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SOLVABILITY OF CHARACTERISTIC BOUNDARY-VALUE
PROBLEMS FOR NONLINEAR EQUATIONS WITH ITERATED

WAVE OPERATOR IN THE PRINCIPAL PART

SERGO KHARIBEGASHVILI, BIDZINA MIDODASHVILI

Abstract. A characteristic boundary-value problem for a hyperbolic equation
with power nonlinearity and iterated wave operator in the principal part is

considered in a conical domain. Depending on the exponent of nonlinearity

and spatial dimensionality of the equation, the existence and uniqueness of
the solution of a boundary-value problem is established. The non-solvability

of this problem is also considered here.

1. introduction

In the Euclidean space Rn+1 of independent variables x1, x2, . . . , xn, t, consider
the nonlinear equation

Lλu := �2u = λf(u) + F, (1.1)
where λ is a given real constant, f : R → R is a given continuous nonlinear function,
f(0) = 0, F is a given, and u is an unknown real functions, and for n ≥ 2,

� =
∂2

∂t2
−

n∑
i=1

∂2

∂x2
i

.

Let DT : |x| < t < T − |x| be a domain, which is the intersection of the light
cone of future K+

O : t > |x| with the apex in the origin O(0, 0, . . . , 0) and light cone
of past K−

A : t < T − |x| with apex in point A(0, . . . , 0, T ), T = const > 0.
For equation (1.1) consider the boundary-value problem on determination of its

solution u(x1, . . . , xn, t) in domain DT with the boundary condition

u
∣∣
∂DT

= 0. (1.2)

It should be noted that for nonlinear hyperbolic equations the local or global
solvability of the Cauchy problem with initial conditions for t = 0 and mixed
problems has been studied in numerous publications; see, [2, 4, 5, 8, 9, 12, 13, 14,
15, 16, 17, 18, 25, 27, 28, 29, 30, 32, 33, 34].

Regarding the nonlinear wave equation �u = λf(u) + F , we have the following
results: The characteristic problem in the light cone of future K+

O : t > |x|, with
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boundary condition u|∂K+
O

= g, in the linear case with λ = 0, is well-posed and
has global solvability in some appropriate function spaces; see [1, 3, 6, 10, 26].
Meanwhile, the nonlinear case, when f(u) has exponential nature and λ 6= 0, has
been considered in [19, 20, 21].

Assume C̊k(DT , ∂DT ) = {u ∈ Ck(DT ) : u|∂DT
= 0}, k ≥ 1. Let u ∈ C̊4(DT ,

∂DT ) be a classical solution of problem (1.1)-(1.2). Multiplying the both parts of
(1.1) by an arbitrary function φ ∈ C̊2(DT , ∂DT ) and integrating obtained equation
by parts in domain DT we obtain∫

DT

�u�φdx dt = λ

∫
DT

f(u)φ dx dt +
∫

DT

Fφdx dt. (1.3)

Here we used the equality∫
DT

�u�φ dx dt =
∫

∂DT

∂φ

∂N
�uds−

∫
∂DT

φ
∂

∂N
�uds +

∫
DT

φ�2u dx dt

and the fact that since ∂DT is characteristic manifold, then derivative on the conor-
mal

∂

∂N
= γn+1

∂

∂t
−

n∑
i=1

γi
∂

∂xi
,

where γ = (γ1, . . . , γn, γn+1) is the unit vector of external normal relative to ∂DT ,
is an inner differential operator on characteristic manifold ∂DT and, thus, if v ∈
C̊1(DT , ∂DT ), then ∂v

∂N |∂DT
= 0.

