Electronic Journal of Differential Equations, Vol. 2008(2008), No. 72, pp. 1-12. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

SOLVABILITY OF CHARACTERISTIC BOUNDARY-VALUE PROBLEMS FOR NONLINEAR EQUATIONS WITH ITERATED WAVE OPERATOR IN THE PRINCIPAL PART

SERGO KHARIBEGASHVILI, BIDZINA MIDODASHVILI

Abstract

A characteristic boundary-value problem for a hyperbolic equation with power nonlinearity and iterated wave operator in the principal part is considered in a conical domain. Depending on the exponent of nonlinearity and spatial dimensionality of the equation, the existence and uniqueness of the solution of a boundary-value problem is established. The non-solvability of this problem is also considered here.

1. INTRODUCTION

In the Euclidean space \mathbb{R}^{n+1} of independent variables $x_{1}, x_{2}, \ldots, x_{n}, t$, consider the nonlinear equation

$$
\begin{equation*}
L_{\lambda} u:=\square^{2} u=\lambda f(u)+F, \tag{1.1}
\end{equation*}
$$

where λ is a given real constant, $f: \mathbb{R} \rightarrow \mathbb{R}$ is a given continuous nonlinear function, $f(0)=0, F$ is a given, and u is an unknown real functions, and for $n \geq 2$,

$$
\square=\frac{\partial^{2}}{\partial t^{2}}-\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}} .
$$

Let $D_{T}:|x|<t<T-|x|$ be a domain, which is the intersection of the light cone of future $K_{O}^{+}: t>|x|$ with the apex in the origin $O(0,0, \ldots, 0)$ and light cone of past $K_{A}^{-}: t<T-|x|$ with apex in point $A(0, \ldots, 0, T), T=$ const >0.

For equation (1.1) consider the boundary-value problem on determination of its solution $u\left(x_{1}, \ldots, x_{n}, t\right)$ in domain D_{T} with the boundary condition

$$
\begin{equation*}
\left.u\right|_{\partial D_{T}}=0 . \tag{1.2}
\end{equation*}
$$

It should be noted that for nonlinear hyperbolic equations the local or global solvability of the Cauchy problem with initial conditions for $t=0$ and mixed problems has been studied in numerous publications; see, [2, 4, 5, 8, 9, 12, 13, 14, 15, 16, 17, 18, 25, 27, 28, 29, 30, 32, 33, 34.

Regarding the nonlinear wave equation $\square u=\lambda f(u)+F$, we have the following results: The characteristic problem in the light cone of future $K_{O}^{+}: t>|x|$, with

[^0]boundary condition $\left.u\right|_{\partial K_{O}^{+}}=g$, in the linear case with $\lambda=0$, is well-posed and has global solvability in some appropriate function spaces; see [1, 3, 6, 10, 26]. Meanwhile, the nonlinear case, when $f(u)$ has exponential nature and $\lambda \neq 0$, has been considered in [19, 20, 21].

Assume $\dot{C}^{k}\left(\bar{D}_{T}, \partial D_{T}\right)=\left\{u \in C^{k}\left(\bar{D}_{T}\right):\left.u\right|_{\partial D_{T}}=0\right\}, k \geq 1$. Let $u \in \dot{C}^{4}\left(\bar{D}_{T}\right.$, ∂D_{T}) be a classical solution of problem (1.1)-1.2). Multiplying the both parts of (1.1) by an arbitrary function $\phi \in \dot{C}^{2}\left(\bar{D}_{T}, \partial D_{T}\right)$ and integrating obtained equation by parts in domain D_{T} we obtain

$$
\begin{equation*}
\int_{D_{T}} \square u \square \phi d x d t=\lambda \int_{D_{T}} f(u) \phi d x d t+\int_{D_{T}} F \phi d x d t \tag{1.3}
\end{equation*}
$$

Here we used the equality

$$
\int_{D_{T}} \square u \square \phi d x d t=\int_{\partial D_{T}} \frac{\partial \phi}{\partial N} \square u d s-\int_{\partial D_{T}} \phi \frac{\partial}{\partial N} \square u d s+\int_{D_{T}} \phi \square^{2} u d x d t
$$

and the fact that since ∂D_{T} is characteristic manifold, then derivative on the conormal

$$
\frac{\partial}{\partial N}=\gamma_{n+1} \frac{\partial}{\partial t}-\sum_{i=1}^{n} \gamma_{i} \frac{\partial}{\partial x_{i}}
$$

where $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}, \gamma_{n+1}\right)$ is the unit vector of external normal relative to ∂D_{T}, is an inner differential operator on characteristic manifold ∂D_{T} and, thus, if $v \in$ $\dot{C}^{1}\left(\bar{D}_{T}, \partial D_{T}\right)$, then $\left.\frac{\partial v}{\partial N}\right|_{\partial D_{T}}=0$.

Let us introduce the Hilbert space $\dot{W}_{2, \square}^{1}\left(D_{T}\right)$ as a completion with respect to the norm

$$
\begin{equation*}
\|u\|_{W_{2, \square}^{1}\left(D_{T}\right)}^{2}=\int_{D_{T}}\left[u^{2}+\left(\frac{\partial u}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}+(\square u)^{2}\right] d x d t \tag{1.4}
\end{equation*}
$$

of classical space $\dot{C}^{2}\left(\bar{D}_{T}, \partial D_{T}\right)$. It follows from 1.4 that if $u \in \dot{W}_{2, \square}^{1}\left(D_{T}\right)$, then $u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}\right)$ and $\square u \in L_{2}\left(D_{T}\right)$. Here $W_{2}^{1}\left(D_{T}\right)$ is the known Sobolev space [24, p. 56], consisting of elements from $L_{2}\left(D_{T}\right)$, which have first order generalized derivatives in $L_{2}\left(D_{T}\right)$, and $W_{2}^{1}\left(D_{T}\right)=\left\{u \in W_{2}^{1}\left(D_{T}\right):\left.u\right|_{\partial D_{T}}=0\right\}$, where equality $\left.u\right|_{\partial D_{T}}=0$ should be understood in the sense of the theory of trace [24, p. 70].

Let us assume (1.3) as the basis of determination of generalized solution of problem (1.1)-1.2.

