f(s, y(s), y′(s))ds
)∣∣∣

tends to 0 as |t1 − t2| → 0. This proves that F (Ω ∩ P ) is equi-continuous. Since
(H2) yields

lim
t→+∞

∫ +∞

t

m(s) ds = 0,

the Lebesgue dominated convergence theorem implies

lim
t→+∞

|Fy(t)
eθt

− lim
s→+∞

Fy(s)
eθs

| ≤ lim
t→∞

γ(t) sup
t∈[0,∞)

|(Fy)′(t)|

≤ lim
t→∞

γ(t)φ−1
(
SM

∫ +∞

0

m(s) ds
)

= 0

and

lim
t→+∞

|(Fy)′(t)− lim
s→+∞

(Fy)′(s)| = lim
t→+∞

|φ−1
( ∫ +∞

t

m(τ)f(τ, y(τ), y′(τ)) dτ
)
|

≤ φ−1
(
SM lim

t→+∞

∫ +∞

t

m(s) ds
)

= 0.

This means that F (Ω ∩ P ) is equi-convergent at ∞. By Lemma 2.3, F (Ω ∩ P ) is
relatively compact. �

Lemma 2.5 (The singular case). Let m be singular at t = 0. Then, the mapping
F given by (2.4) is completely continuous.

Proof. For each n ≥ 1, define the approximating operator Fn on Ω ∩ P by

Fny(t) = C +
∫ t

1
n

φ−1
( ∫ +∞

s

m(τ)f(τ, y(τ), y′(τ))dτ
)
ds, t ∈ I.
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Thus it suffices to prove that Fn converges uniformly to F on Ω∩P . For any t ∈ I
and y ∈ Ω ∩ P satisfying ‖y‖θ ≤ M , by (H1) the following estimates hold

|Fny(t)− Fy(t))|e−θt =
∣∣ ∫ 1

n

0

e−θtφ−1
( ∫ +∞

s

m(τ)f(τ, y(τ), y′(τ))dτ
)
ds

∣∣
≤ 1

n
e−θtφ−1

(
ASM

)
,

and
|(Fny)′(t)− (Fy)′(t))| = 0, ∀n ∈ N.

Consequently, Assumption (H2) both with the Cauchy criterion for convergent in-
tegrals imply that

‖Fny − Fy‖θ = max{‖Fny − Fy‖1, ‖Fny − Fy‖2} → 0, as n → +∞.

Since from Lemma 2.4, the operator Fn : Ω ∩ P → P is completely continuous for
each n ≥ 1 and Fn converges to F uniformly on any closed, bounded subset of Ω∩P ,
the uniform limit operator F is completely continuous, proving the lemma. �

3. Existence results

3.1. One positive solution. The following Lemma is needed in this section. De-
tailed properties of the fixed point index on cones of Banach spaces may be found
in [7, 26].

Lemma 3.1 ([1, 7, 14, 26]). Let Ω be a bounded open subset of a real Banach space
E,P a cone of E, θ ∈ Ω and A : Ω ∩ P → P a completely continuous operator.
Suppose that

Ax 6= λx, ∀x ∈ ∂Ω ∩ P, λ ≥ 1.

Then the index i(A,Ω ∩ P, P ) = 1.

The main existence result in this section is

Theorem 3.1. Assume (H1), (H2) and
(H3) for all (t, y, z) ∈ I × R+ × R,

0 ≤ f(t, y, z) ≤ a(t)φ(e−θty) + b(t)φ(|z|) + c(t),

where a, b, c ∈ C0(R+), mb, mc ∈ L1(I), and there exists R > 0, such that

φ−1 ((|ma|L1 + |mb|L1)φ(R) + |mc|L1) <
R

max{K, 1}
. (3.1)

Then (1.1) has at least one nonnegative, concave, and nondecreasing solution y ∈
P ∩ Bθ(0, R) where Bθ(0, R) is the open ball centered at the origin with radius R
in the θ−weighted space X.