Let us introduce the Hilbert space W̊ 1
2,�(DT ) as a completion with respect to

the norm

‖u‖2
W̊ 1

2,�
(DT )

=
∫

DT

[
u2 + (

∂u

∂t
)2 +

n∑
i=1

(
∂u

∂xi
)2 + (�u)2

]
dx dt (1.4)

of classical space C̊2(DT , ∂DT ). It follows from (1.4) that if u ∈ W̊ 1
2, �(DT ), then

u ∈ W̊ 1
2 (DT ) and �u ∈ L2(DT ). Here W 1

2 (DT ) is the known Sobolev space [24,
p. 56], consisting of elements from L2(DT ), which have first order generalized
derivatives in L2(DT ), and W̊ 1

2 (DT ) = {u ∈ W 1
2 (DT ) : u|∂DT

= 0}, where equality
u|∂DT

= 0 should be understood in the sense of the theory of trace [24, p. 70].
Let us assume (1.3) as the basis of determination of generalized solution of

problem (1.1)-(1.2).

Definition 1.1. Let F ∈ L2(DT ). We call function u ∈ W̊ 1
2,�(DT ) a weak gen-

eralized solution of problem (1.1)-(1.2) if f(u) ∈ L2(DT ) and for any function
φ ∈ W̊ 1

2,�(DT ) it is valid integral equality (1.3); i.e.∫
DT

�u�φdx dt = λ

∫
DT

f(u)φdx dt +
∫

DT

Fφdx dt ∀φ ∈ W̊ 1
2,�(DT ). (1.5)

It is easy to verify that if the solution u of problem (1.1)-(1.2) in the sense of the
above definition belongs to the class C4(DT ), then it will be a classical solution of
this problem.
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2. solvability of (1.1)-(1.2) with f(u) = |u|α sgn u

Assume that for a positive constant α 6= 1, the nonlinear function f in (1.1) has
the form

f(u) = |u|α sgn u . (2.1)

Then in accordance to (2.1), equation (1.1) and (1.5) take the form

Lλu := �2u = λ|u|α sgn u + F (2.2)

and∫
DT

�u�φdx dt = λ

∫
DT

φ|u|α sgn u dx dt +
∫

DT

Fφdx dt, ∀φ ∈ W̊ 1
2,�(DT ).

(2.3)

Lemma 2.1. With the norm of the space W̊ 1
2,�(DT ) given in (1.4),

‖u‖W̊ 1
2,�

(DT ) ≤ c‖�u‖L2(DT ) ∀u ∈ W̊ 1
2,�(DT ) (2.4)

where c is positive constant independent on u.

Proof. Since the space C̊2(DT , ∂DT ) is the dense subspace of space W̊ 1
2,�(DT ) it is

sufficient to prove that for all u ∈ mathaccent”7017C2(DT , ∂DT ),

‖u‖2
W 1

2,�
(D+

T/2)
≤ c2‖�u‖2

L2(D
+
T/2)

, ‖u‖2
W 1

2,�
(D−

T/2)
≤ c2‖�u‖2

L2(D
−
T/2)

, (2.5)

where D+
T/2 = DT ∩{t < T/2}, D−

T/2 = DT ∩{t > T/2} and the norm ‖·‖W 1
2,�

(D±
T/2)

is given by (1.4) with D±
T/2 instead of DT .

Let us prove the first inequality of (2.5), the second inequality can be proved in
the same way. Assume Ωτ := D

+

T/2∩{t = τ}, D+
τ = D+

T/2∩{t < τ}, S+
τ = {(x, t) ∈

∂D+
τ : t = |x|}, 0 < τ ≤ T/2 and γ = (γ1, . . . , γn, γn+1) be the unit vector of outer

normal relative to ∂D+
τ . For u ∈ C20(DT , ∂DT ), taking into account equalities

u|S+
τ

= 0, Ωτ = ∂D+
τ ∩ {t = τ} and γ|Ωτ

= (0, . . . , 0, 1), integrating by parts it is
easy to obtain∫

D+
τ

∂2u

∂t2
∂u

∂t
dx dt =

1
2

∫
D+

τ

∂

∂t
(
∂u

∂t
)2 dx dt =

1
2

∫
∂D+

τ

(
∂u

∂t
)2γn+1ds

=
1
2

∫
Ωτ

(
∂u

∂t
)2dx +

1
2

∫
S+

τ

(
∂u

∂t
)2γn+1ds, τ ≤ T/2,

(2.6)

