
Electronic Journal of Differential Equations, Vol. 2009(2009), No. 101, pp. 1–24.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

NONLINEAR POTENTIAL FILTRATION EQUATION AND
GLOBAL ACTIONS OF LIE SYMMETRIES

MARK R. SEPANSKI

Abstract. The Lie point symmetries of the nonlinear potential filtration
equation break into five cases. Contact symmetries provide another two cases.

By restricting to a natural class of functions, we show that these symmetries

exponentiate to a global action of the corresponding Lie group in four of the
cases of Lie point symmetries. Furthermore, the action is actually the com-

position of a linear action with a simple translation. In fact, as a crucial step

in applying the machinery of representation theory, this is accomplished using
induced representations. In the remaining case as well as the contact symme-

tries, we show that the infinitesimal action does not exponentiate to any global
Lie group action on any reasonable space of functions.

1. Introduction

The theory of Lie groups began as a tool to study partial differential equations.
Subsequently, the theory of Lie symmetries developed into a very powerful and
systematic mechanism for the analysis of PDE’s. For instance, the method of
reduction of variables via Lie point symmetries is an extremely useful technique
for simplifying or solving PDE’s [5, 6, 14, 18, 3, 22, 24, 25, 29, 27, 34, 37, 7].
However, the main body of Lie theory and representation theory quickly diverged
from the study of Lie point symmetries of PDE’s. This separation occurred due
to the fact that Lie point symmetry analysis of PDE’s is based on the notion of
local one-parameter actions of Lie groups. As a result, the various algorithms give
rise to infinitesimal symmetries that only generate a Lie algebra. Typically, the
corresponding local one-parameter actions do not exponentiate to a global action
of the corresponding Lie group. As a result, the enormous body of literature devoted
to the study of Lie groups and representation theory is frequently not applicable to
the study of symmetries of PDE’s.

However in [10, 11], M. Craddock made an important discovery. He found that,
in certain cases, a global action of a Lie group is made possible by restricting to an
appropriate subset of the solution space. This allows the full weight of represen-
tation theory to be brought to bear. For instance when this machinery is applied
to the wave equation, representation theory naturally picks out a distinguished
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orthonormal basis that is extremely well behaved with respect to energy and mo-
mentum (actually consisting of smooth, rational, finite energy solutions when the
space dimension is odd), [19]. Similarly nice results are achieved in the case of the
heat and Schrödinger equations with links to the harmonic oscillator [35, 36].

Of course the cases mentioned above consist of linear PDE’s and so it is not
surprising that representation theory can be used on the problem. In this paper
we examine a particular type of nonlinear diffusion equation. Diffusion-convection
equations are used to model many types of problems from physics, chemistry, and
biology [12, 8, 33]. They are well studied from the point of view of Lie symmetry
analysis [31, 32, 30, 38, 20, 28, 21, 13, 26, 15, 39, 16, 9, 4, 1, 2], to name only a
few). The equation we study here is the nonlinear potential filtration equation

wt = K(wxx) (1.1)

where dK
dwxx

is not a constant.
The classification of Lie point symmetries, contact symmetries, and equivalence

transformations of Equation 1.1 are well known, [3, 17]. The Lie point symmetries
of this equation fall into five categories and contact symmetries give two more cate-
gories, each of which will be examined. A priori, there is no reason to suppose that
an algebra of Lie symmetries exponentiates to an action of the entire corresponding
Lie group.

Nevertheless in four of the five cases of point symmetries, we show that the
Lie algebra of symmetries extend to a global action of a corresponding Lie group
by restricting to a natural subclass of functions. In each of these four cases, we
explicitly write down this global action. Especially important, we accomplish this
by means of the theory of induced representations which will allow much of the
machinery of representation theory to be applied and which is a crucial step in [35]
and [19]. Remarkably in each of these cases, we show that the action of the group
is actually given by a linear action composed with a relatively simple (nonlinear)
translation. Also interesting in its own right, in the remaining case and for both of
the contact symmetries, we show that the Lie algebra of symmetries does not extend
to a global action for any corresponding Lie group on any reasonable subclass of
functions.

2. Symmetry Classification

The equivalence transformations for the nonlinear potential filtration equation

wt = K(wxx),
dK

dwxx
not a constant, are given by

t = αt + γ1, x = β1x + β2wx + γ2,

w = β1

(
β4w +

1
2
β3x

2 + γ3x
)

+ γ4t + γ5

+ β2

(
β3(xwx − w) + γ3wx +

1
2
β4w

2
x

)
,

K =
β1β4 − β2β3

α
K +

γ4

α

where α 6= 0 and β1β4 − β2β3 6= 0 [3, 17]. Up to these transformations, the
classification of the Lie point symmetries break into five cases: the generic case,
K = ewxx , K = 1

σ wσ
xx with σ > 0 and σ 6= 1, 1

3 , K = 3w
1/3
xx , and K = ln(wxx).
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Furthermore, additional Lie contact symmetries occur in two cases: K = arctan wxx

and K = 1
λeλ arctan wxx for λ > 0 [3, 17]. We will examine each case and determine

when the symmetries exponentiate to a global action of a Lie group.

3. Generic Case

In the generic case, the symmetry Lie algebra is five dimensional and spanned
by

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂w
,

X4 = 2t
∂

∂t
+ x

∂

∂x
+ 2w

∂

∂w
, X5 = x

∂

∂w
.

To find a globalization of the corresponding local one-parameter actions, consider
the solvable group G1 given by

G1 =
{ 

r2 0 0 v
0 r 0 u
0 s r2 z
0 0 0 1

 : r, s, v, u, z ∈ R, r > 0
}

along with the subgroup

D1 =
{ 

r2 0 0 0
0 r 0 0
0 s r2 z
0 0 0 1

 : r, s, z ∈ R, r > 0
}
.

Define the character χ1 : D1 → C× by

χ1

( 
r2 0 0 0
0 r 0 0
0 s r2 z
0 0 0 1

 )
= r2

and consider the representation of G1,

IndG1
D1

χ1 =
{
ϕ ∈ C∞(G1) : ϕ(gd) = χ1(d)−1ϕ(g) for g ∈ G1, d ∈ D1

}
with G1-action given by

(g1 · f)(g2) = f(g−1
1 g2)

for gi ∈ G1. Using what would be called the noncompact picture if we were working
in the semisimple case [23], let

I1 = {f ∈ C∞(R2) : f(x, t) = ϕ(


1 0 0 t
0 1 0 x
0 0 1 0
0 0 0 1

) for some ϕ ∈ IndG1
D1

χ1}.