If further minI×[0,R]×[0,R] f(t, eθty, z) ≥ 1, then y(t) ≥ w(t) for all t ∈ I, where

ω(t) := αφ−1
( ∫ +∞

η

m(τ)dτ
)

+
∫ t

0

φ−1
( ∫ +∞

s

m(τ)dτ
)

ds, t ∈ I. (3.2)

Remark 3.1. The properties of φ and m imply that ω ≥ 0 and ω is well defined.
Moreover ω is the unique solution of Problem (2.1) for v ≡ m.
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Proof. Consider the open ball Ω := {y ∈ X : ‖y‖θ < R}. From Lemmas 2.4 and
2.5, the mapping F : Ω ∩ P → P is completely continuous.

Claim 1. Fy 6= λy, for any y ∈ ∂Ω ∩ P and λ ≥ 1.
Let y ∈ ∂Ω ∩ P . By Assumption (H3), the following estimates hold

|(Fy)′(t)| = φ−1
( ∫ +∞

t

m(τ)f(τ, y(τ), y′(τ)) dτ
)

≤ φ−1
( ∫ +∞

0

m(τ)
(
a(τ)φ(e−θτy(τ)) + b(τ)φ(|y′(τ)|) + c(τ)

)
dτ

)
≤ φ−1

(
(|ma|L1φ(‖y‖1) + |mb|L1φ(‖y‖2)) + |mc|L1

)
≤ φ−1 ((|ma|L1 + |mb|L1) φ(‖y‖θ) + |mc|L1)

≤ φ−1 ((|ma|L1 + |mb|L1) φ(R) + |mc|L1)

<
R

max{1,K}
=

‖y‖θ

max{1,K}
.

Passing to the supremum over t, we infer that

‖Fy‖2 <
1

max{1,K}
‖y‖θ, ∀ y ∈ ∂Ω ∩ P.

Hence,

‖Fy‖θ ≤ max{1,K}‖Fy‖2 < ‖y‖θ, ∀ y ∈ ∂Ω ∩ P. (3.3)

As a consequence

Fy 6= λy, ∀ y ∈ ∂Ω ∩ P, ∀λ ≥ 1. (3.4)

Indeed, on the contrary there would exist some y0 ∈ ∂Ω ∩ P and λ0 ≥ 1 such that
Fy0 = λ0y0. Thus

‖Fy0‖θ = λ0‖y0‖θ ≥ ‖y0‖θ = R,

contradicting (3.3). This implies that (3.4) holds. Therefore, Lemma 3.1 yields

i (F,Ω ∩ P, P ) = 1. (3.5)

Hence (3.5) and the solution property of the fixed point index imply that the
operator F has a fixed point y which belongs to Ω ∩ P . Moreover, we have that
(φ(y′))′(t) = (φ((Fy)′))′(t) = −m(t)f(t, y(t), y′(t)) ≤ 0, t ∈ I, which implies that y
is concave on I. Next, we show that y is a nontrivial solution.

Claim 2. For this fixed point y, we claim that Fy(t) ≥ ω(t) on I, where ω is as
given by (3.2). Otherwise, we have

sup
t∈I
{ω(t)− Fy(t)} > 0.

Now, we distinguish between two cases.
Case 1. limt→+∞{ω(t) − Fy(t)} = supt∈I{ω(t) − Fy(t)} > 0. Under the

assumption that minI×[0,R]×[0,R] f(t, eθty, z) ≥ 1 and using the fact that φ−1 is



EJDE-2009/103 SINGULAR φ-LAPLACIAN BVPS 9

nondecreasing, we get

lim
t→+∞

{ω(t)− Fy(t)} = αφ−1
( ∫ +∞

η

m(τ) dτ
)

+
∫ +∞

0

φ−1
( ∫ +∞

s

m(τ) dτ
)
ds

− αφ−1
( ∫ +∞

η

m(τ)f(τ, y(τ), y′(τ)) dτ
)

−
∫ +∞

0

φ−1
( ∫ +∞

s

m(τ)f(τ, y(τ), y′(τ)) dτ
)
ds ≤ 0.

This is a contradiction to the assumption in Case 1.
Case 2. There exists a real number t1 ≥ 0 such that

ω(t1)− Fy(t1) = sup
t∈R+

{ω(t)− Fy(t)} > 0.

