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ANALYTIC SOLUTION OF AN INITIAL-VALUE PROBLEM
FROM STOKES FLOW WITH FREE BOUNDARY

XUMING XIE

Abstract. We study an initial-value problem arising from Stokes flow with

free boundary. If the initial data is analytic in disk Rr containing the unit
disk, it is proved that unique solution, which is analytic in Rs for s ∈ (1, r),

exists locally in time.

1. Introduction

The study of the deformation and breakup of bubbles in a slow viscous flow is
of importance in many practical applications such as the rheology and mixing in
multiphase viscous system. There has been a lot of research on this subject, the
review article by Stone [10] summarizes the state of affair in the early nineties. This
problem has been recently studied by some investigators. Tanveer and Vasconcelos
[11, 12] obtained polynomial exact solutions; Cummings et al [5] also obtained ex-
plicit solutions and some conserved quantities. Crowdy and Siegel [2] obtained new
conserved quantities and exact solution based on Cauchy transform approach. Nie
et al [6] numerically studied the singularity formation of the Stokes flow. Prokert
[9] obtained existence result of solutions in Sobolev space for a similar problem.

In this paper, we are going to establish a local existence result for an initial-value
problem arising from free evolving bubble in Stokes flow. We first derive the initial-
value problem using complex variables theory [1], then obtain the local existence
result based on a Nirenberg theorem [7, 8] on abstract Cauchy-Kowalewski problem
in properly chosen Banach spaces. The same techniques have been used for other
problems [13, 14].

2. Stokes flow with free boundary

We consider the quasi-steady evolution of a bubble in an ambient Stokes flow
[11, 12]. The fluid inside the bubble has a negligible viscosity and is at a constant
pressure, which is set to be zero. The fluid outside the bubble has a viscosity µ
and is incompressible. Under the assumption of no inertial effects, gravitational
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or other body forces, the fluid motion is governed by Stokes equation and the
incompressibility condition

µ∆u = ∇p, (2.1)

∇ · u = 0 (2.2)

The above equations hold in the fluid region outside of the bubble.
On the bubble boundary, we have stress condition

−pnj + 2µejknk = τκnj (2.3)

where n = (n1, n2) is a unit normal vector pointing outward from the bubble, τ is
the surface tension coefficient, κ is the curvature and

ejk =
1
2
(∂uj

∂xk
+
∂uk

∂xj

)
(2.4)

is the rate of strain tensor.
The kinematic condition on the free boundary is

u · n = Vn, (2.5)

where Vn is the normal component of the free surface motion. Introducing streaming
function ψ(x, y) such that

u = ∇⊥ψ (2.6)

then ψ(x, y) satisfies the biharmonic equation

∇4ψ = 0 . (2.7)

Here ψ(x, y) can be expressed as

ψ = Im[z∗f(z, t) + g(z, t)] (2.8)

where z = x+ iy and ∗ denotes complex conjugate. Here Goursat functions f(z, t)
and g(z, t) are analytic functions in the fluid region.

In terms of Goursat functions, the physical quantities are established
p

µ
− iω = 4f ′(z, t),

u = u1 + iu2 = −f(z, t) + z[f ′(z)]∗ + [g(z)]∗,

e11 + ie12 = z[f ′′(z)]∗ + [g′′(z)]∗.

(2.9)

where ∗ denotes the complex conjugate and ω is the vorticity.
Defining s to be the arc-length traversed in a counterclockwise direction around

the bubble boundary, then the stress condition can be written as

f(z, t) + z[f ′(z, t)]∗ + [g′(z, t)]∗ = −izs

2
, (2.10)

the kinematic equation can be written as

Im[(zt + 2f)z∗s ] = −1
2
. (2.11)

Equations (2.10) and (2.1) will be supplemented by far field conditions on f and g
at infinity.
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3. An initial-value problem

We consider the conformal mapping z(ξ, t) that maps the interior of the unit
circle |ξ| < 1 in the ξ plane to the fluid region in z-plane such that the ξ = 0 is
mapped to the point z = ∞. So ξz(ξ, t) is analytic in |ξ| < 1. The kinematic
condition can be written as

Re
[zt + 2f(z, t)

ξzξ

]
=

τ

2|zξ|
. (3.1)

as in Tanveer and Vasconcelos [11], we use the far field condition

f(z) ∼ az + b+O(1/z) as |z| → ∞ (3.2)

where a and b are functions of t only. In particular, we choose f(z) = az+ b where
a and b are constants. From Poisson’s formula, (3.1) becomes

zt + 2(az + b) = ξzξI−(ξ, t) for |ξ| < 1; (3.3)

where I−(ξ, t) is defined by

I−(ξ, t) =
τ

4πi

∫
|ξ|=1

dξ′

ξ′
[
ξ′ + ξ

ξ′ − ξ
]