By requiring that the map ϕ → f be an intertwining operator, I1 inherits an action
of G1 so that I1

∼= IndG1
D1

χ1. Writing
r2 0 0 v
0 r 0 u
0 s r2 z
0 0 0 1

 =


1 0 0 v
0 1 0 u
0 0 1 0
0 0 0 1




r2 0 0 0
0 r 0 0
0 s r2 z
0 0 0 1

 ,
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we see that ϕ can be reconstructed from f by

ϕ(


r2 0 0 v
0 r 0 u
0 s r2 z
0 0 0 1

) = r−2f(w, v)

so that I1 = C∞(R2). Of course it is easy to move out of the smooth category
by studying, say, L2-functions. All of our theorems can be easily extended to this
case.

Theorem 3.1. The (linear) action of G1 on I1 is given by

(


r2 0 0 v
0 r 0 u
0 s r2 z
0 0 0 1

 · f)(x, t) = r2f(
x− u

r
,
t− v

r2
).

Proof. Observe that
r2 0 0 v
0 r 0 u
0 s r2 z
0 0 0 1


−1 

1 0 0 t
0 1 0 x
0 0 1 0
0 0 0 1



=


1 0 0 r−2(t− v)
0 1 0 r−1(x− u)
0 0 1 0
0 0 0 1




r−2 0 0 0
0 r−1 0 0
0 −r−3s r−2 r−3 (su− sx)− r−2z
0 0 0 1

 .

It follows that

(


r2 0 0 v
0 r 0 u
0 s r2 z
0 0 0 1

 · f)(x, t) = r2f(
x− u

r
,
t− v

r2
).

where ϕ corresponds to f under the isomorphism I1
∼= IndG1

D1
χ1. �

To complete our picture, let τ1 : G1 × I1 → I1 be given by

(τ1(


r2 0 0 v
0 r 0 u
0 s r2 z
0 0 0 1

) · f)(x, t) = f(x, t) + r−1s(x− u) + z.

Lemma 3.2. The map τ1 does not define an action of G1 on I1. However, it is
related to the the original action of G1 on I1 (given in Theorem 3.1) by

τ1(g1g2) · f = τ1(g1) · (g1 · (τ1(g2) · (g−1
1 · f)))

for gi ∈ G1 and f ∈ I1.

Proof. To see that τ1 is not an action, write

g1 =


r2
1 0 0 v1

0 r1 0 u1

0 s1 r2
1 z1

0 0 0 1

 , g2 =


r2
2 0 0 v2

0 r2 0 u2

0 s2 r2
2 z2

0 0 0 1
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and note that

g1g2 =


r2
1r

2
2 0 0 v1 + r2

1v2

0 r1r2 0 u1 + r1u2

0 r2
1s2 + r2s1 r2

1r
2
2 z1 + r2

1z2 + s1u2

0 0 0 1

 .

Thus

(τ1(g1g2) · f)(x, t)

= f(x, t) + r−1
1 r−1

2

(
r2
1s2 + r2s1

)
(x− u1 − r1u2) + (z1 + r2

1z2 + s1u2)

= f(x, t) + z1 + r2
1z2 + xr−1

1 s1 − r−1
1 s1u1 − r2

1r
−1
2 s2u2 + xr1r

−1
2 s2 − r1r

−1
2 s2u1

while

(τ1(g1) · (τ1(g2) · f))(x, t)

= (τ1(g2) · f)(x, t) + r−1
1 s1(x− u1) + z1

= f(x, t) + r−1
2 s2(x− u2) + z2 + r−1

1 s1(x− u1) + z1

= f(x, t) + z1 + z2 + xr−1
1 s1 − r−1

1 s1u1 − r−1
2 s2u2 + xr−1

2 s2.

Therefore, τ1 is not an action. On the other hand, we can verify the relation
τ1(g1g2) · f = τ1(g1) · (g1 · (τ1(g2) · (g−1

1 · f))) by using Theorem 3.1 and calculating

(τ1(g1) · (g1 · (τ1(g2) · (g−1
1 · f))))(x, t)

= (g1 · (τ1(g2) · (g−1
1 · f)))(x, t) + r−1

1 s1(x− u1) + z1

= r2
1((τ1(g2) · (g−1

1 · f))(
x− u1

r1
,
t− v1

r2
1

)) + r−1
1 s1(x− u1) + z1

= r2
1((g

−1
1 · f)(

x− u1

r1
,
t− v1

r2
1

) + r−1
2 s2(

x− u1

r1
− u2) + z2) + r−1

1 s1(x− u1) + z1

= r2
1(r

−2
1 f(x, t) + r−1

2 s2(
x− u1

r1
− u2) + z2) + r−1

1 s1(x− u1) + z1

= f(x, t) + z1 + r2
1z2 + xr−1

1 s1 − r−1
1 s1u1 − r2

1r
−1
2 s2u2 + xr1r

−1
2 s2 − r1r

−1
2 s2u1.

�

As a result, consider δ1 : G1 × I1 → I1 given by

δ1(g) · f = τ1(g) · (g · f).

Explicitly, we see that

(δ1(


r2 0 0 v
0 r 0 u
0 s r2 z
0 0 0 1

) · f)(x, t) = r2f(
x− u

r
,
t− v

r2
) + r−1s(x− u) + z. (3.1)

Theorem 3.3. The (nonlinear) action of G1 on I1 given by δ1 gives a globalization
of the local one-parameter group action generated by the Lie point symmetries of
the nonlinear potential filtration equation wt = K(wxx) in the generic case.

Proof. First we check that δ1 defines an action. For this use Lemma 3.2 to see that

δ1(g1g2) · f = τ2(g1g2) · (g1g2 · f) = τ2(g1g2) · (g1 · (g2 · f))

= τ2(g1) · (g1 · (τ2(g2) · (g−1
1 · (g1 · (g2 · f)))))
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= τ2(g1) · (g1 · (τ2(g2) · (g2 · f)))

= τ2(g1) · (g1 · (δ1(g2) · f))

= δ1(g1) · (δ1(g2) · f)

as desired. Next, let

R =


2 0 0 0
0 1 0 0
0 0 2 0
0 0 0 0

 , S =


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

 , V =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 ,

U =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , Z =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


be a basis for the Lie algebra of G1. Using Equation 3.1, it follows that

(δ1(esR) · f)(x, t) = e2sf(e−sx, e−2st)

(δ1(esS) · f)(x, t) = f(x, t) + sx

(δ1(esV ) · f)(x, t) = f(x, t− s)

(δ1(esW ) · f)(x, t) = f(x− s, t)

(δ1(esZ) · f)(x, t) = f(x, t) + s.

Applying ∂
∂s |s=0 shows that

∂

∂s
(δ1(esR) · f)(x, t)|s=0 = −x

∂

∂x
f(x, t)− 2t

∂

∂t
f(x, t) + 2f(x, t)

∂

∂s
(δ1(esS) · f)(x, t)|s=0 = x

∂

∂s
(δ1(esV ) · f)(x, t)|s=0 = − ∂

∂t
f(x, t)

∂

∂s
(δ1(esU ) · f)(x, t)|s=0 = − ∂

∂x
f(x, t)

∂

∂s
(δ1(esZ) · f)(x, t)|s=0 = 1.