Arguing as in case 1, we can easily check that ω(t1)−Fy(t1) ≤ 0 and a contradiction
is reached. Therefore y is a nonnegative, concave, and nondecreasing solution to
Problem (1.1) and satisfies

0 ≤ ‖y‖θ < R, y(t) ≥ ω(t), ∀ t ∈ I.

�

3.2. A multiplicity result. The following Lemma is needed in this section.

Lemma 3.2 ([1, 7, 14]). Let Ω be a bounded open set in a real Banach space E, P
a cone of E, θ ∈ Ω and A : Ω ∩ P → P a completely continuous mapping. Assume
that

Ax 6≤ x, ∀x ∈ ∂Ω ∩ P.

Then the index i(A,Ω ∩ P, P ) = 0.

Theorem 3.2. Assume (H1)–(H3), and, instead of (3.1), there exist two constants
0 < R1 < R2 such that

φ−1 ((|ma|L1 + |mb|L1)φ(Ri) + |mc|L1) <
Ri

max{1,K}
, for i = 1, 2. (3.6)

(H4) Assume that for some 0 < γ < δ,

f(t, eθty, z) ≥ g(t, y), ∀ (t, y, z) ∈ [γ, δ]× R+ × R,

where g ∈ C([γ, δ]× R+) and there exists η > R1 such that

g(t, y) >
φ(1/γ)∫ δ

γ
m(τ) dτ

φ(eθty), for y ∈ [0, η], t ∈ [γ, δ]. (3.7)

Then for each constant R1 < r < min(R2, η), Problem (1.1) has at least three
nonnegative, concave, and nondecreasing solutions y1, y2, y3 ∈ P satisfying 0 ≤
‖y1‖θ < R1 < ‖y2‖θ < r < ‖y3‖θ < R2. If further minI×[0,R1]×[0,R1] f(t, eθty, z) ≥
1, then

y1(t) ≥ w(t), ∀ t ∈ I.

Proof. Claim 1. Consider the open balls ΩRi
:= {y ∈ X : ‖y‖θ < Ri}, i = 1, 2.

Arguing as in Claim 1 of Theorem 3.1 and using (3.6), we can check that

i(F,ΩRi
∩ P, P ) = 1, i = 1, 2. (3.8)
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Claim 2. Let ` := φ(1/γ)/
∫ δ

γ
m(τ) dτ , R1 < r < min(R2, η) and consider the

open ball Ωr := {y ∈ X : ‖y‖θ < r}. We claim that Fy 6≤ y, for any y ∈ ∂Ωr ∩ P .
Otherwise, let y0 ∈ ∂Ωr ∩ P be such that

Fy0 ≤ y0. (3.9)

Then 0 ≤ e−θty0(t) ≤ r < η, ∀ t ∈ [γ, δ]. Moreover, by virtue of (H4), (3.7) and
(3.9) together with the property (1.4) of φ−1 and the definition of `, we obtain
successively the following estimates: for every t ∈ [γ, δ],

y0(t) ≥ C +
∫ t

0

φ−1
( ∫ +∞

s

m(τ)f(τ, y0(τ), y′0(τ))dτ
)
ds

≥
∫ γ

0

φ−1
( ∫ +∞

s

m(τ)f(τ, y0(τ), y′0(τ))dτ
)
ds

≥
∫ γ

0

φ−1
( ∫ δ

γ

m(τ)f(τ, y0(τ), y′0(τ))dτ
)
ds

≥
∫ γ

0

φ−1
( ∫ δ

γ

m(τ)g(τ, e−θτy0(τ))dτ
)
ds

> γ φ−1
( ∫ δ

γ

m(τ)`φ(y0(τ)) dτ
)

≥ γ φ−1
(
φ( min

t∈[γ,δ]
y0(t))

)
φ−1

(
`

∫ δ

γ

m(τ) dτ
)

≥ γ φ−1
(
`

∫ δ

γ

m(τ) dτ
)

min
t∈[γ,δ]

y0(t)

≥ min
t∈[γ,δ]

y0(t).