1
|zξ|

. (3.4)

Let h(ξ, t) = ξz(ξ, t), then h(ξ, t) is analytic in |ξ| < 1. If h(ξ, t) can be analytically
extended to some region where |ξ| > 1, then

ht + 2ah+ 2bξ = [ξhξ − h]I+[h](ξ, t) +
τ(ξhξ − h)1/2

(ξh̄ξ − h̄)1/2
, (3.5)

where h̄(ξ, t) is defined as

h̄(ξ, t) = [h(
1
ξ∗

)]∗, (3.6)

and

I+[h](ξ, t) =
τ

4πi

∫
|ξ|=1

dξ′

ξ′
[
ξ′ + ξ

ξ′ − ξ
]

1
|ξhξ − h|

for |ξ| > 1. (3.7)

Making the change of variable,

v(ξ, t) =
1

(ξhξ − h)1/2
, (3.8)

and using (3.5), we obtain

vt = ξvξI+[v]− 1
2
ξv[I+[v]]ξ +

1
2
τξvv̄vξ −

1
2
τξv2v̄ξ +

1
2
vI+[v] + τv2v̄ + av, (3.9)

where

I+[v](ξ, t) =
τ

4πi

∫
|ξ|=1

dξ′

ξ′
[ξ′ + ξ

ξ′ − ξ

]
v(ξ′, t)v̄(ξ′, t) for |ξ| > 1. (3.10)

The analytic continuation of (3.9) to |ξ| < 1 is

vt = ξvξI−[v]− 1
2
ξv[I−[v]]ξ +

1
2
vI−[v] + av, (3.11)

where

I−[v](ξ, t) =
τ

4πi

∫
|ξ|=1

dξ′

ξ′
[
ξ′ + ξ

ξ′ − ξ
]v(ξ′, t)v̄(ξ′, t) for |ξ| < 1. (3.12)

We will consider equation (3.9) (3.11) with the initial condition

v(ξ, 0) = v0(ξ). (3.13)
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Let us first introduce a scale of Banach spaces which are spaces of bounded analytic
functions in disks.

Definition 3.1. Let Rs be the disk in complex ξ plane with radius s; i.e., Rs =
{ξ, |ξ| < s}; we define function space Bs consisting of functions f(ξ) is analytic in
Rs and continuous on Rs with norm ‖f‖s = supRs

|f(ξ)|.

Also we define the constant

M = ‖v0‖r . (3.14)

We will obtain the following local existence result.

Theorem 3.2. If v0 ∈ Br with r > 1, then there exists one and only one solution
v ∈ C1([0, T ),Bs), 1 < s < r, ‖v‖ ≤ 2M to (3.9) and v|t=0 = v0, where T =
a0(r − s), a0 is a suitable positive constant independent of s.

The proof of above theorem will be based on Nirenberg-Nishida theorem [7, 8].

Theorem 3.3 (Nirenberg-Nishida). Let {Bs}r1≤s≤r be a scale of Banach spaces
satisfying that Bs ⊂ Bs′ , ‖·‖s′ ≤ ‖·‖s for any r1 < s′ < s < r. Consider the
abstract Cauchy-Kowalewski problem

du

dt
= L(u(t), t), u(0) = 0 (3.15)

Assume the following conditions on L:
(i) For some constants M > 0, δ > 0 and every pair of numbers s, s′ such that

r1 < s′ < s < r, (u, t) → L(u, t) is a continuous mapping of

{u ∈ Bs : ‖u‖s < M} × {t; |t| < δ} into Bs′ (3.16)

(ii) For any r1 ≤ s′ < s ≤ r and all u, v ∈ Bs with ‖u‖s < M, ‖v‖s < M and
for any t, |t| < δ, L satisfies

‖L(u, t)− L(v, t)‖s′ ≤ C
‖u− v‖s

s− s′
(3.17)

where C is some positive constant independent of t, u, v, s, s′.
(iii) L(0, t) is a continuous function of t, |t| < δ with values in Bs for every

r1 < s < r and satisfies, with some positive constant K,

‖L(0, t)‖s ≤
K

(r − s)
(3.18)

Under the preceding assumptions there is a positive constant a0 such that there
exists a unique function u(t) which, for every r1 < s < r and |t| < a0(r − s), is a
continuously differentiable function of t with values in Bs, ‖u‖s < M , and satisfies
(3.15).

