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EXISTENCE AND UNIQUENESS OF SOLUTIONS TO
IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS

MOUFFAK BENCHOHRA, BOUALEM ATTOU SLIMANI

Abstract. In this article, we establish sufficient conditions for the existence of
solutions for a class of initial value problem for impulsive fractional differential

equations involving the Caputo fractional derivative.

1. Introduction

This article studies the existence and uniqueness of solutions for the initial value
problems (IVP for short), for fractional order differential equations

cDαy(t) = f(t, y), t ∈ J = [0, T ], t 6= tk, (1.1)

∆y
∣∣
t=tk

= Ik(y(t−k )), (1.2)

y(0) = y0, (1.3)

where k = 1, . . . ,m, 0 < α ≤ 1, cDα is the Caputo fractional derivative, f : J×R →
R is a given function, Ik : R → R, and y0 ∈ R, 0 = t0 < t1 < · · · < tm < tm+1 = T ,
∆y|t=tk

= y(t+k )− y(t−k ), y(t+k ) = limh→0+ y(tk +h) and y(t−k ) = limh→0− y(tk +h)
represent the right and left limits of y(t) at t = tk.

Differential equations of fractional order have proved to be valuable tools in
the modelling of many phenomena in various fields of science and engineering. In-
deed, we can find numerous applications in viscoelasticity, electrochemistry, control,
porous media, electromagnetic, etc. (see [16, 24, 25, 28, 33, 34, 38]). There has been
a significant development in fractional differential and partial differential equations
in recent years; see the monographs of Kilbas et al [31], Miller and Ross [35], Samko
et al [42] and the papers of Agarwal et al [1], Babakhani and Daftardar-Gejji [2, 3],
Belmekki et al [6], Benchohra et al [5, 7, 8, 10], Daftardar-Gejji and Jafari [14],
Delbosco and Rodino [15], Diethelm et al [16, 17, 18], El-Sayed [19, 20, 21], Furati
and Tatar [22, 23], Kaufmann and Mboumi [29], Kilbas and Marzan [30], Mainardi
[33], Momani and Hadid [36], Momani et al [37], Podlubny et al [41], Yu and Gao
[44] and Zhang [45] and the references therein.

Applied problems require definitions of fractional derivatives allowing the utiliza-
tion of physically interpretable initial conditions, which contain y(0), y′(0), etc., the
same requirements of boundary conditions. Caputo’s fractional derivative satisfies
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these demands. For more details on the geometric and physical interpretation for
fractional derivatives of both the Riemann-Liouville and Caputo types see [27, 40].

Impulsive differential equations (for α ∈ N) have become important in recent
years as mathematical models of phenomena in both the physical and social sci-
ences. There has a significant development in impulsive theory especially in the
area of impulsive differential equations with fixed moments; see for instance the
monographs by Bainov and Simeonov [4], Benchohra et al [9], Lakshmikantham et
al [32], and Samoilenko and Perestyuk [43] and the references therein. To the best
knowledge of the authors, no papers exist in the literature devoted to differential
equations with fractional order and impulses. Thus the results of the present paper
initiate this study. This paper is organized as follows. In Section 2 we present some
preliminary results about fractional derivation and integration needed in the follow-
ing sections. Section 3 will be concerned with existence and uniqueness results for
the IVP (1.1)-(1.3). We give three results, the first one is based on Banach fixed
point theorem (Theorem 3.5), the second one is based on Schaefer’s fixed point
theorem (Theorem 3.6) and the third one on the nonlinear alternative of Leray-
Schauder type (Theorem 3.7). In Section 4 we indicate some generalizations to
nonlocal initial value problems. The last section is devoted to an example illustrat-
ing the applicability of the imposed conditions. These results can be considered as
a contribution to this emerging field.

2. Preliminaries

In this section, we introduce notation, definitions, and preliminary facts which
are used throughout this paper. By C(J,R) we denote the Banach space of all
continuous functions from J into R with the norm

‖y‖∞ := sup{|y(t)| : t ∈ J}.