Hence for any t ∈ [γ, δ], y0(t) > mint∈[γ,δ] y0(t), contradicting the continuity of
the function y0 on the compact interval [γ, δ]. This implies that (3.4) holds. As a
consequence, Lemma 3.2 yields

i (F,Ωr ∩ P, P ) = 0. (3.10)

To sum up, from (3.8), (3.10) and the fact that ΩR1 ⊂ Ωr,Ωr ⊂ ΩR2 , we deduce
that i(F, (Ωr \ΩR1)∩P, P ) = −1 and i(F, (ΩR2 \Ωr)∩P, P ) = 1. Therefore, there
exist three fixed points y1, y2, y3 ∈ P satisfying 0 ≤ ‖y1‖θ < R1 < ‖y2‖θ < r <
‖y3‖θ < R2. In addition, if

min
I×[0,R1]×[0,R1]

f(t, eθty, z) ≥ 1,

then we can check as in Theorem 3.1 that y1(t) ≥ w(t) for all t ∈ I. �

Remark 3.2. Notice that at least the two solutions y2 and y3 are positive, whence
nontrivial and that, due to the range of values the constant r may take, we can
obtain as much pairs of solutions y2, y3 as we need.
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4. Example

Consider the increasing homeomorphism defined by

φ(x) =

{
( 1
8 × 10−2x2) + ( 1

4 × 10−2), x ≥ 1;
3
8 × 10−2x, x ≤ 1.

Let a(t) = b(t) = e−kt (k > 0), c(t) = 2, and

m(t) =

{
1

t10−2 , 0 < t ≤ 1;
1

t102
, t ≥ 1.

To check the inequality (3.1) in Assumption (H3), we take α = 1/2, η = 1, γ = 1/5
and δ = 1/3; thus we can choose θ = 1, k = 30, and R = 50. Moreover

φ−1(x) =

{√
8× 102x− 2, x ≥ 3

8 × 10−2

8
3 × 102x, x ≤ 3

8 × 10−2,

max{1,K} = max{1, 1/
√

e} = 1, and

φ−1 ((|ma|L1 + |mb|L1)φ(R) + |mc|L1) = 42.4724 < 50.

Therefore, Assumptions (H1)-(H3) are satisfied. As a consequence, the singular
boundary value problem

−(φ(y′))′(t) = m(t)f(t, y(t), y′(t)), t ∈ I

y(0) =
1
2
y′(1), lim

t→+∞
y′(t) = 0,

(4.1)

where f(t, y, z) = a(t)φ(e−θty)+ b(t)φ(|z|)+ c(t), (t, y, z) ∈ I ×R+×R has at least
one nonnegative, concave, and nondecreasing solution y. Moreover

f(t, eθty, z) ≥ 1, ∀ (t, y, z) ∈ I × R+ × R.

Hence y(t) ≥ w(t), for t ∈ I where w(t) := 1.2330 +
∫ t

0
φ−1(

∫ +∞
s

m(τ) dτ)ds.
To check the inequality (3.6) in Theorem 3.2, we take R1 = 42 and R2 = 50 to

get the numerical values

φ−1 ((|ma|L1 + |mb|L1)φ(R1) + |mc|L1) = 41.8670 < 42.

φ−1 ((|ma|L1 + |mb|L1)φ(R2) + |mc|L1) = 42.4724 < 50.

Moreover,

f(t, y(t), y′(t)) ≥ g(t, e−θty), ∀ (t, y, z) ∈ I × R+ × R

with g(t, e−θty) = a(t)φ(e−θty(t)) + c(t). If we take η = 45 > R1, then for any
y ≤ η and t ∈ [γ, δ], we have the estimates

g(t, e−θty)
φ(y)

≥ c(t)
φ(y)

≥ 2
φ(η)

= 0.7893 >
φ( 1

γ )∫ δ

γ
m(τ) dτ

= 0.2498.

Therefore, (H4) in Theorem 3.2 is satisfied. All the computations have been done
using Matlab 7. As a consequence, for any r ∈ (42, 45), the singular boundary-value
problem (4.1) has at least three nonnegative, concave, and nondecreasing solutions
y1, y2, y3 ∈ P satisfying

0 ≤ ‖y1‖θ < 42 < ‖y2‖θ < r < ‖y3‖θ < 50.
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