Under the prolongation formalism [25], an easy application of the chain rule shows
that the vector field Lie point symmetry

h1(x, t)
∂

∂x
+ h2(x, t)

∂

∂t
+ h3(x, t, w)

∂

∂w

on R2 × R gives rise to a local one-parameter group action on a function f whose
partial with respect to s at s = 0 is given by

−h1(x, t)
∂

∂x
f(x, t)− h2(x, t)

∂

∂t
f(x, t) + h3(x, t, f(x, t)).

Therefore the one parameter groups corresponding to {R,S, V, U, Z} give rise to
the symmetry vector fields

X4 = x
∂

∂x
+ 2t

∂

∂t
+ 2w

∂

∂w
, X5 = x

∂

∂w
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X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂w
.

Since the Lie point symmetries of wt = K(wxx) in the generic case are spanned by
{X1, X2, X3, X4, X5}, the proof is complete. �

4. K = ewxx

Consider the case of K = ewxx . Then the symmetry Lie algebra is six dimensional
and spanned by

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂w

X4 = 2t
∂

∂t
+ x

∂

∂x
+ 2w

∂

∂w

X5 = x
∂

∂w
, X6 = t

∂

∂t
− 1

2
x2 ∂

∂w
.

To find a globalization of the corresponding local one-parameter actions, consider
the solvable group G2 given by

G2 = {


r2e−

n
r2 0 0 0 v

0 r 0 0 u
0 s r2 n z
0 −ru 0 r2 − 1

2u2

0 0 0 0 1

 : r, s, n, v, u, z ∈ R, r > 0}

along with the subgroup

D2 = {


r2e−

n
r2 0 0 0 0

0 r 0 0 0
0 s r2 n z
0 0 0 r2 0
0 0 0 0 1

 : r, s, n, z ∈ R, r > 0}.

Define the character χ2 : D2 → C× by

χ2(


r2e−

n
r2 0 0 0 0

0 r 0 0 0
0 s r2 n z
0 0 0 r2 0
0 0 0 0 1

) = r2

and consider the representation of G2

IndG2
D2

χ2 =
{
ϕ ∈ C∞(G2) : ϕ(gd) = χ2(d)−1ϕ(g) for g ∈ G2, d ∈ D2

}
with G2-action given by

(g1 · f)(g2) = f(g−1
1 g2)

for gi ∈ G2. Using what would be called the noncompact picture if we were working
in the semisimple case [23], let I2 be the set

{
f ∈ C∞(R2) : f(x, t) = ϕ(


1 0 0 0 t
0 1 0 0 x
0 0 1 0 0
0 −x 0 1 − 1

2x2

0 0 0 0 1

) for some ϕ ∈ IndG2
D2

χ2

}
.



8 M. R. SEPANSKI EJDE-2009/101

By requiring that the map ϕ → f be an intertwining operator, I2 inherits an action
of G2 so that I2

∼= IndG2
D2

χ2. Writing
r2e−

n
r2 0 0 0 v

0 r 0 0 u
0 s r2 n z
0 −ru 0 r2 − 1

2u2

0 0 0 0 1



=


1 0 0 0 v
0 1 0 0 u
0 0 1 0 0
0 −u 0 1 − 1

2u2

0 0 0 0 1




r2e−
n
r2 0 0 0 0

0 r 0 0 0
0 s r2 n z
0 0 0 r2 0
0 0 0 0 1

 ,

we see that ϕ can be reconstructed from f by

ϕ(


r2e−

n
r2 0 0 0 v

0 r 0 0 u
0 s r2 n z
0 −ru 0 r2 − 1

2u2

0 0 0 0 1

) = r−2f(u, v)

so that I2 = C∞(R2).

Theorem 4.1. The (linear) action of G2 on I2 is given by

(


r2e−

n
r2 0 0 0 v

0 r 0 0 u
0 s r2 n z
0 −ru 0 r2 − 1

2u2

0 0 0 0 1

 · f)(x, t) = r2f(
x− u

r
, e

n
r2 (

t− v

r2
)).

Proof. Observe that
r2e−

n
r2 0 0 0 v

0 r 0 0 u
0 s r2 n z
0 −ru 0 r2 − 1

2u2

0 0 0 0 1


−1 

1 0 0 0 t
0 1 0 0 x
0 0 1 0 0
0 −x 0 1 − 1

2x2

0 0 0 0 1



=


1 0 0 0 r−2e

n
r2 (t− v)

0 1 0 0 r−1(x− u)
0 0 1 0 0
0 −r−1(x− u) 0 1 − 1

2r−2(x− u)2

0 0 0 0 1



×


r−2e

n
r2 0 0 0 0

0 r−1 0 0 0

0 r−4(−nu− rs + nx) r−2 −r−4n
1
2r−4(nu2 +nx2− 2r2z
+2rsu− 2nux− 2rsx)

0 0 0 r−2 0
0 0 0 0 1

 .
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It follows that

(


r2e

n
r2 0 0 0 v

0 r 0 0 u
0 s r2 n z
0 ru 0 r2 1

2u2

0 0 0 0 1

 · f)(x, t) = r2f(
x− u

r
, e

n
r2 (

t− v

r2
)).

where ϕ corresponds to f under the isomorphism I2
∼= IndG2

D2
χ2. �

To complete our picture, let τ2 : G2 × I2 → I2 be given by

(τ2(


r2e−

n
r2 0 0 0 v

0 r 0 0 u
0 s r2 n z
0 −ru 0 r2 − 1

2u2

0 0 0 0 1

) · f)(x, t)

= f(x, t) +
1
2
r−2n(x− u)2 + r−1s(x− u) + z.

Lemma 4.2. The map τ2 does not define an action of G2 on I2. However, it is
related to the the original action of G2 on I2 (given in Theorem 4.1) by

τ2(g1g2) · f = τ2(g1) · (g1 · (τ2(g2) · (g−1
1 · f)))

for gi ∈ G2 and f ∈ I2.

Proof. Since it is trivial, we leave the proof that τ2 is not an action to the reader.
For the relation of τ2 to the original action, write

g1 =


r2
1e
−n1

r2
1 0 0 0 v1

0 r1 0 0 u1

0 s1 r2
1 n1 z1

0 −r1u1 0 r2
1 − 1

2u2
1

0 0 0 0 1

 ,

g2 =


r2
2e
−n2

r2
2 0 0 0 v2

0 r2 0 0 u2

0 s2 r2
2 n2 z2

0 −r2u2 0 r2
2 − 1

2u2
2

0 0 0 0 1


and note that g1g2 is the matrix0BBBBBB@

r2
1r2

2e
−

n1r2
2+n2r2

1
r2
1r2

2 0 0 0 v1 + r2
1v2e

−n1
r2
1

0 r1r2 0 0 u1 + r1u2

0 s2r2
1 + r2s1 + n1r2u2 r2

1r2
2 n2r2

1 + n1r2
2 z2r2

1 + 1
2 n1u2

2 + s1u2 + z1

0 −r1r2(u1 + r1u2) 0 r2
1r2

2 − 1
2 (u1 + r1u2)

2

0 0 0 0 1

1CCCCCCA .

