Electron. J. Diff. Eqns., Vol. 2009(2009), No. 02, pp. 1-11.

Nonexistence results for semilinear systems in unbounded domains

Brahim Khodja, Abdelkrim Moussaoui

Abstract:
This paper concerns the non-existence of nontrivial solutions for the semi-linear system of gradient type
$$\displaylines{
\lambda \frac{\partial ^{2}u_{k}}{\partial t^{2}}
-\sum_{i=1}^n \frac{\partial }{\partial x_{i}}(p_{i}(x)\frac{
\partial u_{k}}{\partial x_{i}})+f_{k}(x,u_{1},\dots ,u_{m})
=0\quad \hbox{in }\Omega ,\; k=1,\dots ,m
}$$
with Dirichlet, Neumann or Robin boundary conditions. The functions $f_{k}:\mathcal{D}\times \mathbb{R}^{m}\to \mathbb{R}$ $(k=1,\dots ,m)$ are locally Lipschitz continuous and satisfy
$$
2H(x,u_{1},\dots ,u_{m})-\sum_{k=1}^m
u_{k}f_{k}(x,u_{1},\dots ,u_{m})\geq 0\quad (\hbox{resp.}\leq 0)
$$
for $\lambda >0$ (resp. $\lambda <0$). We establish the non-existence of nontrivial solutions using Pohozaev-type identities. Here $u_{1},\dots ,u_{m}$ are in $H^{2}(\Omega )\cap L^{\infty }(\Omega )$, $\Omega =\mathbb{R}\times \mathcal{D}$ with $\mathcal{D}=\prod_{i=1}^n  (\alpha _{i},\beta _{i})$ and $H\in \mathcal{C}^{1}(\overline{\mathcal{D}}\times \mathbb{R}^{m})$ such that $\frac{\partial H}{\partial u_{k}}=f_{k}$, $k=1,\dots ,m $.

Submitted April 10, 2008. Published January 2, 2009.
Math Subject Classifications: 35J45, 35J55.
Key Words: Semi linear systems; Pohozaev identity; trivial solution; Robin boundary condition.

Show me the PDF file (247 KB), TEX file, and other files for this article.

Brahim Khodja
Department of mathematics, Badji Mokhtar University
B.P. 12 Annaba, Algeria
email: bmkhodja@yahoo.fr
Abdelkrim Moussaoui
Department of mathematics, Badji Mokhtar University
B.P. 12 Annaba, Algeria
email: remdz@yahoo.fr

Return to the EJDE web page