∫
D+

τ

∂2u

∂x2
i

∂u

∂t
dx dt =

∫
∂D+

τ

∂u

∂xi

∂u

∂t
γids− 1

2

∫
D+

τ

∂

∂t
(

∂u

∂xi
)2 dx dt

=
∫

∂D+
τ

∂u

∂xi

∂u

∂t
γids− 1

2

∫
∂D+

τ

(
∂u

∂xi
)2γn+1ds

=
∫

∂D+
τ

∂u

∂xi

∂u

∂t
γids− 1

2

∫
S+

τ

(
∂u

∂xi
)2γn+1ds− 1

2

∫
Ωτ

(
∂u

∂xi
)2dx,

(2.7)
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with τ ≤ T/2. It follows from (2.6) and (2.7) that∫
D+

τ

�u
∂u

∂t
dx dt

=
∫

S+
τ

1
2γn+1

[ n∑
i=1

( ∂u

∂xi
γn+1 −

∂u

∂t
γi

)2

+ (
∂u

∂t
)2

(
γ2

n+1 −
n∑

j=1

γ2
j

)]
ds

+
1
2

∫
Ωτ

[
(
∂u

∂t
)2 +

n∑
i=1

(
∂u

∂xi
)2

]
dx, τ ≤ T.

(2.8)

Since u|S+
τ

= 0 and operator (γn+1
∂

∂xi
− γi

∂
∂t ), 1 ≤ i ≤ n, is an inner differential

operator on S+
τ , then we have the equalities( ∂u

∂xi
γn+1 −

∂u

∂t
γi

)∣∣
S+

τ
= 0, i = 1, . . . , n. (2.9)

Therefore, taking into account that γ2
n+1 −

∑n
j=1 γ2

j = 0 on the characteristic
manifold S+

τ , in view of (2.8) and (2.9), we have∫
Ωτ

[
(
∂u

∂t
)2 +

n∑
i=1

(
∂u

∂xi
)2

]
dx = 2

∫
D+

τ

�u
∂u

∂t
dx dt, τ ≤ T/2. (2.10)

Assuming w(δ) =
∫
Ωδ

[(∂u
∂t )2 +

∑n
i=1 ( ∂u

∂xi
)2]dx, and using inequality 2�u∂u

∂t ≤
ε(∂u

∂t )2 + 1
ε |�u|2, which is valid for any positive ε, from (2.10) we obtain

w(δ) ≤ ε

∫ δ

0

w(σ)dσ +
1
ε
‖�‖2

L2(D
+
δ )

, 0 < δ ≤ T/2. (2.11)

From (2.11), taking into account that value ‖�‖2
L2(D

+
δ )

as a function of δ is non-

decreasing, in view of Gronwall’s lemma [11, p. 13] it follows that

w(δ) ≤ 1
ε
‖�‖2

L2(D
+
δ )

exp δε.

Hence, taking into account the fact that infε>0
1
ε exp δε = eδ and it is reached at

ε = 1
δ , we obtain

w(δ) ≤ eδ‖�‖2
L2(D

+
δ )

, 0 < δ ≤ T/2.

From (2), in turn, it follows that∫
D+

T/2

[(
∂u

∂t
)2 +

n∑
i=1

(
∂u

∂xi
)2] dx dt =

∫ T/2

0

w(δ)dδ ≤ e

8
T 2‖�u‖2

L2(D
+
T/2)

. (2.12)

Using the equalities u|ST/2 = 0 and u(x, t) =
∫ t

|x|
∂u(x,t)

∂t dτ , (x, t) ∈ D
+

T/2, which

are valid for any function u ∈ C20(DT , ∂DT ), by standard reasoning [24, p. 63] we
easily obtain ∫

D+
T/2

u2(x, t) dx dt ≤ 1
4
T 2

∫
D+

T/2

(
∂u

∂t
)2 dx dt. (2.13)
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By virtue of (2.12) and (2.13), we have

‖u‖2
W̊ 1

2,�
(D+

T/2)
=

∫
D+

T/2

[
u2 + (

∂u

∂t
)2 +

n∑
i=1

(
∂u

∂xi
)2 + (�u)2

]
dx dt

≤
(
1 +

e

8
T 2 +

e

32
T 4

)
‖�‖2

L2(D
+
T/2)