Thus

(τ2(g1g2) · f)(x, t)

= f(x, t) +
1
2
r−2
1 r−2

2 (n2r
2
1 + n1r

2
2) (x− u1 − r1u2)

2

+ r−1
1 r−1

2 (s2r
2
1 + r2s1 + n1r2u2)(x− u1 − r1u2) + (z2r

2
1 +

1
2
n1u

2
2 + s1u2 + z1).
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We then verify the relation τ2(g1g2) · f = τ2(g1) · (g1 · (τ2(g2) · (g−1
1 · f))) by using

Theorem 3.1 and calculating

(τ2(g1) · (g1 · (τ2(g2) · (g−1
1 · f))))(x, t)

= (g1 · (τ2(g2) · (g−1
1 · f)))(x, t) +

1
2
r−2
1 n1(x− u1)2

+ r−1
1 s1(x− u1) + z1

= r2
1((τ2(g2) · (g−1

1 · f))(
x− u1

r1
, e

n1
r2
1 (

t− v1

r2
1

))) +
1
2
r−2
1 n1(x− u1)2

+ r−1
1 s1(x− u1) + z1

= r2
1((g

−1
1 · f)(

x− u1

r1
, e

n1
r2
1 (

t− v1

r2
1

)) +
1
2
r−2
2 n2

(x− u1

r1
− u2

)2

+ r−1
2 s2(

x− u1

r1
− u2) + z2) +

1
2
r−2
1 n1(x− u1)2 + r−1

1 s1(x− u1) + z1

= r2
1(r

−2
1 f(x, t) +

1
2
r−2
2 n2

(x− u1

r1
− u2

)2 + r−1
2 s2(

x− u1

r1
− u2) + z2)

+
1
2
r−2
1 n1(x− u1)2 + r−1

1 s1(x− u1) + z1

= (τ2(g1g2) · f)(x, t).

�

As a result, consider δ2 : G2 × I2 → I2 given by δ2(g) · f = τ2(g) · (g · f).
Explicitly, we see that

(δ2(


r2e−

n
r2 0 0 0 v

0 r 0 0 u
0 s r2 n z
0 −ru 0 r2 − 1

2u2

0 0 0 0 1

) · f)(x, t)

= r2f(
x− u

r
, e

n
r2 (

t− v

r2
)) +

1
2
r−2n(x− u)2 + r−1s(x− u) + z.

Theorem 4.3. The (nonlinear) action of G2 on I2 given by δ2 gives a globalization
of the local one-parameter group action generated by the Lie point symmetries of
the nonlinear potential filtration equation wt = ewxx .

Proof. The proof that δ2 defines an action follows from Lemma 4.2 just as in the
proof of Theorem 3.3. Next, let

R =


2 0 0 0 0
0 1 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 0

 , S =


0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

 , N =


−1 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

 ,

V =


0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , U =


0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 −1 0 0 0
0 0 0 0 0

 , Z =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
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be a basis for the Lie algebra of G2. Using Equation 4.1, it follows that

(δ2(esR) · f)(x, t) = e2sf(e−sx, e−2st)

(δ2(esS) · f)(x, t) = f(x, t) + sx

(δ2(esN ) · f)(x, t) = f(x, est) +
1
2
sx2

(δ2(esV ) · f)(x, t) = f(x, t− s)

(δ2(esU ) · f)(x, t) = f(x− s, t)

(δ2(esZ) · f)(x, t) = f(x, t) + s.

Applying ∂
∂s |s=0 shows that

∂

∂s
(δ2(esR) · f)(x, t)|s=0 = −x

∂

∂x
f(x, t)− 2t

∂

∂t
f(x, t) + 2f(x, t)

∂

∂s
(δ2(esS) · f)(x, t)|s=0 = x

∂

∂s
(δ2(esN ) · f)(x, t)|s=0 = t

∂

∂t
f(x, t) +

1
2
x2

∂

∂s
(δ2(esV ) · f)(x, t)|s=0 = − ∂

∂t
f(x, t)

∂

∂s
(δ2(esU ) · f)(x, t)|s=0 = − ∂

∂x
f(x, t)

∂

∂s
(δ2(esZ) · f)(x, t)|s=0 = 1.

Under the prolongation formalism [25], an easy application of the chain rule shows
that the vector field Lie point symmetry

h1(x, t)
∂

∂x
+ h2(x, t)

∂

∂t
+ h3(x, t, w)

∂

∂w

on R2 × R gives rise to a local one-parameter group action on a function f whose
partial with respect to s at s = 0 is given by

−h1(x, t)
∂

∂x
f(x, t)− h2(x, t)

∂

∂t
f(x, t) + h3(x, t, f(x, t)).

Therefore, the one parameter groups corresponding to {R,S,N, V, U, Z} give rise
to the symmetry vector fields

X4 = x
∂

∂x
+ 2t

∂

∂t
+ 2w

∂

∂w
, X5 = x

∂

∂w
,

−X6 = −t
∂

∂t
+

1
2
x2 ∂

∂w
, X1 =

∂

∂t
,

X2 =
∂

∂x
, X3 =

∂

∂w
.

Since {X1, X2, X3, X4, X5, X6} span the Lie point symmetries of wt = ewxx , the
proof is complete. �
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5. K = 1
σ wσ

xx

Consider the case of K = 1
σ wσ

xx with σ > 0 and σ 6= 1, 1
3 . Then the symmetry

Lie algebra is six dimensional and spanned by

X1 =
∂

∂t
, X2 =

∂

∂x
,

X3 =
∂

∂w
, X4 = 2t

∂

∂t
+ x

∂

∂x
+ 2w

∂

∂w
,

X5 = x
∂

∂w
, X6 = (1− σ) t

∂

∂t
+ w

∂

∂w
.

To find a globalization of the corresponding local one-parameter actions, consider
the solvable group G3 given by

G3 = {


r2n1−σ 0 0 v

0 r 0 u
0 s r2n z
0 0 0 1

 : r, s, n, v, u, z ∈ R, r, n > 0}

along with the subgroup

D3 = {


r2n1−σ 0 0 0

0 r 0 0
0 s r2n z
0 0 0 1

 : r, s, n, z ∈ R, r, n > 0}.