Definition 2.1 ([31, 39]). The fractional (arbitrary) order integral of the function
h ∈ L1([a, b],R+) of order α ∈ R+ is defined by

Iα
a h(t) =

∫ t

a

(t− s)α−1

Γ(α)
h(s)ds,

where Γ is the gamma function. When a = 0, we write Iαh(t) = [h ∗ ϕα](t), where
ϕα(t) = tα−1

Γ(α) for t > 0, and ϕα(t) = 0 for t ≤ 0, and ϕα → δ(t) as α→ 0, where δ
is the delta function.

Definition 2.2 ([31, 39]). For a function h given on the interval [a, b], the αth
Riemann-Liouville fractional-order derivative of h, is defined by

(Dα
a+h)(t) =

1
Γ(n− α)

( d
dt

)n
∫ t

a

(t− s)n−α−1h(s)ds.

Here n = [α] + 1 and [α] denotes the integer part of α.

Definition 2.3 ([30]). For a function h given on the interval [a, b], the Caputo
fractional-order derivative of order α of h, is defined by

(cDα
a+h)(t) =

1
Γ(n− α)

∫ t

a

(t− s)n−α−1h(n)(s)ds,

where n = [α] + 1.
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3. Existence of Solutions

Consider the set of functions

PC(J,R) = {y : J → R : y ∈ C((tk, tk+1],R), k = 0, . . . ,m and there exist

y(t−k ) and y(t+k ), k = 1, . . . ,m with y(t−k ) = y(tk)}.
This set is a Banach space with the norm

‖y‖PC = sup
t∈J

|y(t)|.

Set J ′ := [0, T ]\{t1, . . . , tm}.

Definition 3.1. A function y ∈ PC(J,R) whose α-derivative exists on J ′ is said
to be a solution of (1.1)–(1.3) if y satisfies the equation cDαy(t) = f(t, y(t)) on J ′,
and satisfy the conditions

∆y|t=tk
= Ik(y(t−k )), k = 1, . . . ,m,

y(0) = y0

To prove the existence of solutions to (1.1)–(1.3), we need the following auxiliary
lemmas.

Lemma 3.2 ([45]). Let α > 0, then the differential equation
cDαh(t) = 0

has solutions h(t) = c0 + c1t + c2t
2 + · · · + cn−1t

n−1, ci ∈ R, i = 0, 1, 2, . . . , n − 1,
n = [α] + 1.

Lemma 3.3 ([45]). Let α > 0, then

IαcDαh(t) = h(t) + c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1

for some ci ∈ R, i = 0, 1, 2, . . . , n− 1, n = [α] + 1.

As a consequence of Lemma 3.2 and Lemma 3.3 we have the following result
which is useful in what follows.

Lemma 3.4. Let 0 < α ≤ 1 and let h : J → R be continuous. A function y is a
solution of the fractional integral equation

y(t) =


y0 + 1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds if t ∈ [0, t1],

y0 + 1
Γ(α)

∑k
i=1

∫ ti

ti−1
(ti − s)α−1h(s)ds

+ 1
Γ(α)

∫ t

tk
(t− s)α−1h(s)ds+

∑k
i=1 Ii(y(t

−
i )), if t ∈ (tk, tk+1],

(3.1)

where k = 1, . . . ,m, if and only if y is a solution of the fractional IVP
cDαy(t) = h(t), t ∈ J ′, (3.2)

∆y|t=tk
= Ik(y(t−k )), k = 1, . . . ,m, (3.3)

y(0) = y0. (3.4)

Proof. Assume y satisfies (3.2)-(3.4). If t ∈ [0, t1] then
cDαy(t) = h(t).