Definition 1.1. Let $F \in L_{2}\left(D_{T}\right)$. We call function $u \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$ a weak generalized solution of problem (1.1)-1.2) if $f(u) \in L_{2}\left(D_{T}\right)$ and for any function $\phi \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$ it is valid integral equality 1.3 ; i.e.

$$
\begin{equation*}
\int_{D_{T}} \square u \square \phi d x d t=\lambda \int_{D_{T}} f(u) \phi d x d t+\int_{D_{T}} F \phi d x d t \quad \forall \phi \in \dot{W}_{2, \square}^{1}\left(D_{T}\right) \tag{1.5}
\end{equation*}
$$

It is easy to verify that if the solution u of problem $\sqrt{1.1}-(1.2)$ in the sense of the above definition belongs to the class $C^{4}\left(\bar{D}_{T}\right)$, then it will be a classical solution of this problem.
2. SOLVABILITY OF (1.1)-1.2 WITh $f(u)=|u|^{\alpha} \operatorname{sgn} u$

Assume that for a positive constant $\alpha \neq 1$, the nonlinear function f in 1.1) has the form

$$
\begin{equation*}
f(u)=|u|^{\alpha} \operatorname{sgn} u . \tag{2.1}
\end{equation*}
$$

Then in accordance to (2.1), equation (1.1) and (1.5) take the form

$$
\begin{equation*}
L_{\lambda} u:=\square^{2} u=\lambda|u|^{\alpha} \operatorname{sgn} u+F \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{D_{T}} \square u \square \phi d x d t=\lambda \int_{D_{T}} \phi|u|^{\alpha} \operatorname{sgn} u d x d t+\int_{D_{T}} F \phi d x d t, \quad \forall \phi \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right) . \tag{2.3}
\end{equation*}
$$

Lemma 2.1. With the norm of the space $\dot{W}_{2, \square}^{1}\left(D_{T}\right)$ given in 1.4,

$$
\begin{equation*}
\|u\|_{\dot{W}_{2, \square}^{1}\left(D_{T}\right)} \leq c\|\square u\|_{L_{2}\left(D_{T}\right)} \quad \forall u \in \dot{\circ}_{2, \square}^{1}\left(D_{T}\right) \tag{2.4}
\end{equation*}
$$

where c is positive constant independent on u.
Proof. Since the space $\dot{C}^{2}\left(\bar{D}_{T}, \partial D_{T}\right)$ is the dense subspace of space ${ }^{\circ}{ }_{2, \square}^{1}\left(D_{T}\right)$ it is sufficient to prove that for all $u \in$ mathaccent" $7017 C^{2}\left(\bar{D}_{T}, \partial D_{T}\right)$,

$$
\begin{equation*}
\left.\|u\|_{W_{2, \square}^{1}\left(D_{T / 2}^{+}\right)}^{2} \leq c^{2}\|\square u\|_{L_{2}\left(D_{T / 2}^{+}\right.}^{2}\right), \quad\|u\|_{W_{2, \square}^{1}\left(D_{T / 2}^{-}\right)}^{2} \leq c^{2}\|\square u\|_{L_{2}\left(D_{T / 2}^{-}\right)}^{2}, \tag{2.5}
\end{equation*}
$$

where $D_{T / 2}^{+}=D_{T} \cap\{t<T / 2\}, D_{T / 2}^{-}=D_{T} \cap\{t>T / 2\}$ and the norm $\|\cdot\|_{W_{2, \square}^{1}\left(D_{T / 2}^{ \pm}\right)}$ is given by 1.4 with $D_{T / 2}^{ \pm}$instead of D_{T}.

Let us prove the first inequality of 2.5 , the second inequality can be proved in the same way. Assume $\Omega_{\tau}:=\bar{D}_{T / 2}^{+} \cap\{t=\tau\}, D_{\tau}^{+}=D_{T / 2}^{+} \cap\{t<\tau\}, S_{\tau}^{+}=\{(x, t) \in$ $\left.\partial D_{\tau}^{+}: t=|x|\right\}, 0<\tau \leq T / 2$ and $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}, \gamma_{n+1}\right)$ be the unit vector of outer normal relative to ∂D_{τ}^{+}. For $u \in C^{2^{0}}\left(\bar{D}_{T}, \partial D_{T}\right)$, taking into account equalities $\left.u\right|_{S_{\tau}^{+}}=0, \Omega_{\tau}=\partial D_{\tau}^{+} \cap\{t=\tau\}$ and $\left.\gamma\right|_{\Omega_{\tau}}=(0, \ldots, 0,1)$, integrating by parts it is easy to obtain

$$
\begin{align*}
\int_{D_{\tau}^{+}} \frac{\partial^{2} u}{\partial t^{2}} \frac{\partial u}{\partial t} d x d t & =\frac{1}{2} \int_{D_{\tau}^{+}} \frac{\partial}{\partial t}\left(\frac{\partial u}{\partial t}\right)^{2} d x d t=\frac{1}{2} \int_{\partial D_{\tau}^{+}}\left(\frac{\partial u}{\partial t}\right)^{2} \gamma_{n+1} d s \tag{2.6}\\
& =\frac{1}{2} \int_{\Omega_{\tau}}\left(\frac{\partial u}{\partial t}\right)^{2} d x+\frac{1}{2} \int_{S_{\tau}^{+}}\left(\frac{\partial u}{\partial t}\right)^{2} \gamma_{n+1} d s, \quad \tau \leq T / 2 \\
\int_{D_{\tau}^{+}} \frac{\partial^{2} u}{\partial x_{i}^{2}} \frac{\partial u}{\partial t} d x d t & =\int_{\partial D_{\tau}^{+}} \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial t} \gamma_{i} d s-\frac{1}{2} \int_{D_{\tau}^{+}} \frac{\partial}{\partial t}\left(\frac{\partial u}{\partial x_{i}}\right)^{2} d x d t \\
& =\int_{\partial D_{\tau}^{+}} \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial t} \gamma_{i} d s-\frac{1}{2} \int_{\partial D_{\tau}^{+}}\left(\frac{\partial u}{\partial x_{i}}\right)^{2} \gamma_{n+1} d s \\
& =\int_{\partial D_{\tau}^{+}} \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial t} \gamma_{i} d s-\frac{1}{2} \int_{S_{\tau}^{+}}\left(\frac{\partial u}{\partial x_{i}}\right)^{2} \gamma_{n+1} d s-\frac{1}{2} \int_{\Omega_{\tau}}\left(\frac{\partial u}{\partial x_{i}}\right)^{2} d x \tag{2.7}
\end{align*}
$$

with $\tau \leq T / 2$. It follows from (2.6) and 2.7 that

$$
\begin{align*}
& \int_{D_{\tau}^{+}} \square u \frac{\partial u}{\partial t} d x d t \\
& =\int_{S_{\tau}^{+}} \frac{1}{2 \gamma_{n+1}}\left[\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}} \gamma_{n+1}-\frac{\partial u}{\partial t} \gamma_{i}\right)^{2}+\left(\frac{\partial u}{\partial t}\right)^{2}\left(\gamma_{n+1}^{2}-\sum_{j=1}^{n} \gamma_{j}^{2}\right)\right] d s \tag{2.8}\\
& \quad+\frac{1}{2} \int_{\Omega_{\tau}}\left[\left(\frac{\partial u}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}\right] d x, \quad \tau \leq T
\end{align*}
$$