Define the character χ3 : D3 → C× by

χ3(


r2n1−σ 0 0 0

0 r 0 0
0 s r2n z
0 0 0 1

) = r2n

and consider the representation of G3

IndG3
D3

χ3 =
{
ϕ ∈ C∞(G3) : ϕ(gd) = χ3(d)−1ϕ(g) for g ∈ G3, d ∈ D3

}
with G3-action given by

(g1 · f)(g2) = f(g−1
1 g2)

for gi ∈ G3. Using what would be called the noncompact picture if we were working
in the semisimple case [23], let

I3 = {f ∈ C∞(R2) : f(x, t) = ϕ(


1 0 0 t
0 1 0 x
0 0 1 0
0 0 0 1

) for some ϕ ∈ IndG3
D3

χ3}.

By requiring that the map ϕ → f be an intertwining operator, I3 inherits an action
of G3 so that I3

∼= IndG3
D3

χ3. Writing
r2n1−σ 0 0 v

0 r 0 u
0 s r2n z
0 0 0 1

−


1 0 0 v
0 1 0 u
0 0 1 0
0 0 0 1




r2n1−σ 0 0 0
0 r 0 0
0 s r2n z
0 0 0 1

 ,
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we see that ϕ can be reconstructed from f by

ϕ(


r2n1−σ 0 0 v

0 r 0 u
0 s r2n z
0 0 0 1

) = r−2n−1f(u, v)

so that I3 = C∞(R2).

Theorem 5.1. The (linear) action of G3 on I3 is given by

(


r2n1−σ 0 0 v

0 r 0 u
0 s r2n z
0 0 0 1

 · f)(x, t) = r2nf(
x− u

r
,

t− v

r2n1−σ
).

Proof. Observe that
r2n1−σ 0 0 v

0 r 0 u
0 s r2n z
0 0 0 1


−1 

1 0 0 t
0 1 0 x
0 0 1 0
0 0 0 1



=


1 0 0 r−2nσ−1(t− v)
0 1 0 r−1(x− u)
0 0 1 0
0 0 0 1



×


r−2nσ−1 0 0 0

0 r−1 0 0
0 −r−3n−1s r−2n−1 r−3n−1(su− sx− rz)
0 0 0 1

 .

It follows that

(


r2n1−σ 0 0 v

0 r 0 u
0 s r2n z
0 0 0 1

 · f)(x, t) = r2nf(
x− u

r
,

t− v

r2n1−σ
).

where ϕ corresponds to f under the isomorphism I3
∼= IndG3

D3
χ3. �

To complete our picture, let τ3 : G3 × I3 → I3 be given by

(τ3(


r2n1−σ 0 0 v

0 r 0 u
0 s r2n z
0 0 0 1

) · f)(x, t) = f(x, t) + r−1s(x− u) + z.

Lemma 5.2. The map τ3 does not define an action of G3 on I3. However, it is
related to the the original action of G3 on I3 (given in Theorem 5.1) by

τ3(g1g2) · f = τ3(g1) · (g1 · (τ3(g2) · (g−1
1 · f)))

for gi ∈ G3 and f ∈ I3.
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Proof. Since it is trivial, we leave the proof that τ3 is not an action to the reader.
For the relation of τ3 to the original action, write

g1 =


r2
1n

1−σ
1 0 0 v1

0 r1 0 u1

0 s1 r2
1n1 z1

0 0 0 1

 , g2 =


r2
2n

1−σ
2 0 0 v2

0 r2 0 u2

0 s2 r2
2n2 z2

0 0 0 1


and note that

g1g2 =


r2
1r

2
2n

1−σ
1 n1−σ

2 0 0 v1 + n1−σ
1 r2

1v2

0 r1r2 0 u1 + r1u2

0 n1s2r
2
1 + r2s1 n1n2r

2
1r

2
2 n1z2r

2
1 + z1 + s1u2

0 0 0 1

 .

Thus

(τ3(g1g2) · f)(x, t)

= f(x, t) + r−1
1 r−1

2 (n1s2r
2
1 + r2s1)(x− u1 − r1u2) + (n1z2r

2
1 + z1 + s1u2).

We then verify the relation τ3(g1g2) · f = τ3(g1) · (g1 · (τ3(g2) · (g−1
1 · f))) by using

Theorem 3.1 and calculating

(τ3(g1) · (g1 · (τ3(g2) · (g−1
1 · f))))(x, t)

= (g1 · (τ3(g2) · (g−1
1 · f)))(x, t) + r−1

1 s1(x− u1) + z1

= r2
1n1((τ3(g2) · (g−1

1 · f))(
x− u1

r1
,

t− v1

r2
1n

1−σ
1

)) + r−1
1 s1(x− u1) + z1

= r2
1n1((g−1

1 · f)(
x− u1

r1
,

t− v1

r2
1n

1−σ
1

) + r−1
2 s2(

x− u1

r1
− u2) + z2)

+ r−1
1 s1(x− u1) + z1

= r2
1n1(r2

2n2f(x, t) + r−1
2 s2(

x− u1

r1
− u2) + z2) + r−1

1 s1(x− u1) + z1

= (τ3(g1g2) · f)(x, t).

�

As a result, consider δ3 : G3 × I3 → I3 given by

δ3(g) · f = τ3(g) · (g · f).

Explicitly, we see that

(δ3(


r2n1−σ 0 0 v

0 r 0 u
0 s r2n z
0 0 0 1

) · f)(x, t) = r2nf(
x− u

r
,

t− v

r2n1−σ
) + r−1s(x− u) + z.

(5.1)

Theorem 5.3. The (nonlinear) action of G3 on I3 given by δ3 gives a globalization
of the local one-parameter group action generated by the Lie point symmetries of
the nonlinear potential filtration equation wt = 1

σ wσ
xx with σ > 0 and σ 6= 1, 1

3 .
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Proof. The proof that δ3 defines an action follows from Lemma 5.2 just as in the
proof of Theorem 3.3. Next, let

R =


2 0 0 0
0 1 0 0
0 0 2 0
0 0 0 0

 , S =


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

 , N =


1− σ 0 0 0

0 0 0 0
0 0 1 0
0 0 0 0

 ,

V =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , U =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , Z =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


be a basis for the Lie algebra of G3. Using Equation 5.1, it follows that

r2nf(
x− u

r
,

t− v

r2n1−σ
) + r−1s(x− u) + z,

(δ3(esR) · f)(x, t) = e2sf(e−sx, e−2st)

(δ3(esS) · f)(x, t) = f(x, t) + sx

(δ3(esN ) · f)(x, t) = esf(x, e(σ−1)st)

(δ3(esV ) · f)(x, t) = f(x, t− s)

(δ3(esU ) · f)(x, t) = f(x− s, t)

(δ3(esZ) · f)(x, t) = f(x, t) + s.