Lemma 3.3 implies

y(t) = y0 +
1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds.
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If t ∈ (t1, t2] then Lemma 3.3 implies

y(t) = y(t+1 ) +
1

Γ(α)

∫ t

t1

(t− s)α−1h(s)ds

= ∆y|t=t1 + y(t−1 ) +
1

Γ(α)

∫ t

t1

(t− s)α−1h(s)ds

= I1(y(t−1 )) + y0 +
1

Γ(α)

∫ t1

0

(t1 − s)α−1h(s)ds+
1

Γ(α)

∫ t

t1

(t− s)α−1h(s)ds.

If t ∈ (t2, t3] then from Lemma 3.3 we get

y(t) = y(t+2 ) +
1

Γ(α)

∫ t

t2

(t− s)α−1h(s)ds

= ∆y|t=t2 + y(t−2 ) +
1

Γ(α)

∫ t

t2

(t− s)α−1h(s)ds

= I2(y(t−2 )) + I1(y(t−1 )) + y0 +
1

Γ(α)

∫ t1

0

(t1 − s)α−1h(s)ds

+
1

Γ(α)

∫ t2

t1

(t2 − s)α−1h(s)ds+
1

Γ(α)

∫ t

t2

(t− s)α−1h(s)ds.

If t ∈ (tk, tk+1] then again from Lemma 3.3 we get (3.1).
Conversely, assume that y satisfies the impulsive fractional integral equation

(3.1). If t ∈ [0, t1] then y(0) = y0 and using the fact that cDα is the left inverse of
Iα we get

cDαy(t) = h(t), for each t ∈ [0, t1].
If t ∈ [tk, tk+1), k = 1, . . . ,m and using the fact that cDαC = 0, where C is a
constant, we get

cDαy(t) = h(t), for each t ∈ [tk, tk+1).
Also, we can easily show that

∆y|t=tk
= Ik(y(t−k )), k = 1, . . . ,m.

�

Our first result is based on Banach fixed point theorem.

Theorem 3.5. Assume that
(H1) There exists a constant l > 0 such that |f(t, u)−f(t, u)| ≤ l|u−u|, for each

t ∈ J , and each u, u ∈ R.
(H2) There exists a constant l∗ > 0 such that |Ik(u)−Ik(u)| ≤ l∗|u−u|, for each

u, u ∈ R and k = 1, . . . ,m.
If [Tαl(m+ 1)

Γ(α+ 1)
+ml∗

]
< 1, (3.5)

then (1.1)-(1.3) has a unique solution on J .

Proof. We transform the problem (1.1)–(1.3) into a fixed point problem. Consider
the operator F : PC(J,R) → PC(J,R) defined by

F (y)(t) = y0 +
1

Γ(α)

∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1f(s, y(s))ds
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+
1

Γ(α)

∫ t

tk

(t− s)α−1f(s, y(s))ds+
∑

0<tk<t

Ik(y(t−k )).

Clearly, the fixed points of the operator F are solution of the problem (1.1)-(1.3).
We shall use the Banach contraction principle to prove that F has a fixed point.
We shall show that F is a contraction. Let x, y ∈ PC(J,R). Then, for each t ∈ J
we have

|F (x)(t)− F (y)(t)|

≤ 1
Γ(α)

∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1|f(s, x(s))− f(s, y(s))|ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1|f(s, x(s))− f(s, y(s))|ds+
∑

0<tk<t

|Ik(x(t−k ))− Ik(y(t−k ))|

≤ l

Γ(α)

m∑
k=1

∫ tk

tk−1

(tk − s)α−1|x(s)− y(s)|ds

+
l

Γ(α)

∫ t

tk

(t− s)α−1|x(s)− y(s)|ds+
m∑

k=1

l∗|x(t−k )− y(t−k )|

≤ mlTα

Γ(α+ 1)
‖x− y‖∞ +

Tαl

Γ(α+ 1)
‖x− y‖∞ +ml∗‖x− y‖∞.

Therefore,

‖F (x)− F (y)‖∞ ≤
[Tαl(m+ 1)

Γ(α+ 1)
+ml∗

]
‖x− y‖∞.