4. Properties of Banach space Bs

Let r0 and r1 be two fixed numbers so that r > r1 > r0 > 1, then Rr0 ⊂ Rr1 ⊂
Rr and Br ⊂ Br1 ⊂ Br0 .

In this and the following sections, C > 0 represents a generic constant, it may
vary from line to line. C may depend on r0, r1 and r; but it is always independent
of s and s′.

Lemma 4.1. If f ∈ Bs, r1 < s < r, then ‖fξ‖r0 ≤ K1‖f‖s where K1 is a positive
constant independent of s and f .
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Proof. For ξ ∈ Rr0 and t ∈ {|t| = r1}, we have |t − ξ| ≥ |r1 − r0|. From Cauchy
Integral Formula, we have

fξ(ξ) =
1

2πi

∫
|t|=r1

f(t)
(t− ξ)2

dt

so

|f(ξ)| ≤ 1
2π

∫
|t|=r1

|f(t)|
|t− ξ|2

|dt| ≤ r1‖f‖s

2π(r1 − r0)2
,

which completes the lemma. �

Definition 4.2. We define the function

f̄(ξ) = [f(
1
ξ∗

)]∗ (4.1)

where ∗ denotes complex conjugate.

Remark 4.3. For s > 0, if f ∈ Bs, then f̄ is analytic in |ξ| > 1
s and |f̄ | ≤ ‖f‖s

for |ξ| > 1
s .

Lemma 4.4. If f ∈ Bs, r1 < s < r, then |f̄ξ(ξ)| ≤ K2‖f‖s for r ≥ |ξ| ≥ 1
r0

, where
K2 is a positive constant independent of s and f .

Proof. Due to Remark 4.3, f̄ is analytic in |ξ| ≥ 1
r0

, by Cauchy Integral Formula,
we have for 1 ≤ |ξ| ≤ s

f̄ξ(ξ, t) =
1

2πi

∫
|ξ′|=2r

f̄(ξ′, t)
(ξ′ − ξ)2

dξ′ − 1
2πi

∫
|ξ′|= 1

r1

f̄(ξ′, t)
(ξ′ − ξ)2

dξ′

For 1
r0
≤ |ξ| ≤ r, ξ′ ∈ {|ξ′| = 1

r1
} ∪ {|ξ′| = 2r}, we have |ξ − ξ| ≥ C, where C

depends only on r0, r1 and r; hence each integral in the above equation can be
bounded by C‖f‖s. This completes the proof. �

The following lemma is essential for applying the Nirenberg-Nishida Theorem.

Lemma 4.5. If f ∈ Bs, r1 < s′ < s ≤ r; then fξ ∈ Bs′ and

‖fξ‖s′ ≤ K3

s− s′
‖f‖s, (4.2)

where K3 > 0 is independent of s, s′ and f .

Proof. Since dist(∂Bs′ , ∂Bs) = s− s′, for ξ ∈ Bs′ , we are able to find a disk D(ξ)
centered at ξ with radius s− s′ such that D(ξ) is contained in Rs. Using Cauchy
integral formula, we have

fξ(ξ) =
1

2πi

∫
|t−ξ|=s−s′

f(t)
(t− ξ)2

dt

so

|fξ(ξ)| ≤
1
2π

∫
|t−ξ|=s−s′

|f(t)|
|t− ξ|2

|dt|

≤ 1
2π

∫ 2π

0

|f(ξ + |s− s′|eiθ)|
s− s′

dθ

≤ K3‖f‖s

s− s′
,

which proves the lemma. �
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Definition 4.6. We define the function

G1[v](ξ, t) = v(ξ, t)v̄(ξ, t). (4.3)

Remark 4.7. If v ∈ Bs, s > 1, then G1[v] are analytic in 1
s ≤ |ξ| ≤ s.

Lemma 4.8. If v ∈ Bs and 1 < s < r, then |G1[v](ξ, t)| ≤ ‖v‖2s for 1
s ≤ |ξ| ≤ s.

The above lemma follows from equation (4.3).

Lemma 4.9. If v ∈ Bs and r1 < s < r, then I+[v](ξ, t) ≤ C‖v‖2 for |ξ| ≥ 1, where
C > 0 is a constant independent of s, g and h.