Applying ∂
∂s |s=0 shows that

∂

∂s
(δ3(esR) · f)(x, t)|s=0 = −x

∂

∂x
f(x, t)− 2t

∂

∂t
f(x, t) + 2f(x, t)

∂

∂s
(δ3(esS) · f)(x, t)|s=0 = x

∂

∂s
(δ3(esN ) · f)(x, t)|s=0 = (σ − 1)t

∂

∂t
f(x, t) + f(x, t)

∂

∂s
(δ3(esV ) · f)(x, t)|s=0 = − ∂

∂t
f(x, t)

∂

∂s
(δ3(esU ) · f)(x, t)|s=0 = − ∂

∂x
f(x, t)

∂

∂s
(δ3(esZ) · f)(x, t)|s=0 = 1.

Under the prolongation formalism [25], an easy application of the chain rule shows
that the vector field Lie point symmetry

h1(x, t)
∂

∂x
+ h2(x, t)

∂

∂t
+ h3(x, t, w)

∂

∂w

on R2 × R gives rise to a local one-parameter group action on a function f whose
partial with respect to s at s = 0 is given by

−h1(x, t)
∂

∂x
f(x, t)− h2(x, t)

∂

∂t
f(x, t) + h3(x, t, f(x, t)).
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Therefore, the one parameter groups corresponding to {R,S,N, V, U, Z} give rise
to the symmetry vector fields

X4 = x
∂

∂x
+ 2t

∂

∂t
+ 2w

∂

∂w
, X5 = x

∂

∂w

X6 = (1− σ)t
∂

∂t
+ w

∂

∂w
, X1 =

∂

∂t

X2 =
∂

∂x
, X3 =

∂

∂w
.

Since the Lie point symmetries of wt = 1
σ wσ

xx with σ > 0 and σ 6= 1, 1
3 are spanned

by {X1, X2, X3, X4, X5, X6}, the proof is complete. �

6. K = 3(wxx)1/3

Consider the case of K = 3(wxx)1/3. Then the symmetry Lie algebra is seven
dimensional and spanned by

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂w

X4 = 2t
∂

∂t
+ x

∂

∂x
+ 2w

∂

∂w
, X5 = x

∂

∂w

X6 =
2
3
t
∂

∂t
+ w

∂

∂w
, X7 = w

∂

∂x
.

It turns out that local action of X7 does not globalize except in trivial cases.

Theorem 6.1. Let Ω ⊆ R2 contain a nonempty open set and let I ⊆ {f : Ω → C}
contain a nonzero function. Then the local infinitesimal action of X7 on I extends
to a global action of a one dimensional Lie group if and only if Ω = R×T for some
T ⊆ R and I consists of functions constant in x.

Proof. Consider the local action (see [25]) of R on R2 × R generated by the Lie
symmetry vector field X7 = w ∂

∂x , written

s · (x, t, w) = (Ξ1,s(x, t, w),Ξ2,s(x, t, w),Φs(x, t, w))

for s ∈ R in a neighborhood of 0. This action must satisfy the vector field equation

d

ds
(Ξ1,s(x, t, w),Ξ2,s(x, t, w),Φs(x, t, w)) = (Φs(x, t, w), 0, 0)

with initial condition

(Ξ1,0(x, t, w),Ξ2,0(x, t, w),Φ0(x, t, w)) = (x, t, w).

Clearly
Ξ1,s(x, t, w),Ξ2,s(x, t, w),Φs(x, t, w)) = (x + sw, t, w).

In particular, this action is defined for all s ∈ R and requires Ω to be of the form
R× T .

Now suppose G is a Lie group with Lie algebra identified with RX7 and that G
acts on I in such a way to give a globalization of the local one-parameter group
action generated by X7. Write this action as g · f for g ∈ G and f ∈ I. For
f ∈ I, this action is related to the above action by the requirement that s · Γf =
ΓexpG(sX7)·f for all s ∈ R where Γf = {(x, t, f(x, t)) : (x, t) ∈ Ω} ⊆ R2 × R is the
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graph of f . More precisely, this means that when s ·(x, t, f(x, t)) = (x̃s, t̃s, ṽs), then
(exp(sX7) · f)(x̃s, t̃s) = ṽs for s ∈ R and (x, t) ∈ Ω. In other words,

(expG(sX7) · f)(x, t) = [Φs ◦ (1× f)] ◦ [Ξs ◦ (1× f)]−1(x, t). (6.1)

In particular, this means that s ·Γf is the graph of some function in I. However, we
finish the proof by showing that this is possible if and only if I consists of functions
constant in x.

Arguing via contradiction, suppose there exists f ∈ I and (x1, t), (x2, t) ∈ Ω
with f(x1, t) 6= f(x2, t). Then consider s = x1−x2

f(x2,t)−f(x1,t) and compute that

x1 − x2

f(x2, t)− f(x1, t)
· (x1, t, f(x1, t)) = (

x1f (x2, t)− x2f (x1, t)
f (x2, t)− f (x1, t)

, t, f(x1, t))

x1 − x2

f(x2, t)− f(x1, t)
· (x2, t, f(x2, t)) = (

x1f (x2, t)− x2f (x1, t)
f (x2, t)− f (x1, t)

, t, f(x2, t)).

Since s · Γf is the graph of a function, it follows that f(x1, t) = f(x2, t) and the
proof is complete. �

Since the Lie symmetries of {X1, X2, X3, X4, X5, X6} globalize in the same way
as Theorem 5.3 (with σ = 1

3 ) and do not preserve the set of functions constant in x,
it follows that {X1, X2, X3, X4, X5, X6, X7} does not exponentiate to give a global
action of a Lie group.

Remark. Theorem 6.1 shows there is no global action generated by X7 on noncon-
stant functions. Of course this result says nothing about the local action generated
by X7.

As an example, consider the nonconstant function

f(x) = ax + b,

a 6= 0, which is a solution to wt = 3(wxx)1/3. Recalling Equation 6.1, [Ξs ◦ (1 ×
f)](x, t) = (x+ s(ax+ b), t) so that [Ξs ◦ (1× f)]−1(x, t) = (x−sb

1+sa , t). It follows that
X7 generates a perfectly fine local action on f given by

(s · f)(x, t) = a
x− sb

1 + sa
+ b =

ax + b

1 + as

which is defined only when s 6= − 1
a (and so does not give rise to a global action).

7. K = ln(wxx)

Consider the case of K = 3(wxx)1/3. Then the symmetry Lie algebra is six
dimensional and spanned by

X1 =
∂

∂t
, X2 =

∂

∂x

X3 =
∂

∂w
, X4 = 2t

∂

∂t
+ x

∂

∂x
+ 2w

∂

∂w

X5 = x
∂

∂w
, X6 = t

∂

∂t
+ (t + w)

∂

∂w
.
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To find a globalization of the corresponding local one-parameter actions, consider
the solvable group G4 given by

G4 = {


r2en 0 0 v

0 r 0 u
nr2en s r2en z

0 0 0 1

 : r, s, n, v, u, z ∈ R, r > 0}

along with the subgroup

D4 = {


r2en 0 0 0

0 r 0 0
nr2en s r2en z

0 0 0 1

 : r, s, n, z ∈ R, r > 0}.