Consequently by (3.5), F is a contraction. As a consequence of Banach fixed point
theorem, we deduce that F has a fixed point which is a solution of the problem
(1.1)− (1.3). �

Our second result is based on Schaefer’s fixed point theorem.

Theorem 3.6. Assume that:
(H3) The function f : J × R → R is continuous.
(H4) There exists a constant M > 0 such that |f(t, u)| ≤ M for each t ∈ J and

each u ∈ R.
(H5) The functions Ik : R → R are continuous and there exists a constant M∗ >

0 such that |Ik(u)| ≤M∗ for each u ∈ R, k = 1, . . . ,m.
Then (1.1)-(1.3) has at least one solution on J .

Proof. We shall use Schaefer’s fixed point theorem to prove that F has a fixed
point. The proof will be given in several steps.

Step 1: F is continuous. Let {yn} be a sequence such that yn → y in PC(J,R).
Then for each t ∈ J

|F (yn)(t)− F (y)(t)| ≤ 1
Γ(α)

∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1|f(s, yn(s))− f(s, y(s))|ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1|f(s, yn(s))− f(s, y(s))|ds

+
∑

0<tk<t

|Ik(yn(t−k ))− Ik(y(t−k ))|.
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Since f and Ik, k = 1, . . . ,m are continuous functions, we have

‖F (yn)− F (y)‖∞ → 0 as n→∞.

Step 2: F maps bounded sets into bounded sets in PC(J,R). Indeed, it is
enough to show that for any η∗ > 0, there exists a positive constant ` such that for
each y ∈ Bη∗ = {y ∈ PC(J,R) : ‖y‖∞ ≤ η∗}, we have ‖F (y)‖∞ ≤ `. By (H4) and
(H5) we have for each t ∈ J ,

|F (y)(t)| ≤ |y0|+
1

Γ(α)

∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1|f(s, y(s))|ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1|f(s, y(s))|ds+
∑

0<tk<t

|Ik(y(t−k ))|

≤ |y0|+
mMTα

Γ(α+ 1)
+

MTα

Γ(α+ 1)
+mM∗.

Thus

‖F (y)‖∞ ≤ |y0|+
MTα(m+ 1)

Γ(α+ 1)
+mM∗ := `.

Step 3: F maps bounded sets into equicontinuous sets of PC(J,R). Let τ1, τ2 ∈
J , τ1 < τ2, Bη∗ be a bounded set of PC(J,R) as in Step 2, and let y ∈ Bη∗ . Then

|F (y)(τ2)− F (y)(τ1)|

=
1

Γ(α)

∫ τ1

0

|(τ2 − s)α−1 − (τ1 − s)α−1||f(s, y(s))|ds

+
1

Γ(α)

∫ τ2

τ1

|(τ2 − s)α−1||f(s, y(s))|ds+
∑

0<tk<τ2−τ1

|Ik(y(t−k ))|

≤ M

Γ(α+ 1)
[2(τ2 − τ1)α + τα

2 − τα
1 ] +

∑
0<tk<τ2−τ1

|Ik(y(t−k ))|.

As τ1 → τ2, the right-hand side of the above inequality tends to zero. As a conse-
quence of Steps 1 to 3 together with the Arzelá-Ascoli theorem, we can conclude
that F : PC(J,R) → PC(J,R) is completely continuous.

Step 4: A priori bounds. Now it remains to show that the set

E = {y ∈ PC(J,R) : y = λF (y) for some 0 < λ < 1}

is bounded. Let y ∈ E , then y = λF (y) for some 0 < λ < 1. Thus, for each t ∈ J
we have

y(t) = λy0 +
λ

Γ(α)

∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1f(s, y(s))ds

+
λ

Γ(α)

∫ t

tk

(t− s)α−1f(s, y(s))ds+ λ
∑

0<tk<t

Ik(y(t−k )).