,

whence it follows the first inequality of (2.5) with constant c2 = 1 + e
8T 2 + e

32T 4.
The proof is complete. �

Lemma 2.2. Assume F ∈ L2(DT ), 0 < α < 1, and in the case when α > 1
additionally require that λ < 0. Then for a weak generalized solution u ∈ W̊ 1

2,�(DT )
of (1.1)-(1.2) in the case with nonlinearity of form (2.1); i.e., problem (2.2)-(1.2) in
the sense of integral equality (2.3) with |u|α ∈ L2(DT ), it is valid a priori estimate

‖u‖W̊ 1
2,�

(DT ) ≤ c1‖F‖L2(DT ) + c2 (2.14)

with non-negative constants ci(T, α, λ), i = 1, 2, which do not depend on u, F and
c1 > 0.

Proof. First let α > 1 and λ < 0. Assuming in (2.3) that φ = u ∈ W̊ 1
2,�(DT ) and

taking into account (1.4), for any ε > 0 we have

‖�u‖2
L2(DT ) =

∫
DT

(�u)2 dx dt

= λ

∫
DT

|u|α+1 dx dt +
∫

DT

Fu dx dt

≤
∫

DT

Fu dx dt

≤ 1
4ε

∫
DT

F 2 dx dt + ε‖u‖2
L2(DT )

≤ 1
4ε
‖F‖2

L2(DT ) + ε‖u‖2
W̊ 1

2,�
(DT )

.

(2.15)

Due to (2.4) and the above inequality we have

‖u‖2
W̊ 1

2,�
(DT )

≤ c2‖�u‖2
L2(DT ) ≤

c2

4ε
‖F‖2

L2(DT ) + c2ε‖u‖2
W̊ 1

2,�
(DT )

,

from which for ε = 1
2c2 < 1

c2 , we obtain

‖u‖2
W̊ 1

2,�
(DT )

≤ c2

4ε(1− εc2)
‖F‖2

L2(DT ) = c4‖F‖2
L2(DT ).

From this inequality in the case α > 1 and λ < 0 follows inequality (2.14) with
c1 = c2 and c2 = 0.

Now let 0 < α < 1. Using the known inequality

ab ≤ εap

p
+

bq

qεq−1



6 S. KHARIBEGASHVILI, B. MIDODASHVILI EJDE-2008/72

with parameter ε > 0 for a = |u|α+1, b = 1, p = 2
α+1 > 1, q = 2

1−α , 1
p + 1

q = 1, in
the same way as for inequality (2.15), we have

‖�u‖2
L2(DT )

=
∫

DT

(�u)2 dx dt

= λ

∫
DT

|u|α+1 dx dt +
∫

DT

Fu dx dt

≤ |λ|
∫

DT

[
ε
1 + α

2
|u|2 +

1− α

2εq−1

]
dx dt +

1
4ε

∫
DT

F 2 dx dt + ε

∫
DT

u2 dx dt

=
1
4ε
‖F‖2

L2(DT ) + ε(|λ|1 + α

2
+ 1)‖u‖2

L2(DT ) + |λ| 1− α

2εq−1
meas DT .

(2.16)

In view of (1.4) and (2.4) it follows from (2.16) that

‖u‖2
W̊ 1

2,�
(DT )

≤ c2‖�u‖2
L2(DT )

≤ c2

4ε
‖F‖2

L2(DT ) + εc2(|λ|1 + α

2
+ 1)‖u‖2

W̊ 1
2,�

(DT )
+ c2|λ| 1− α

2εq−1
meas DT ,

where q = 2
1−α ; whence for ε = 1

2c−2(|λ| 1+α
2 + 1)−1,

‖u‖2
W̊ 1

2,�
(DT )

≤
[
1− εc2

(
|λ|1 + α

2
+ 1

)]−1
( c2

4ε
‖F‖2

L2(DT ) + c2|λ| 1− α

2εq−1
meas meas DT

)
= c4

(
|λ|1 + α

2
+ 1

)
‖F‖2

L2(DT ) + 2c2|λ| 1− α

2εq−1
meas DT .