Define the character χ4 : D4 → C× by

χ4(


r2en 0 0 0

0 r 0 0
nr2en s r2en z

0 0 0 1

) = r2en

and consider the representation of G4

IndG4
D4

χ4 =
{
ϕ ∈ C∞(G4) : ϕ(gd) = χ4(d)−1ϕ(g) for g ∈ G4, d ∈ D4

}
with G4-action given by

(g1 · f)(g2) = f(g−1
1 g2)

for gi ∈ G4. Using what would be called the noncompact picture if we were working
in the semisimple case [23], let

I4 = {f ∈ C∞(R2) : f(x, t) = ϕ(


1 0 0 t
0 1 0 x
0 0 1 0
0 0 0 1

) for some ϕ ∈ IndG4
D4

χ4}.

By requiring that the map ϕ → f be an intertwining operator, I4 inherits an action
of G4 so that I4

∼= IndG4
D4

χ4. Writing
r2en 0 0 v

0 r 0 u
nr2en s r2en z

0 0 0 1

 =


1 0 0 v
0 1 0 u
0 0 1 0
0 0 0 1




r2en 0 0 0
0 r 0 0

nr2en s r2en z
0 0 0 1

 ,

we see that ϕ can be reconstructed from f by

ϕ(


r2en 0 0 v

0 r 0 u
nr2en s r2en z

0 0 0 1

) = r−2e−nf(u, v)

so that I4 = C∞(R2).

Theorem 7.1. The (linear) action of G4 on I4 is given by

(


r2en 0 0 v

0 r 0 u
nr2en s r2en z

0 0 0 1

 · f)(x, t) = r2enf(
x− u

r
,
t− v

r2en
).
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Proof. Observe that
r2en 0 0 v

0 r 0 u
nr2en s r2en z

0 0 0 1


−1 

1 0 0 t
0 1 0 x
0 0 1 0
0 0 0 1



=


1 0 0 r−2e−n(t− v)
0 1 0 r−1(x− u)
0 0 1 0
0 0 0 1



×


r−2e−n 0 0 0

0 r−1 0 0
−nr−2e−n −r−3e−ns r−2e−n r−3e−ns(u− x) + r−2e−n(nv − z − nt)

0 0 0 1

 .

It follows that

(


r2en 0 0 v

0 r 0 u
nr2en s r2en z

0 0 0 1

 · f)(x, t) = r2enf(
x− u

r
,
t− v

r2en
).

where ϕ corresponds to f under the isomorphism I4
∼= IndG4

D4
χ4. �

To complete our picture, let τ4 : G4 × I4 → I4 be given by

(τ4(


r2en 0 0 v

0 r 0 u
nr2en s r2en z

0 0 0 1

) · f)(x, t) = f(x, t) + r−1s(x− u) + n(t− v) + z.

Lemma 7.2. The map τ4 does not define an action of G4 on I4. However, it is
related to the the original action of G4 on I4 (given in Theorem 7.1) by

τ4(g1g2) · f = τ4(g1) · (g1 · (τ4(g2) · (g−1
1 · f)))

for gi ∈ G4 and f ∈ I4.

Proof. Since it is trivial, we leave the proof that τ4 is not an action to the reader.
For the relation of τ4 to the original action, write

g1 =


r2
1e

n1 0 0 v1

0 r1 0 u1

n1r
2
1e

n1 s1 r2
1e

n1 z1

0 0 0 1

 , g2 =


r2
2e

n2 0 0 v2

0 r2 0 u2

n2r
2
2e

n2 s2 r2
2e

n2 z2

0 0 0 1


and note that g1g2 is the matrix0BB@

r2
1r2

2en1en2 0 0 v1 + r2
1v2en1

0 r1r2 0 u1 + r1u2

en2en1r2
1r2

2 (n1 + n2) r2s1 + r2
1s2en1 r2

1r2
2en1en2 z1 + s1u2 + r2

1z2en1 + n1r2
1v2en1

0 0 0 1

1CCA .

Thus

(τ1(g1g2) · f)(x, t)

= f(x, t) + r−1
1 r−1

2 (r2s1 + r2
1s2e

n1)(x− u1 − r1u2)

+ (n1 + n2)(t− v1 − r2
1v2e

n1) + (z1 + s1u2 + r2
1z2e

n1 + n1r
2
1v2e

n1).
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We can verify the relation τ4(g1g2) · f = τ4(g1) · (g1 · (τ4(g2) · (g−1
1 · f))) by using

Theorem 7.1 and calculating

(τ4(g1) · (g1 · (τ4(g2) · (g−1
1 · f))))(x, t)

= (g1 · (τ4(g2) · (g−1
1 · f)))(x, t) + r−1

1 s1(x− u1) + n1(t− v1) + z1

= r2
1e

n1((τ4(g2) · (g−1
1 · f))(

x− u1

r1
,
t− v1

r2
1e

n1
)) + r−1

1 s1(x− u1) + n1(t− v1) + z1

= r2
1e

n1

(
(g−1

1 · f)(
x− u1

r1
,
t− v1

r2
1e

n1
) + r−1

2 s2(
x− u1

r1
− u2) + n2(

t− v1

r2
1e

n1
− v2) + z2

)
+ r−1

1 s1(x− u1) + n1(t− v1) + z1

= r2
1e

n1(r−2
1 e−n1f(x, t) + r−1

2 s2(
x− u1

r1
− u2) + n2

( t− v1

r2
1e

n1
− v2

)
+ z2) + r−1

1 s1(x− u1) + n1(t− v1) + z1

= (τ1(g1g2) · f)(x, t).

�

As a result, consider δ4 : G4 × I4 → I4 given by

δ4(g) · f = τ4(g) · (g · f).

Explicitly, we see that

(δ4(


r2en 0 0 v

0 r 0 u
nr2en s r2en z

0 0 0 1

) · f)(x, t)

= r2enf(
x− u

r
,
t− v

r2en
) + r−1s(x− u) + n(t− v) + z.

(7.1)

Theorem 7.3. The (nonlinear) action of G4 on I4 given by δ4 gives a globalization
of the local one-parameter group action generated by the Lie point symmetries of
the nonlinear potential filtration equation wt = ln(wxx).