Since $\left.u\right|_{S_{\tau}^{+}}=0$ and operator $\left(\gamma_{n+1} \frac{\partial}{\partial x_{i}}-\gamma_{i} \frac{\partial}{\partial t}\right), 1 \leq i \leq n$, is an inner differential operator on S_{τ}^{+}, then we have the equalities

$$
\begin{equation*}
\left.\left(\frac{\partial u}{\partial x_{i}} \gamma_{n+1}-\frac{\partial u}{\partial t} \gamma_{i}\right)\right|_{S_{\tau}^{+}}=0, \quad i=1, \ldots, n . \tag{2.9}
\end{equation*}
$$

Therefore, taking into account that $\gamma_{n+1}^{2}-\sum_{j=1}^{n} \gamma_{j}^{2}=0$ on the characteristic manifold S_{τ}^{+}, in view of 2.8 and 2.9 , we have

$$
\begin{equation*}
\int_{\Omega_{\tau}}\left[\left(\frac{\partial u}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}\right] d x=2 \int_{D_{\tau}^{+}} \square u \frac{\partial u}{\partial t} d x d t, \quad \tau \leq T / 2 \tag{2.10}
\end{equation*}
$$

Assuming $w(\delta)=\int_{\Omega_{\delta}}\left[\left(\frac{\partial u}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}\right] d x$, and using inequality $2 \square u \frac{\partial u}{\partial t} \leq$ $\varepsilon\left(\frac{\partial u}{\partial t}\right)^{2}+\frac{1}{\varepsilon}|\square u|^{2}$, which is valid for any positive ε, from 2.10 we obtain

$$
\begin{equation*}
w(\delta) \leq \varepsilon \int_{0}^{\delta} w(\sigma) d \sigma+\frac{1}{\varepsilon}\|\square\|_{L_{2}\left(D_{\delta}^{+}\right)}^{2}, \quad 0<\delta \leq T / 2 \tag{2.11}
\end{equation*}
$$

From 2.11), taking into account that value $\|\square\|_{L_{2}\left(D_{\delta}^{+}\right)}^{2}$ as a function of δ is nondecreasing, in view of Gronwall's lemma [11, p. 13] it follows that

$$
w(\delta) \leq \frac{1}{\varepsilon}\|\square\|_{L_{2}\left(D_{\delta}^{+}\right)}^{2} \exp \delta \varepsilon
$$

Hence, taking into account the fact that $\inf _{\varepsilon>0} \frac{1}{\varepsilon} \exp \delta \varepsilon=e \delta$ and it is reached at $\varepsilon=\frac{1}{\delta}$, we obtain

$$
w(\delta) \leq e \delta\|\square\|_{L_{2}\left(D_{\delta}^{+}\right)}^{2}, \quad 0<\delta \leq T / 2
$$

From (2), in turn, it follows that

$$
\begin{equation*}
\left.\int_{D_{T / 2}^{+}}\left[\left(\frac{\partial u}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}\right] d x d t=\int_{0}^{T / 2} w(\delta) d \delta \leq \frac{e}{8} T^{2}\|\square u\|_{L_{2}\left(D_{T / 2}^{+}\right.}^{2}\right) \tag{2.12}
\end{equation*}
$$

Using the equalities $\left.u\right|_{S_{T / 2}}=0$ and $u(x, t)=\int_{|x|}^{t} \frac{\partial u(x, t)}{\partial t} d \tau,(x, t) \in \bar{D}_{T / 2}^{+}$, which are valid for any function $u \in C^{2}\left(\bar{D}_{T}, \partial D_{T}\right)$, by standard reasoning [24, p. 63] we easily obtain

$$
\begin{equation*}
\int_{D_{T / 2}^{+}} u^{2}(x, t) d x d t \leq \frac{1}{4} T^{2} \int_{D_{T / 2}^{+}}\left(\frac{\partial u}{\partial t}\right)^{2} d x d t \tag{2.13}
\end{equation*}
$$

By virtue of 2.12 and (2.13), we have

$$
\begin{aligned}
\|u\|_{\tilde{W}_{2, \square}^{1}\left(D_{T / 2}^{+}\right)}^{2} & =\int_{D_{T / 2}^{+}}\left[u^{2}+\left(\frac{\partial u}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}+(\square u)^{2}\right] d x d t \\
& \leq\left(1+\frac{e}{8} T^{2}+\frac{e}{32} T^{4}\right)\|\square\|_{L_{2}\left(D_{T / 2}^{+}\right)}^{2}
\end{aligned}
$$

whence it follows the first inequality of 2.5 with constant $c^{2}=1+\frac{e}{8} T^{2}+\frac{e}{32} T^{4}$. The proof is complete.

Lemma 2.2. Assume $F \in L_{2}\left(D_{T}\right), 0<\alpha<1$, and in the case when $\alpha>1$ additionally require that $\lambda<0$. Then for a weak generalized solution $u \in \dot{W}_{2, \square}^{1}\left(D_{T}\right)$ of (1.1)- (1.2) in the case with nonlinearity of form (2.1); i.e., problem (2.2)-(1.2) in the sense of integral equality (2.3) with $|u|^{\alpha} \in L_{2}\left(D_{T}\right)$, it is valid a priori estimate

$$
\begin{equation*}
\|u\|_{\dot{W}_{2, \square}^{1}\left(D_{T}\right)} \leq c_{1}\|F\|_{L_{2}\left(D_{T}\right)}+c_{2} \tag{2.14}
\end{equation*}
$$

with non-negative constants $c_{i}(T, \alpha, \lambda), i=1,2$, which do not depend on u, F and $c_{1}>0$.