(2.17)

From (2.17), in the case when 0 < α < 1, follows inequality (2.14) with c1 =
c2(|λ| 1+α

2 + 1)1/2 and c2 = c(2|λ| 1−α
2εq−1 meas DT )1/2, where q = 1

1−α . The proof is
complete. �

Remark 2.3. From the proof of Lemma 2.2 it follows that in estimate (2.14) the
constants c1 and c2 are equal:

α > 1, λ < 0 : c1 = c2, c2 = 0; (2.18)
0 < α < 1, −∞ < λ < +∞ :

c1 = c2(|λ|1 + α

2
+ 1)1/2, c2 = c(2|λ| 1− α

2εq−1
meas DT )

1
2 , (2.19)

where constant c = (1 + e
2T 2 + e

2T 4)1/2 is taken from estimate (2.4), and q = 2
1−α .

Remark 2.4. Below, we will consider a linear problem appropriate for (1.1)-(1.2);
i.e., when λ = 0. In this case for F ∈ L2(DT ) it is analogously introduced a concept
of the weak generalized solution u ∈ W̊ 1

2,�(DT ) of this problem, when

(u, φ)� :=
∫

DT

�u�φdx dt =
∫

DT

Fφdx dt ∀φ ∈ W̊ 1
2,�(DT ). (2.20)
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Remark 2.5. In view of (1.4) and (2.4), taking into account that

|(�u, �φ)L2(DT )| =
∣∣∫

DT

�u�φdx dt
∣∣

≤ ‖�u‖L2(DT )‖�φ‖L2(DT )

≤ ‖�u‖W̊ 1
2,�

(DT )‖�φ‖W̊ 1
2,�

(DT ),

the bilinear form
(u, φ)� :=

∫
DT

�u�φdx dt

in (2.20) can be considered as a scalar product in the Hilbert space W̊ 1
2,�(DT ).

Therefore, since for F ∈ L2(DT )∣∣∫
DT

Fφdx dt
∣∣ ≤ ‖F‖L2(DT )‖φ‖L2(DT ) ≤ ‖F‖L2(DT )‖φ‖W̊ 1

2,�
(DT ),

then due to the Riesz theorem [7, p. 83] there is unique function u in the space
W̊ 1

2,�(DT ), which satisfies equality (2.20) for any φ ∈ W̊ 1
2,�(DT ) and for the norm

of which it is valid estimate

‖u‖W̊ 1
2,�

(DT ) ≤ ‖F‖L2(DT ). (2.21)

Thus, introducing notation u = L−1
0 F , we obtain that to the linear problem appro-

priate to (1.1)-(1.2); i.e., when λ = 0, corresponds the linear, bounded operator

L−1
0 : L2(DT ) → W̊ 1

2,�(DT ),

for the norm of which, by (2.21), it is valid the estimate

‖L−1
0 ‖L2(DT )→W̊ 1

2,�
(DT ) ≤ ‖F‖L2(DT ). (2.22)

Taking into account Definition 1.1 and Remark 2.5, Equality (2.3) and Problem
(2.2)-(1.2) can be rewritten in the equivalent form

u = L−1
0 [λ|u|α sgn u + F ] (2.23)

in the Hilbert space W̊ 1
2,�(DT ).

Remark 2.6. The embedding operator I : W̊ 1
2 (DT ) → Lq(DT ) is a linear contin-

uous compact operator for 1 < q < 2(n+1)
n−1 , when n ≥ 2 [24, p. 81]. At the same

time the operator of Nemytskii N : Lq(DT ) → L2(DT ), which acts according to
the formula Nu = λ|u|α sgn u, α > 1, is continuous and bounded for q ≥ 2α [22, p.
349], [23, pp. 66, 67]. Thus, if 1 < α < n+1

n−1 , then there exists such number q, that

1 < 2α ≤ q < 2(n+1)
n−1 and hence the operator

N1 = NI : W̊ 1
2 (DT ) → L2(DT ) (2.24)

is continuous and compact operator. In this case since u ∈ W̊ 1
2 (DT ) then it is

clear that f(u) = |u|α sgn u ∈ L2(DT ). Further, since in view of (1.4) the space
W̊ 1