Proof. Due to Remark 4.7, the integrands of I+ are analytic in 1
r0

≤ |ξ| ≤ 1,
changing the contour of integration in the definitions of I+ from |ξ| = 1 to |ξ| = 1

r0

gives

I+[v](ξ, t) =
1

4πi

∫
|ξ′|= 1

r0

dξ′

ξ′
[
ξ + ξ′

ξ′ − ξ
]G1[v](ξ′, t) (4.4)

For |ξ| > 1 and |ξ′| = 1
r0

, from simple geometry, we have

|ξ + ξ′

ξ′ − ξ
| ≤ C (4.5)

where C depends on only r0. The lemma now follows from (4.4) and Lemma 4.8. �

Similarly we have

Lemma 4.10. If v ∈ Bs and 1 < s < r, then (I+[v])ξ(ξ, t) ≤ C‖v‖2 for |ξ| ≥ 1.

Proof. Taking derivative in (4.4),

(I+[v])ξ(ξ, t) =
1

4πi

∫
|ξ′|= 1

r0

dξ′

ξ′
[
ξ + ξ′

(ξ′ − ξ)2
]G1[v](ξ′, t) (4.6)

For |ξ| > 1 and |ξ′| = 1
r0

, from simple geometry, we have

| ξ + ξ′

(ξ′ − ξ)2
| ≤ C (4.7)

where C depends on only r0. The lemma now follows from (4.7) and Lemma 4.8. �

Lemma 4.11. If v ∈ Bs and 1 < s < r, then I−[v](ξ, t) ≤ C‖v‖2 for |ξ| ≤ 1.

Proof. Due to Remark 4.7, the integrands of I− is analytic in r0 ≥ |ξ| ≥ 1, changing
the contour of integration in the definitions of I− from |ξ| = 1 to |ξ| = r0 gives

I−[v](ξ, t) =
1

4πi

∫
|ξ′|=r0

dξ′

ξ′
[
ξ + ξ′

ξ′ − ξ
]G1[v](ξ′, t) (4.8)

For |ξ| < 1 and |ξ′| = r0, from simple geometry, we have

|ξ + ξ′

ξ′ − ξ
| ≤ C (4.9)

where C depends on only r0. The lemma now follows from(4.8), (4.9) and Lemma
4.8. �

Lemma 4.12. If v ∈ Bs and 1 < s < r, then (I−)ξ[v](ξ, t) ≤ C‖v‖2 for |ξ| ≤ 1.
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Proof. Taking derivatives in (4.8),

(I−[v])ξ(ξ, t) =
1

4πi

∫
|ξ′|=r0

dξ′

ξ′
[
ξ + ξ′

(ξ′ − ξ)2
]G1[v](ξ, t) (4.10)

For |ξ| < 1 and |ξ′| = r0, from simple geometry, we have

| ξ + ξ′

(ξ′ − ξ)2
| ≤ C (4.11)

where C depends on only r0. The lemma now follows from (4.10), (4.11) and
Lemma 4.8. �

5. Proof of the main theorem

In this section, to prove the main theorem, we apply Nirenberg’s theorem to
initial problem (3.9), (3.11) and (3.13). To this end, we need more estimates of the
type as in (3.17).

Lemma 5.1. If u ∈ Bs, v ∈ Bs, r1 < s′ < s < r, then ‖uξ − vξ‖s′ ≤ C
s−s′ ‖u− v‖s,

where C > 0 is independent of s, s′ and u and v.

The above lemma follows from applying Lemma 4.5 with f = u− v.

Lemma 5.2. If u ∈ Bs, v ∈ Bs, r1 < s < r, then |ūξ− v̄ξ| ≤ C‖u−v‖s for 1
r1
≤ |ξ|,

where C > 0 is independent of s, u and v.

The above lemma follows from applying Lemma 4.4 with f = u− v.

Lemma 5.3. If u ∈ Bs, v ∈ Bs, ‖u‖s ≤ M, ‖v‖s ≤ M , r1 < s < r, then for
|ξ| > 1

r0
,

|G1[v](ξ, t)−G1[u](ξ, t)| ≤ C‖v − u‖s.

Proof. From (4.3), we have

G1[v]−G1[u] = (v − u)v̄ + u(v̄ − ū)

which proves the lemma by using Remark 4.3. �

Lemma 5.4. If u ∈ Bs, v ∈ Bs, ‖u‖s ≤M, ‖v‖s ≤M , r1 < s < r, then for |ξ| ≤ 1,

|I−[v](ξ, t)− I−[u](ξ, t)| ≤ C‖v − u‖s;

|(I−[v])ξ(ξ, t)− (I−[u])ξ(ξ, t)| ≤ C‖v − u‖s.