This implies by (H4) and (H5) (as in Step 2) that for each t ∈ J we have

|y(t)| ≤ |y0|+
mMTα

Γ(α+ 1)
+

MTα

Γ(α+ 1)
+mM∗.
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Thus for every t ∈ J , we have

‖y‖∞ ≤ |y0|+
mMTα

Γ(α+ 1)
+

MTα

Γ(α+ 1)
+mM∗ := R.

This shows that the set E is bounded. As a consequence of Schaefer’s fixed point
theorem, we deduce that F has a fixed point which is a solution of the problem
(1.1)-(1.3). �

In the following theorem we give an existence result for the problem (1.1)-(1.3) by
applying the nonlinear alternative of Leray-Schauder type and which the conditions
(H4) and (H5) are weakened.

Theorem 3.7. Assume that (H2) and the following conditions hold:
(H6) There exists φf ∈ C(J,R+) and ψ : [0,∞) → (0,∞) continuous and non-

decreasing such that

|f(t, u)| ≤ φf (t)ψ(|u|) for all t ∈ J, u ∈ R.
(H7) There exists ψ∗ : [0,∞) → (0,∞) continuous and nondecreasing such that

|Ik(u)| ≤ ψ∗(|u|) for allu ∈ R.
(H8) There exists an number M > 0 such that

M

|y0|+ ψ(M)
mT αφ0

f

Γ(α+1) + ψ(M)
T αφ0

f

Γ(α+1) +mψ∗(M)
> 1,

where φ0
f = sup{φf (t) : t ∈ J}.

Then (1.1)-(1.3) has at least one solution on J .

Proof. Consider the operator F defined in Theorems 3.5 and 3.6. It can be easily
shown that F is continuous and completely continuous. For λ ∈ [0, 1], let y be such
that for each t ∈ J we have y(t) = λ(Fy)(t). Then from (H6)-(H7) we have for
each t ∈ J ,

|y(t)| ≤ |y0|+
1

Γ(α)

∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1φf (s)ψ(|y(s)|)ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1φf (s)ψ(|y(s)|)ds+
∑

0<tk<t

ψ∗(|y(s)|)

≤ |y0|+ ψ(‖y‖∞)
mTαφ0

f

Γ(α+ 1)
+ ψ(‖y‖∞)

Tαφ0
f

Γ(α+ 1)
+mψ∗(‖y‖∞).

Thus
‖y‖∞

|y0|+ ψ(‖y‖∞)
mT αφ0

f

Γ(α+1) + ψ(‖y‖∞)
T αφ0

f

Γ(α+1) +mψ∗(‖y‖∞)
≤ 1.

Then by condition (H8), there exists M such that ‖y‖∞ 6= M . Let

U = {y ∈ PC(J,R) : ‖y‖∞ < M}.
The operator F : U → PC(J,R) is continuous and completely continuous. From
the choice of U , there is no y ∈ ∂U such that y = λF (y) for some λ ∈ (0, 1). As
a consequence of the nonlinear alternative of Leray-Schauder type [26], we deduce
that F has a fixed point y in U which is a solution of the problem (1.1)–(1.3). This
completes the proof. �
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4. Nonlocal impulsive differential equations

This section is concerned with a generalization of the results presented in the pre-
vious section to nonlocal impulsive fractional differential equations. More precisely
we shall present some existence and uniqueness results for the following nonlocal
problem

cDαy(t) = f(t, y), for each t ∈ J = [0, T ], t 6= tk, (4.1)

∆y
∣∣
t=tk

= Ik(y(t−k )), (4.2)

y(0) + g(y) = y0, (4.3)

where k = 1, . . . ,m, 0 < α ≤ 1, f, Ik, are as in Section 3 and g : PC(J,R) → R is
a continuous function. Nonlocal conditions were initiated by Byszewski [13] when
he proved the existence and uniqueness of mild and classical solutions of nonlo-
cal Cauchy problems. As remarked by Byszewski [11, 12], the nonlocal condition
can be more useful than the standard initial condition to describe some physical
phenomena. For example, g(y) may be given by

g(y) =
p∑

i=1

ciy(τi)

where ci, i = 1, . . . , p, are given constants and 0 < τ1 < · · · < τp ≤ T . Let us
introduce the following set of conditions.