Proof. First let $\alpha>1$ and $\lambda<0$. Assuming in 2.3) that $\phi=u \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$ and taking into account (1.4), for any $\varepsilon>0$ we have

$$
\begin{align*}
\|\square u\|_{L_{2}\left(D_{T}\right)}^{2} & =\int_{D_{T}}(\square u)^{2} d x d t \\
& =\lambda \int_{D_{T}}|u|^{\alpha+1} d x d t+\int_{D_{T}} F u d x d t \\
& \leq \int_{D_{T}} F u d x d t \tag{2.15}\\
& \leq \frac{1}{4 \varepsilon} \int_{D_{T}} F^{2} d x d t+\varepsilon\|u\|_{L_{2}\left(D_{T}\right)}^{2} \\
& \leq \frac{1}{4 \varepsilon}\|F\|_{L_{2}\left(D_{T}\right)}^{2}+\varepsilon\|u\|_{W_{2, \square}^{1}\left(D_{T}\right)}^{2}
\end{align*}
$$

Due to 2.4 and the above inequality we have

$$
\|u\|_{\tilde{W}_{2, \square}^{1}\left(D_{T}\right)}^{2} \leq c^{2}\|\square u\|_{L_{2}\left(D_{T}\right)}^{2} \leq \frac{c^{2}}{4 \varepsilon}\|F\|_{L_{2}\left(D_{T}\right)}^{2}+c^{2} \varepsilon\|u\|_{\tilde{W}_{2, \square}^{1}\left(D_{T}\right)}^{2}
$$

from which for $\varepsilon=\frac{1}{2 c^{2}}<\frac{1}{c^{2}}$, we obtain

$$
\|u\|_{W_{2, \square}^{1}\left(D_{T}\right)}^{2} \leq \frac{c^{2}}{4 \varepsilon\left(1-\varepsilon c^{2}\right)}\|F\|_{L_{2}\left(D_{T}\right)}^{2}=c^{4}\|F\|_{L_{2}\left(D_{T}\right)}^{2}
$$

From this inequality in the case $\alpha>1$ and $\lambda<0$ follows inequality (2.14) with $c_{1}=c^{2}$ and $c_{2}=0$.

Now let $0<\alpha<1$. Using the known inequality

$$
a b \leq \frac{\varepsilon a^{p}}{p}+\frac{b^{q}}{q \varepsilon^{q-1}}
$$

with parameter $\varepsilon>0$ for $a=|u|^{\alpha+1}, b=1, p=\frac{2}{\alpha+1}>1, q=\frac{2}{1-\alpha}, \frac{1}{p}+\frac{1}{q}=1$, in the same way as for inequality 2.15, we have

$$
\begin{align*}
& \|\square u\|_{L_{2}\left(D_{T}\right)}^{2} \\
& =\int_{D_{T}}(\square u)^{2} d x d t \\
& =\lambda \int_{D_{T}}|u|^{\alpha+1} d x d t+\int_{D_{T}} F u d x d t \tag{2.16}\\
& \leq|\lambda| \int_{D_{T}}\left[\varepsilon \frac{1+\alpha}{2}|u|^{2}+\frac{1-\alpha}{2 \varepsilon^{q-1}}\right] d x d t+\frac{1}{4 \varepsilon} \int_{D_{T}} F^{2} d x d t+\varepsilon \int_{D_{T}} u^{2} d x d t \\
& =\frac{1}{4 \varepsilon}\|F\|_{L_{2}\left(D_{T}\right)}^{2}+\varepsilon\left(|\lambda| \frac{1+\alpha}{2}+1\right)\|u\|_{L_{2}\left(D_{T}\right)}^{2}+|\lambda| \frac{1-\alpha}{2 \varepsilon^{q-1}} \operatorname{meas} D_{T} .
\end{align*}
$$

In view of 1.4 and 2.4 it follows from 2.16 that

$$
\begin{aligned}
& \|u\|_{W_{2, \square}^{1}\left(D_{T}\right)}^{2} \\
& \leq c^{2}\|\square u\|_{L_{2}\left(D_{T}\right)}^{2} \\
& \leq \frac{c^{2}}{4 \varepsilon}\|F\|_{L_{2}\left(D_{T}\right)}^{2}+\varepsilon c^{2}\left(|\lambda| \frac{1+\alpha}{2}+1\right)\|u\|_{\tilde{W}_{2, \square}^{1}\left(D_{T}\right)}^{2}+c^{2}|\lambda| \frac{1-\alpha}{2 \varepsilon^{q-1}} \operatorname{meas} D_{T},
\end{aligned}
$$

where $q=\frac{2}{1-\alpha}$; whence for $\varepsilon=\frac{1}{2} c^{-2}\left(|\lambda| \frac{1+\alpha}{2}+1\right)^{-1}$,

$$
\begin{align*}
& \|u\|_{W_{2, \square}^{1}\left(D_{T}\right)}^{2} \\
& \leq\left[1-\varepsilon c^{2}\left(|\lambda| \frac{1+\alpha}{2}+1\right)\right]^{-1}\left(\frac{c^{2}}{4 \varepsilon}\|F\|_{L_{2}\left(D_{T}\right)}^{2}+c^{2}|\lambda| \frac{1-\alpha}{2 \varepsilon^{q-1}} \text { meas meas } D_{T}\right) \tag{2.17}\\
& =c^{4}\left(|\lambda| \frac{1+\alpha}{2}+1\right)\|F\|_{L_{2}\left(D_{T}\right)}^{2}+2 c^{2}|\lambda| \frac{1-\alpha}{2 \varepsilon^{q-1}} \operatorname{meas} D_{T}
\end{align*}
$$

From (2.17), in the case when $0<\alpha<1$, follows inequality (2.14 with $c_{1}=$ $c^{2}\left(|\lambda| \frac{1+\alpha}{2}+1\right)^{1 / 2}$ and $c_{2}=c\left(2|\lambda| \frac{1-\alpha}{2 \varepsilon^{q-1}} \text { meas } D_{T}\right)^{1 / 2}$, where $q=\frac{1}{1-\alpha}$. The proof is complete.

Remark 2.3. From the proof of Lemma 2.2 it follows that in estimate 2.14 the constants c_{1} and c_{2} are equal:

$$
\begin{gather*}
\alpha>1, \quad \lambda<0: \quad c_{1}=c^{2}, \quad c_{2}=0 \tag{2.18}\\
0<\alpha<1, \quad-\infty<\lambda<+\infty: \\
c_{1}=c^{2}\left(|\lambda| \frac{1+\alpha}{2}+1\right)^{1 / 2}, \quad c_{2}=c\left(2|\lambda| \frac{1-\alpha}{2 \varepsilon^{q-1}} \operatorname{meas} D_{T}\right)^{\frac{1}{2}} \tag{2.19}
\end{gather*}
$$

where constant $c=\left(1+\frac{e}{2} T^{2}+\frac{e}{2} T^{4}\right)^{1 / 2}$ is taken from estimate 2.4, and $q=\frac{2}{1-\alpha}$.
Remark 2.4. Below, we will consider a linear problem appropriate for $\sqrt{1.1}-(\sqrt{1.2}$; i.e., when $\lambda=0$. In this case for $F \in L_{2}\left(D_{T}\right)$ it is analogously introduced a concept of the weak generalized solution $u \in \dot{W}_{2, \square}^{1}\left(D_{T}\right)$ of this problem, when

$$
\begin{equation*}
(u, \phi)_{\square}:=\int_{D_{T}} \square u \square \phi d x d t=\int_{D_{T}} F \phi d x d t \quad \forall \phi \in \dot{W}_{2, \square}^{1}\left(D_{T}\right) \tag{2.20}
\end{equation*}
$$