Proof. The proof that δ3 defines an action follows from Lemma 7.2 just as in the
proof of Theorem 3.3. First we check that δ1 defines an action. For this use Lemma
3.2 to see that

R =


2 0 0 0
0 1 0 0
0 0 2 0
0 0 0 0

 , S =


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

 , N =


1 0 0 0
0 0 0 0
1 0 1 0
0 0 0 0

 ,

V =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , U =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , Z =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


be a basis for the Lie algebra of G4. Using Equation 7.1, it follows that

(δ4(esR) · f)(x, t) = e2sf(e−sx, e−2st)

(δ4(esS) · f)(x, t) = f(x, t) + sx

(δ4(esN ) · f)(x, t) = esf(x, e−st) + est
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(δ4(esV ) · f)(x, t) = f(x, t− s)

(δ4(esW ) · f)(x, t) = f(x− s, t)

(δ4(esZ) · f)(x, t) = f(x, t) + s.

Applying ∂
∂s |s=0 shows that

∂

∂s
(δ4(esR) · f)(x, t)|s=0 = −x

∂

∂t
f(x, t)− 2t

∂

∂t
f(x, t) + 2f(x, t)

∂

∂s
(δ4(esS) · f)(x, t)|s=0 = x

∂

∂s
(δ4(esN ) · f)(x, t)|s=0 = −t

∂

∂t
f(x, t) + f(x, t) + t

∂

∂s
(δ4(esV ) · f)(x, t)|s=0 = − ∂

∂t
f(x, t)

∂

∂s
(δ4(esU ) · f)(x, t)|s=0 = − ∂

∂x
f(x, t)

∂

∂s
(δ4(esZ) · f)(x, t)|s=0 = 1.

Under the prolongation formalism [25], an easy application of the chain rule shows
that the vector field Lie point symmetry

h1(x, t)
∂

∂x
+ h2(x, t)

∂

∂t
+ h3(x, t, w)

∂

∂w

on R2 × R gives rise to a local one-parameter group action on a function f whose
partial with respect to s at s = 0 is given by

−h1(x, t)
∂

∂x
f(x, t)− h2(x, t)

∂

∂t
f(x, t) + h3(x, t, f(x, t)).

Therefore the one parameter groups corresponding to {R,S,N, V, U, Z} give rise to
the symmetry vector fields

X4 = x
∂

∂x
+ 2t

∂

∂t
+ 2w

∂

∂w
, X5 = x

∂

∂w
,

X6 = t
∂

∂t
+ (t + w)

∂

∂w
, X1 =

∂

∂t
,

X2 =
∂

∂x
, X3 =

∂

∂w
.

Since the Lie point symmetries of wt = ln(wxx) in the generic case are spanned by
{X1, X2, X3, X4, X5, X6}, the proof is complete. �

8. Non Lie Point Symmetries

The potential filtration equation also admits a further contact symmetries in two
cases. When K = arctan(wxx), then

X6 = −wx
∂

∂x
+ (t +

1
2
(x2 − w2

x))
∂

∂w
+ x

∂

∂wx

is the first prolongation of a contact symmetry and when K = 1
λeλ arctan(wxx), λ > 0,

then

X ′
6 = −λt

∂

∂t
− wx

∂

∂x
+

1
2
(x2 − w2

x)
∂

∂w
+ x

∂

∂wx
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is the first prolongation a contact symmetry. Neither of these lead to any interesting
additional global actions of a Lie group.

Theorem 8.1. Let Ω ⊆ R2 contain a nonempty open set and let I ⊆ {f : Ω → C}
be nonempty. Then the local infinitesimal actions of X6 and X ′

6 on I never extends
to a global action of a one dimensional Lie group on I.

Proof. Consider X6 first and its local action of R on R2 × R× R generated by the
prolonged Lie symmetry vector field X6, written

s · (x, t, w) = (Ξ1,s(x, t, w, wx),Ξ2,s(x, t, w, wx),Φs(x, t, w, wx),Ψs(x, t, w, wx))

for s ∈ R in a neighborhood of 0. This action must satisfy the vector field equation
d

ds
(Ξ1,s(x, t, w, wx),Ξ2,s(x, t, w, wx),Φs(x, t, w, wx),Ψs(x, t, w, wx))

= (−Ψs(x, t, w, wx), 0,Ξ2,s(x, t, w, wx) +
1
2
(Ξ1,s(x, t, w)2

−Ψs(x, t, w, wx)2),Ξ1,s(x, t, w, wx))

with initial condition

(Ξ1,0(x, t, w, wx),Ξ2,0(x, t, w, wx),Φ0(x, t, w, wx),Ψ0(x, t, w, wx)) = (x, t, w, wx).

It is easy to verify that

s · (x, t, w, wx) =
(
x cos s− wx sin s, t, w + st

+
1
2
(sin s)(x2 cos s− 2vx sin s− v2 cos s), x sin s + wx cos s

)
.

With an argument similar to Theorem 6.1 (but looking at ∂
∂xf instead of f), a

necessary requirement for X6 to exponentiate to a global action on f ∈ I is that

{(x cos s− ∂

∂x
f(x, t) sin s, t, x sin s +

∂

∂x
f(x, t) cos s) : (x, t) ∈ Ω} (8.1)

be the graph of a function for each s ∈ R. To see this cannot happen, fix any
(x, t), (x′, t) ∈ Ω with x 6= x′ and pick s ∈ (0, π) so that cot s =

∂
∂x f(x′,t)− ∂

∂x f(x,t)

x′−x .
Then

x cos s− sin s f(x, t) = (x
∂
∂xf(x′, t)− ∂

∂xf(x, t)
x′ − x

− ∂

∂x
f(x, t)) sin s

= (
x′ ∂

∂xf(x, t)− x ∂
∂xf(x′, t)

x− x′
) sin s

and

x′ cos s− sin s f(x′, t) = (x′
∂
∂xf(x′, t)− ∂

∂xf(x, t)
x′ − x

− ∂

∂x
f(x′, t)) sin s

= (
x′ ∂

∂xf(x, t)− x ∂
∂xf(x′, t)

x− x′
) sin s

so that
(x cos s− sin s

∂

∂x
f(x, t), t) = (x′ cos s− sin s

∂

∂x
f(x′, t), t).

However (noting that sin s 6= 0),[
x sin s + cos s

∂

∂x
f(x, t)

]
−

[
x′ sin s + cos s

∂

∂x
f(x′, t)

]
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=
(
[x +

∂
∂xf(x′, t)− ∂

∂xf(x, t)
x′ − x

∂

∂x
f(x, t)]

− [x′ +
∂
∂xf(x′, t)− ∂

∂xf(x, t)
x′ − x

∂

∂x
f(x′, t)]

)
sin s

=
sin s

x− x′

(
(x− x′)2 +

( ∂

∂x
f(x, t)− ∂

∂x
f(x′, t)

)2
)
6= 0.

It follows that (8.1) cannot be the graph of a function and the proof is complete.
The argument for X ′

6 is similar. The main difference is that the action on the
t-coordinate is now given by e−λst instead of just t. With this change, it is easy to
see that the above argument for X6 pushes through for X ′

6. �
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