(H9) There exists a constant M∗∗ > 0 such that |g(u)| ≤ M∗∗ for each u ∈
PC(J,R).

(H10) There exists a constant k > 0 such that |g(u)− g(u)| ≤ l∗∗|u− u| for each
u, u ∈ PC(J,R).

(H11) There exists ψ∗∗ : [0,∞) → (0,∞) continuous and nondecreasing such that
|g(u)| ≤ ψ∗∗(|u|) for each u ∈ PC(J,R).

(H12) There exists an number M
∗
> 0 such that

M
∗

|y0|+ ψ∗∗(M
∗
) + ψ(M

∗
)

mT αφ0
f

Γ(α+1) + ψ(M
∗
)

T αφ0
f

Γ(α+1) +mψ∗(M
∗
)
> 1,

Theorem 4.1. Assume that (H1), (H2), (H10) hold. If[Tαl(m+ 1)
Γ(α+ 1)

+ml∗ + l∗∗
]
< 1, (4.4)

then the nonlocal problem (4.1)-(4.3) has a unique solution on J .

Proof. We transform the problem (4.1)–(4.3) into a fixed point problem. Consider
the operator F̃ : PC(J,R) → PC(J,R) defined by

F̃ (y)(t) = y0 − g(y) +
1

Γ(α)

∑
0<tk<t

∫ tk

tk−1

(tk − s)α−1f(s, y(s))ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1f(s, y(s))ds+
∑

0<tk<t

Ik(y(t−k )).

Clearly, the fixed points of the operator F̃ are solution of the problem (4.1)-(4.3).
We can easily show the F̃ is a contraction. �
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Theorem 4.2. Assume that (H3)-(H5), (H9) hold. Then the nonlocal problem
(4.1)-(4.3) has at least one solution on J .

Theorem 4.3. Assume that (H6)-(H7), (H11)-(H12) hold. Then the nonlocal prob-
lem (4.1)-(4.3) has at least one solution on J .

5. An Example

In this section we give an example to illustrate the usefulness of our main results.
Let us consider the impulsive fractional initial-value problem,

cDαy(t) =
e−t|y(t)|

(9 + et)(1 + |y(t)|)
, t ∈ J := [0, 1], t 6= 1

2
, 0 < α ≤ 1, (5.1)

∆y|t= 1
2

=
|y( 1

2

−)|
3 + |y( 1

2

−)|
, (5.2)

y(0) = 0. (5.3)

Set

f(t, x) =
e−tx

(9 + et)(1 + x)
, (t, x) ∈ J × [0,∞),

and
Ik(x) =

x

3 + x
, x ∈ [0,∞).

Let x, y ∈ [0,∞) and t ∈ J . Then we have

|f(t, x)− f(t, y)| = e−t

(9 + et)

∣∣∣ x

1 + x
− y

1 + y

∣∣∣
=

e−t|x− y|
(9 + et)(1 + x)(1 + y)

≤ e−t

(9 + et)
|x− y|

≤ 1
10
|x− y|.

Hence the condition (H1) holds with l = 1/10. Let x, y ∈ [0,∞). Then we have

|Ik(x)− Ik(y)| =
∣∣ x

3 + x
− y

3 + y

∣∣ =
3|x− y|

(3 + x)(3 + y)
≤ 1

3
|x− y|.

Hence the condition (H2) holds with l∗ = 1/3. We shall check that condition (3.5)
is satisfied with T = 1 and m = 1. Indeed[Tαl(m+ 1)

Γ(α+ 1)
+ml∗

]
< 1 ⇐⇒ Γ(α+ 1) >

3
10
, (5.4)

which is satisfied for some α ∈ (0, 1]. Then by Theorem 3.5 the problem (5.1)-(5.3)
has a unique solution on [0, 1] for values of α satisfying (5.4).
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