Remark 2.5. In view of (1.4) and 2.4, taking into account that

$$
\begin{aligned}
\left|(\square u, \square \phi)_{L_{2}\left(D_{T}\right)}\right| & =\left|\int_{D_{T}} \square u \square \phi d x d t\right| \\
& \leq\|\square u\|_{L_{2}\left(D_{T}\right)}\|\square \phi\|_{L_{2}\left(D_{T}\right)} \\
& \leq\|\square u\|_{\dot{W}_{2, \square}^{1}\left(D_{T}\right)}\|\square \phi\|_{\dot{W}_{2, \square}^{1}\left(D_{T}\right)},
\end{aligned}
$$

the bilinear form

$$
(u, \phi)_{\square}:=\int_{D_{T}} \square u \square \phi d x d t
$$

in 2.20 can be considered as a scalar product in the Hilbert space $\dot{W}_{2, \square}^{1}\left(D_{T}\right)$. Therefore, since for $F \in L_{2}\left(D_{T}\right)$

$$
\left|\int_{D_{T}} F \phi d x d t\right| \leq\|F\|_{L_{2}\left(D_{T}\right)}\|\phi\|_{L_{2}\left(D_{T}\right)} \leq\|F\|_{L_{2}\left(D_{T}\right)}\|\phi\|_{\dot{W}_{2, \square}^{1}\left(D_{T}\right)}
$$

then due to the Riesz theorem [7, p. 83] there is unique function u in the space $\stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$, which satisfies equality 2.20 for any $\phi \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$ and for the norm of which it is valid estimate

$$
\begin{equation*}
\|u\|_{\dot{W}_{2, \square}^{1}\left(D_{T}\right)} \leq\|F\|_{L_{2}\left(D_{T}\right)} . \tag{2.21}
\end{equation*}
$$

Thus, introducing notation $u=L_{0}^{-1} F$, we obtain that to the linear problem appropriate to $\sqrt{1.1})-(1.2)$; i.e., when $\lambda=0$, corresponds the linear, bounded operator

$$
L_{0}^{-1}: L_{2}\left(D_{T}\right) \rightarrow \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right),
$$

for the norm of which, by 2.21 , it is valid the estimate

$$
\begin{equation*}
\left\|L_{0}^{-1}\right\|_{L_{2}\left(D_{T}\right) \rightarrow \dot{W}_{2, \square}^{1}\left(D_{T}\right)} \leq\|F\|_{L_{2}\left(D_{T}\right)} . \tag{2.22}
\end{equation*}
$$

Taking into account Definition 1.1 and Remark 2.5. Equality (2.3) and Problem (2.2)-(1.2) can be rewritten in the equivalent form

$$
\begin{equation*}
u=L_{0}^{-1}\left[\lambda|u|^{\alpha} \operatorname{sgn} u+F\right] \tag{2.23}
\end{equation*}
$$

in the Hilbert space ${ }^{\circ}{ }_{2, \square}^{1}\left(D_{T}\right)$.
Remark 2.6. The embedding operator $I: \dot{W}_{2}^{1}\left(D_{T}\right) \rightarrow L_{q}\left(D_{T}\right)$ is a linear continuous compact operator for $1<q<\frac{2(n+1)}{n-1}$, when $n \geq 2$ [24, p. 81]. At the same time the operator of Nemytskii $N: L_{q}\left(D_{T}\right) \rightarrow L_{2}\left(D_{T}\right)$, which acts according to the formula $N u=\lambda|u|^{\alpha} \operatorname{sgn} u, \alpha>1$, is continuous and bounded for $q \geq 2 \alpha$ [22, p. 349], [23, pp. 66, 67]. Thus, if $1<\alpha<\frac{n+1}{n-1}$, then there exists such number q, that $1<2 \alpha \leq q<\frac{2(n+1)}{n-1}$ and hence the operator

$$
\begin{equation*}
N_{1}=N I: \dot{W}_{2}^{1}\left(D_{T}\right) \rightarrow L_{2}\left(D_{T}\right) \tag{2.24}
\end{equation*}
$$

is continuous and compact operator. In this case since $u \in \dot{W}_{2}^{1}\left(D_{T}\right)$ then it is clear that $f(u)=|u|^{\alpha} \operatorname{sgn} u \in L_{2}\left(D_{T}\right)$. Further, since in view of (1.4) the space $\stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$ is continuously embedded in the space ${ }_{W}^{\circ}\left(D_{T}\right)$, then taking into account (2.24) the operator

$$
\begin{equation*}
N_{2}=N I I_{1}: \dot{W}_{2, \square}^{1}\left(D_{T}\right) \rightarrow L_{2}\left(D_{T}\right) \tag{2.25}
\end{equation*}
$$

where $I_{1}: \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right) \rightarrow \stackrel{\circ}{W}_{2}^{1}\left(D_{T}\right)$ is the embedding operator, continuous and compact for $1<\alpha<\frac{n+1}{n-1}$. For $0<\alpha<1$ operator 2.25 is also continuous and
compact, since according to the Rellich theorem [24, p. 64] the space $\dot{W}_{2}^{1}\left(D_{T}\right)$ is continuously and compactly embedded into $L_{2}\left(D_{T}\right)$, and the space $L_{2}\left(D_{T}\right)$, in turn, is continuously embedded into $L_{p}\left(D_{T}\right)$ for $p<2$.

Let us rewrite equation 2.23 in the form

$$
\begin{equation*}
u=A u:=L_{0}^{-1}\left(N_{2} u+F\right), \tag{2.26}
\end{equation*}
$$

where the operator $N_{2}: \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right) \rightarrow L_{2}\left(D_{T}\right)$, for $0<\alpha<\frac{n+1}{n-1}, \alpha \neq 1$, is continuous and compact in view of the Remark 2.6. Then taking into account 2.22) operator $A: \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right) \rightarrow \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$ in 2.26 is also continuous and compact. At the same time according to a priori estimate $\sqrt{2.14}$ of the Lemma 2.2 , in which the constants c_{1} and c_{2} are given by equalities 2.18 and 2.19 , for any parameter $\tau \in[0,1]$ and for any solution $u \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$ of equation $u=\tau A u$ with this parameter it is valid a priori estimation 2.14 with constants $c_{1}>0$ and $c_{2} \geq 0$, not depending on u, τ and F. Therefore, according to the Lere-Schauder theorem [31, p. 375] equation (2.26), and consequently problem $(2.2)-(1.2)$ has at least one weak generalized solution u in the space $\stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$. This is summarized in the following result.