Proof. From (4.8), we have

I−[v](ξ, t)− I−[u](ξ, t) =
1

4πi

∫
|ξ′|=r0

dξ′

ξ′
[
ξ + ξ′

ξ′ − ξ
](G2[v](ξ′, t)−G2[u](ξ′, t))

Now the lemma can be proved in the same fashion as Lemma 4.11 and Lemma 4.8
in light of Lemma 5.3. �

Lemma 5.5. If u ∈ Bs, v ∈ Bs, ‖u‖s ≤M, ‖v‖s ≤M , then for |ξ| ≥ 1,

|I+[v](ξ, t)− I+[u](ξ, t)| ≤ C‖v − u‖s,

|(I+[v])ξ(ξ, t)− (I+[u])ξ(ξ, t)| ≤ C‖v − u‖s.
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The above lemma can be proved in the same fashion as Lemma 4.9 and Lemma
4.7, in light of Lemma 5.3.

Let v ∈ Bs. We define the following operator; for |ξ| > 1, L[v] is defined by

L[v](ξ, t) = ξvξI+[v]− 1
2
ξv[I+[v]]ξ+

1
2
τξvv̄vξ−

1
2
τξv2v̄ξ+

1
2
vI+[v]+τv2v̄+av, (5.1)

The analytic continuation of L[v] to |ξ| < 1 is

L[v](ξ, t) = ξvξI−[v]− 1
2
ξv[I−[v]]ξ +

1
2
vI−[v] + av . (5.2)

Lemma 5.6. If u ∈ Bs, v ∈ Bs, ‖u‖s ≤ M , ‖v‖s ≤ M , then for |ξ| ≥ 1 and
r1 < s′ < s < r, we have

‖L[u]− L[v]‖s′ ≤ C

s− s′
‖v − u‖s,

where C > 0 is independent of s and s′.

Proof. By (5.2), for |ξ| < 1,

L[v](ξ, t)− L[u](ξ, t) = ξ(vξ − uξ)I−[v] + ξuξ{I−[v]− I−[u]}+ a(v − u)

− 1
2
ξ(v − u)(I−[v])ξ −

1
2
ξu{(I−[v])ξ − (I−[u])ξ},

(5.3)

and for |ξ| > 1,

L[v](ξ, t)− L[u](ξ, t) = ξ(vξ − uξ)I+[v] + ξuξ{I+[v]− I+[u]}

+ a(v − u)− 1
2
ξ(v − u)(I+[v])ξ −

1
2
ξu{(I+[v])ξ − (I+[u])ξ}

+
1
2
τξ{(v − u)v̄vξ + u(v̄ − ūvξ + uū(vξ − uξ)}

− 1
2
τξ{(v − u)(v + u)v̄ξ + u2(v̄ξ + ūξ)(v̄ξ − ūξ)}

+ τ(v − u)(v + u)v̄ + τu2(v̄ − ū),
(5.4)

By Lemmas 4.4–4.12 and 5.1– 5.5, each term in equations (5.3) and (5.4) can
bounded by C

s−s′ ‖v − u‖s; hence the proof is complete. �

Let p = v − v0, then v is a solution of initial problem (3.9), (3.11) and (3.13) if
and only if p solves the following initial problem

pt = L[p], p|t=0 = 0. (5.5)

where the operator L is defined by

L[p] = L[p+ v0] (5.6)

Lemma 5.7. If p ∈ Bs, u ∈ Bs, ‖p‖s ≤M and ‖u‖s ≤M, r1 < s′ < s < r, then

‖L[p]− L[u]‖s′ ≤ C

s− s′
‖p− u‖s

The proof of the above lemma follows from Lemma 5.6 and (5.6).

Lemma 5.8. If r1 < s′ < r, then ‖L[0]‖s′ ≤ K
r−s′ .
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Proof. From (5.6), we have L[0] = L[v0]) = L[v0] − L[0], for any s such that
s′ < s < r, using Lemma 5.6 with v = v0, u = 0, we obtain

‖L[0]‖s′ ≤ C

s− s′
‖v0‖s,

Letting s→ r in the above equation, we complete the proof. �

Proof of Theorem 3.2. We first apply Nirenberg theorem to system (5.5). For p ∈
Bs, by Lemma 5.7 with p = p, u = 0, we have L[p] ∈ Bs′ . Since the system (5.5)
is autonomous, the continuity of the operator L is implied by Lemma 5.7; hence
(3.16) holds. (3.17) and (3.18) are given by Lemma 5.7 and Lemma 5.8 respectively.
Therefore, there exists unique solution p ∈ Bs, ‖p‖s ≤M , so v = p+v0 is the unique
solution of the problem (3.9), (3.11) and (3.13). �
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