Theorem 2.7. Let $0<\alpha<\frac{n+1}{n-1}, \alpha \neq 1, \lambda \neq 0$ and $\lambda<0$ when $\alpha>1$. Then for any $F \in L_{2}\left(D_{T}\right)$ problem $(2.2)-(1.2)$ has at least one weak generalized solution $u \in \dot{W}_{2, \square}^{1}\left(D_{T}\right)$.
3. Uniqueness of solution for 1.1$\rangle-1.2$ when $f(u)=|u|^{\alpha} \operatorname{sgn} u$

Let $F \in L_{2}\left(D_{T}\right)$, and u_{1}, u_{2} be two weak generalized solutions of 2.2 - 1.2 in the space $\stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$. According to 2.3),

$$
\begin{equation*}
\int_{D_{T}} \square u_{i} \square \phi d x d t=\lambda \int_{D_{T}} \phi\left|u_{i}\right|^{\alpha} \operatorname{sgn} u_{i} d x d t+\int_{D_{T}} F \phi d x d t \quad \forall \phi \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right) \tag{3.1}
\end{equation*}
$$

and $\left|u_{i}\right|^{\alpha} \in L_{2}\left(D_{T}\right), i=1,2$. For the difference $v=u_{2}-u_{1}$ from (3.1) it follows that

$$
\begin{equation*}
\int_{D_{T}} \square v \square \phi d x d t=\lambda \int_{D_{T}} \phi\left(\left|u_{2}\right|^{\alpha} \operatorname{sgn} u_{2}-\left|u_{1}\right|^{\alpha} \operatorname{sgn} u_{1}\right) d x d t \quad \forall \phi \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right) \tag{3.2}
\end{equation*}
$$

Assuming $\phi=v \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$ in the above equality, we obtain

$$
\begin{equation*}
\int_{D_{T}}(\square v)^{2} d x d t=\lambda \int_{D_{T}}\left(\left|u_{2}\right|^{\alpha} \operatorname{sgn} u_{2}-\left|u_{1}\right|^{\alpha} \operatorname{sgn} u_{1}\right)\left(u_{2}-u_{1}\right) d x d t \tag{3.3}
\end{equation*}
$$

Let us note that for the finite values of u_{1} and u_{2} with $\alpha>0$ it is valid the inequality

$$
\begin{equation*}
\left(\left|u_{2}\right|^{\alpha} \operatorname{sgn} u_{2}-\left|u_{1}\right|^{\alpha} \operatorname{sgn} u_{1}\right)\left(u_{2}-u_{1}\right) \geq 0 \tag{3.4}
\end{equation*}
$$

From (3.3) and inequality (3.4), which is true for almost all points $(x, t) \in D_{T}$ with $u_{i} \in W_{2, \square}^{1}\left(D_{T}\right), i=1,2$, in the case when $\alpha>0$ and $\lambda<0$ it follows that

$$
\int_{D_{T}}(\square v)^{2} d x d t \leq 0
$$

whence, due to 2.4 , we obtain $v=0$; i.e. $u_{1}=u_{2}$. This result is summarized in the next theorem.

Theorem 3.1. Let $\alpha>0, \alpha \neq 1$ and $\lambda<0$. Then for any $F \in L_{2}\left(D_{T}\right)$, Problem (2.2)-(1.2) cannot have more than one generalized solution in $\dot{W}_{2, \square}^{1}\left(D_{T}\right)$.

The following result follows from Theorems 2.7 and 3.1 .
Theorem 3.2. Let $0<\alpha<\frac{n+1}{n-1}, \alpha \neq 1$ and $\lambda<0$. Then for any $F \in L_{2}\left(D_{T}\right)$, Problem 2.2-(1.2 has an unique weak generalized solution $u \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$.

4. Non-solvability of $1.1-1.2$ When $f(u)=|u|^{\alpha}$

Now assume that in (1.1), and therefore in (1.3), that $f(u)=|u|^{\alpha}, \alpha>1$.
Theorem 4.1. Let $F^{0} \in L_{2}\left(D_{T}\right),\left\|F^{0}\right\|_{L_{2}\left(D_{T}\right)} \neq 0, F^{0} \geq 0$, and $F=\mu F^{0}$, μ is a positive constant. Then when $f(u)=|u|^{\alpha}$ with $\alpha>1$ and $\lambda>0$, there exists a number $\mu_{0}=\mu_{0}\left(F^{0}, \lambda, \alpha\right)>0$ suh that for $\mu>\mu_{0}$, problem 1.1)-1.2 can not have a weak generalized solution in the space $\dot{W}_{2, \square}^{1}\left(D_{T}\right)$.
Proof. Let us assume that there is a solution $u \in W_{2, \square}^{1}\left(D_{T}\right)$ of problem (1.1)- 1.2) exists for any fixed $\mu>0$. Then 1.5 takes the form

$$
\begin{equation*}
\int_{D_{T}} \square u \square \phi d x d t=\lambda \int_{D_{T}}|u|^{\alpha} \phi d x d t+\mu \int_{D_{T}} F^{0} \phi d x d t \quad \forall \phi \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right) . \tag{4.1}
\end{equation*}
$$

It is easy to verify that

$$
\begin{equation*}
\int_{D_{T}} \square u \square \phi d x d t=\int_{D_{T}} u \square^{2} \phi d x d t \quad \forall \phi \in \dot{C}^{4}\left(\bar{D}_{T}, \partial D_{T}\right) \tag{4.2}
\end{equation*}
$$

where $\dot{C}^{4}\left(\bar{D}_{T}, \partial D_{T}\right)=\left\{u \in C^{4}\left(\bar{D}_{T}\right):\left.u\right|_{\partial D_{T}}=0\right\} \subset \dot{W}_{2, \square}^{1}\left(D_{T}\right)$. Indeed, since $u \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$, and the space $\dot{C}^{2}\left(\bar{D}_{T}, \partial D_{T}\right)$ is dense in $\dot{W}_{2, \square}^{1}\left(D_{T}\right)$, there exists such sequence $u_{k} \in \dot{C}^{2}\left(\bar{D}_{k}, \partial D_{k}\right)$ that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|u_{k}-u\right\|_{\dot{W}_{2, \square}^{1}\left(D_{T}\right)}=0 \tag{4.3}
\end{equation*}
$$

Taking into account that

$$
\begin{equation*}
\int_{D_{T}} \square u_{k} \square \phi d x d t=\int_{\partial D_{T}} \frac{\partial u_{k}}{\partial N} \square \phi d s-\int_{\partial D_{T}} u_{k} \frac{\partial}{\partial N} \square \phi d s+\int_{D_{T}} u_{k} \square^{2} \phi d x d t \tag{4.4}
\end{equation*}
$$

where the derivative on the conormal $\frac{\partial}{\partial N}=\gamma_{n+1} \frac{\partial}{\partial t}-\sum_{i=1}^{n} \gamma_{i} \frac{\partial}{\partial x_{i}}$ is an inner differential operator on characteristic manifold ∂D_{T}, and, therefore $\left.\frac{\partial u_{k}}{\partial N}\right|_{\partial D_{T}}=0$, since $\left.u_{k}\right|_{\partial D_{T}}=0$, then from 4.4) we obtain

$$
\begin{equation*}
\int_{D_{T}} \square u_{k} \square \phi d x d t=\int_{D_{T}} u_{k} \square^{2} \phi d x d t \tag{4.5}
\end{equation*}
$$

where $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}, \gamma_{n+1}\right)$ is the unit vector of outer normal relative to ∂D_{T}. Passing in 4.5 to the limit with $k \rightarrow \infty$, in view of 1.4 and 4.3, we obtain 4.2).

Taking into account (4.2) let us rewrite equality (4.1) in the form

$$
\begin{equation*}
\lambda \int_{D_{T}}|u|^{\alpha} \phi d x d t=\int_{D_{T}} u \square^{2} \phi d x d t-\mu \int_{D_{T}} F^{0} \phi d x d t \quad \forall \phi \in \dot{C}^{4}\left(\bar{D}_{T}, \partial D_{T}\right) \tag{4.6}
\end{equation*}
$$

Below we use the method of test functions [22, p. 10-12]. Let us select such a test function $\phi \in \dot{C}^{4}\left(\bar{D}_{T}, \partial D_{T}\right)$, that $\left.\phi\right|_{D_{T}}>0$. If in Young's inequality with parameter $\varepsilon>0$

$$
a b \leq \frac{\varepsilon}{\alpha} a^{\alpha}+\frac{1}{\alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}} b^{\alpha^{\prime}}, \quad a, b \geq 0, \alpha^{\prime}=\frac{\alpha}{\alpha-1}
$$

we take $a=|u| \phi^{1 / \alpha}, b=\frac{\left|\square^{2} \phi\right|}{\phi^{\frac{1}{\alpha}}}$, then due to the fact that $\frac{\alpha^{\prime}}{\alpha}=\alpha^{\prime}-1$, we have

$$
\begin{equation*}
\left|u \square^{2} \phi\right|=|u| \phi^{\frac{1}{\alpha}} \frac{\left|\square^{2} \phi\right|}{\phi^{\frac{1}{\alpha}}} \leq \frac{\varepsilon}{\alpha}|u|^{\alpha} \phi+\frac{1}{\alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}} \frac{\left|\square^{2} \phi\right|^{\alpha^{\prime}}}{\phi^{\alpha^{\prime}-1}} . \tag{4.7}
\end{equation*}
$$

By 4.7) and 4.6 we have the inequality

$$
\left(\lambda-\frac{\varepsilon}{\alpha}\right) \int_{D_{T}}|u|^{\alpha} \phi d x d t \leq \frac{1}{\alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}} \int_{D_{T}} \frac{\left|\square^{2} \phi\right|^{\alpha^{\prime}}}{\phi^{\alpha^{\prime}-1}} d x d t-\mu \int_{D_{T}} F^{0} \phi d x d t
$$

whence for $\varepsilon<\lambda \alpha$ we obtain

$$
\begin{equation*}
\int_{D_{T}}|u|^{\alpha} \phi d x d t \leq \frac{\alpha}{(\lambda \alpha-\varepsilon) \alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}} \int_{D_{T}} \frac{\left|\square^{2} \phi\right|^{\alpha^{\prime}}}{\phi^{\alpha^{\prime}-1}} d x d t-\frac{\alpha \mu}{\lambda \alpha-\varepsilon} \int_{D_{T}} F^{0} \phi d x d t \tag{4.8}
\end{equation*}
$$

Taking into account the equalities $\alpha^{\prime}=\frac{\alpha}{\alpha-1}, \alpha=\frac{\alpha^{\prime}}{\alpha^{\prime}-1}$, and

$$
\min _{0<\varepsilon<\lambda \alpha} \frac{\alpha}{(\lambda \alpha-\varepsilon) \alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}}=\frac{1}{\lambda^{\alpha^{\prime}}},
$$

which is reached at $\varepsilon=\lambda$, it follows from (4.8) that

$$
\int_{D_{T}}|u|^{\alpha} \phi d x d t \leq \frac{1}{\lambda^{\alpha^{\prime}}} \int_{D_{T}} \frac{\left|\square^{2} \phi\right|^{\alpha^{\prime}}}{\phi^{\alpha^{\prime}-1}} d x d t-\frac{\alpha^{\prime} \mu}{\lambda} \int_{D_{T}} F^{0} \phi d x d t
$$

Let us note that is not difficult to the existence of test function ϕ, such that

$$
\begin{equation*}
\phi \in \dot{C}^{4}\left(\bar{D}_{T}, \partial D_{T}\right),\left.\quad \phi\right|_{D_{T}}>0, \quad \kappa=\int_{D_{T}} \frac{\left|\square^{2} \phi\right|^{\alpha^{\prime}}}{\phi^{\alpha^{\prime}-1}} d x d t<+\infty \tag{4.9}
\end{equation*}
$$

Indeed, it is easy to verify that the function

$$
\phi(x, t)=\left[\left(t^{2}-|x|^{2}\right)\left((T-t)^{2}-|x|^{2}\right)\right]^{m}
$$

for sufficiently large positive m satisfies conditions 4.9).
According to the conditions in this theorem, $F^{\sigma} \in L_{2}\left(D_{T}\right),\left\|F^{0}\right\|_{L_{2}\left(D_{T}\right)} \neq 0$, $F^{0} \geq 0$, and meas $D_{T}<+\infty$. Then due to the fact that $\left.\phi\right|_{D_{T}}>0$ we have

$$
\begin{equation*}
0<\kappa_{1}=\int_{D_{T}} F^{0} \phi d x d t<+\infty \tag{4.10}
\end{equation*}
$$

Let us denote by $g(\mu)$ the right side of inequality (4), which is a linear function with respect to μ, then in view of 4.9) and 4.10 we have

$$
\begin{equation*}
g(\mu)<0 \text { for } \mu>\mu_{0} \quad \text { and } \quad g(\mu)>0 \text { for } \mu<\mu_{0} \tag{4.11}
\end{equation*}
$$

where

$$
g(\mu)=\frac{\kappa_{0}}{\lambda^{\alpha^{\prime}}}-\frac{\alpha^{\prime} \mu}{\lambda} \kappa_{1}, \quad \mu_{0}=\frac{\lambda}{\alpha^{\prime} \lambda^{\alpha^{\prime}}} \frac{\kappa_{0}}{\kappa_{1}}>0
$$

According to 4.11 with $\mu>\mu_{0}$ the right side of inequality (4) is negative, while the left side is non-negative. This contradiction completes the proof.

References

[1] A. V. Bitsadze; Some Classes of Partial Differential Equations. Izdat. "Nauka", Moscow, 1981.
[2] M. M. Cavalcanti, V. N. D. Cavalcanti, I. Lasiecka; Well posedness and optimal decay rates for the wave equation with nonlinear boundary damping - source interaction. J. Differential Equations 236 (2007), 407-459.
[3] F. Cagnac; Problème de Cauchy sur un conoïde caractéristique. Ann. Mat. Pura Appl. (4) 104 (1975), 355-393.
[4] R. C. Charão and R. Ikehata; Decay of solutions for a semilinear system of elastic waves in an exterior domain with damping near infinity. Nonlinear Analysis 67 (2007), 398-429.
[5] J. W. Cholewa and T. Dlotco; Strongly damped wave equation in uniform spaces. Nonlinear Analysis 64 (2006), 174-187.
[6] R. Courant; Partial Differential Equations. Izdat. "Mir", Moscow, 1964.
[7] D. Gilbarg and N. Trudinger; Elliptic Partial Differential Equations of Second Order. Izdat. "Nauka", Moscow, 1989.
[8] V. Georgiev, H. Lindblad, and C.D. Sogge; Weighted Strichartz estimates and global existence for semilinear wave equations. Amer. J. Math. 119(1997), no.6, 1291-1319.
[9] J. Ginibre, A. Soffer, and G. Velo; The global Cauchy problem for the critical nonlinear wave equation. J Funct. Anal. 110(1992), no.1, 96-130.
[10] J. Hadamard; Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques. Hermann, Paris, 1932.
[11] D. Henry, Geometric Theory of Semilinear Parabolic Equations. Izdat. "Mir", Moscow, 1985.
[12] L. Hörmander; Lectures on Nonlinear Hyperbolic Differential Equations. Mathématics \& Applications (Berlin), Vol.26, Springer-Verlag, Berlin, 1997.
[13] R. Ikehata and K. Tanizawa; Global existence of solutions for semilinear damped wave equations in \mathbb{R}^{N} with noncompactly supported initial data. Nonlinear Analysis 61 (2005), 11891208.
[14] F. John; Blow-up of solutions of nonlinear wave equations in three space dimensions. Manuscripta Math. 28(1979), no. 1-3, 235-268.
[15] F. John; Blow-up for quasilinear wave equations in three space dimensions. Comm. Pure Appl. Math. 34(1981), no. 1, 29-51.
[16] F. John And S. Klainerman; Almost global existence to nonlinear wave equations in three space dimensions. Comm. Pure Appl. Math. 37 (1984), no. 4, 443-455.
[17] K. Jörgens; Das Anfangswertproblem im Grossen für eine Klasse nichtlinearer Wellengleichungen. Math.Z. 77(1961), 295-308 (German).
[18] T. Kato; Blow-up of solutions of some nonlinear hyperbolic equations. Comm. Pure Appl. Math. 33 (1980), no. 4, 501-505.
[19] S. Kharibegashvili; On the existence or the absence of global solutions of the Cauchy characteristic problem for some nonlinear hyperbolic equations. J. Boundary Value Problems 2005(2005), no.3, 359-376.
[20] S. Kharibegashvili; On the nonexistence of global solutions of the characteristic Cauchy problem for a nonlinear wave equation in a conical domain. Differential Equations, 42(2006), No.2, 279-290. Translated from Differential'nye Uravneniya, 42(2006), No.2, 261-271.
[21] S. Kharibegashvili; Some multidimensional problems for hyperbolic partial differential equations and systems. Mem. Differential Equations Math. Phys. 37(2006), 1-136.
[22] M. A. Krasnosel'skiǐ, P. P. Zabreǐko, E. I. Pustyl'nik, and P. E. Sobolevskiǐ; Integral Operators in Spaces of Summable Functions. Izdat. "Nauka", Moscow, 1966.
[23] A. Kufner and S. Fuchik, Nonlinear Differential Equations. Izdat. "Nauka", Moscow, 1988.
[24] O. A. Ladyzhenskaya; Boundary Value Problems of Mathematical Physics. Izdat. "Nauka", Moscow, 1973.
[25] H. A. Levine; Instability and nonexistence of global solutions to nonlinear wave equations of the form $P u_{t t}=-A u+\mathfrak{F}(u)$. Trans. Amer. Math. Soc. 192 (1974), 1-21.
[26] L. Lundberg; The Klein-Gordon equation with light-cone data. Comm. Math. Phys. 62(1978), no.2, 107-118.
[27] E. Mitidieri and S. I. Pohozaev; A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities. (Russian) Trudy Mat. Inst. Steklova, 234(2001), 1-384; English transl.: Proc. Steklov Inst. Math. 2001, no. 3(234), 1-362.
[28] T. G. Sideris; Nonexistence of global solutions to semilinear wave equations in high dimensions. J Differential Equations 52 (1984), no.3, 378-406.
[29] W. A. Strauss; Nonlinear scattering theory at low energy. J Funct. Anal. 41 (1981), no. 1, 110-133.
[30] G. Todorova and E. Vitillaro; Blow-up for nonlinear dissipative wave equations in \mathbb{R}^{n}. J. Math. Anal. Appl. 303 (2005), no.1, 242-257.
[31] V. A. Trenogin; Functional Analysis. Izdat. "Nauka", Moscow, 1993.
[32] P.-F. Yao; Global smooth solutions for the quasilinear wave equation with boundary dissipation. J. Differential Equations 241 (2007), 62-93.
[33] B. Yordanov and Qi. S. Zhang; Finite time blow up for critical wave equations in high dimensions. J. Funct. Anal. 231 (2006), 361-374.
[34] J. Zhu; Blow-up of solutions of a semilinear hyperbolic equation and a parabolic equation with general forcing term and boundary condition. Nonlinear Analysis 67 (2007), 33-38.

Sergo Kharibegashvili
A. Razmadze Mathematical Institute, 1, M. Aleksidze St., Tbilisi 0193, Georgia

E-mail address: kharibegashvili@yahoo.com
Bidzina Midodashvili
A. Razmadze Mathematical Institute, 1, M. Aleksidze St., Tbilisi 0193, Georgia

E-mail address: bidmid@hotmail.com

[^0]: 2000 Mathematics Subject Classification. 35L05, 35L35, 35L75.
 Key words and phrases. Characteristic boundary-value problem; hyperbolic equations;
 wave operator; power nonlinearity; nonexistence.
 (C) 2008 Texas State University - San Marcos.

 Submitted February 18, 2008. Published May 15, 2008.