2,�(DT ) is continuously embedded in the space W̊ 1
2 (DT ), then taking into account

(2.24) the operator

N2 = NII1 : W̊ 1
2,�(DT ) → L2(DT ), (2.25)

where I1 : W̊ 1
2,�(DT ) → W̊ 1

2 (DT ) is the embedding operator, continuous and com-
pact for 1 < α < n+1

n−1 . For 0 < α < 1 operator (2.25) is also continuous and
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compact, since according to the Rellich theorem [24, p. 64] the space W̊ 1
2 (DT )

is continuously and compactly embedded into L2(DT ), and the space L2(DT ), in
turn, is continuously embedded into Lp(DT ) for p < 2.

Let us rewrite equation (2.23) in the form

u = Au := L−1
0 (N2u + F ), (2.26)

where the operator N2 : W̊ 1
2,�(DT ) → L2(DT ), for 0 < α < n+1

n−1 , α 6= 1, is
continuous and compact in view of the Remark 2.6. Then taking into account (2.22)
operator A : W̊ 1

2,�(DT ) → W̊ 1
2,�(DT ) in (2.26) is also continuous and compact. At

the same time according to a priori estimate (2.14) of the Lemma 2.2, in which
the constants c1 and c2 are given by equalities (2.18) and (2.19), for any parameter
τ ∈ [0, 1] and for any solution u ∈ W̊ 1

2,�(DT ) of equation u = τAu with this
parameter it is valid a priori estimation (2.14) with constants c1 > 0 and c2 ≥ 0,
not depending on u, τ and F . Therefore, according to the Lere-Schauder theorem
[31, p. 375] equation (2.26), and consequently problem (2.2)-(1.2) has at least one
weak generalized solution u in the space W̊ 1

2,�(DT ). This is summarized in the
following result.

Theorem 2.7. Let 0 < α < n+1
n−1 , α 6= 1, λ 6= 0 and λ < 0 when α > 1. Then

for any F ∈ L2(DT ) problem (2.2)-(1.2) has at least one weak generalized solution
u ∈ W̊ 1

2,�(DT ).

3. Uniqueness of solution for (1.1)-(1.2) when f(u) = |u|α sgn u

Let F ∈ L2(DT ), and u1, u2 be two weak generalized solutions of (2.2)-(1.2) in
the space W̊ 1

2,�(DT ). According to (2.3),∫
DT

�ui�φdx dt = λ

∫
DT

φ|ui|α sgn ui dx dt +
∫

DT

Fφdx dt ∀φ ∈ W̊ 1
2,�(DT )

(3.1)
and |ui|α ∈ L2(DT ), i = 1, 2. For the difference v = u2 − u1 from (3.1) it follows
that∫

DT

�v�φ dx dt = λ

∫
DT

φ(|u2|α sgn u2 − |u1|α sgn u1) dx dt ∀φ ∈ W̊ 1
2,�(DT ).

(3.2)
Assuming φ = v ∈ W̊ 1

2,�(DT ) in the above equality, we obtain∫
DT

(�v)2 dx dt = λ

∫
DT

(|u2|α sgn u2 − |u1|α sgn u1)(u2 − u1) dx dt. (3.3)

Let us note that for the finite values of u1 and u2 with α > 0 it is valid the inequality

(|u2|α sgn u2 − |u1|α sgn u1)(u2 − u1) ≥ 0. (3.4)
From (3.3) and inequality (3.4), which is true for almost all points (x, t) ∈ DT with
ui ∈ W̊ 1

2,�(DT ), i = 1, 2, in the case when α > 0 and λ < 0 it follows that∫
DT

(�v)2 dx dt ≤ 0,

whence, due to (2.4), we obtain v = 0; i.e. u1 = u2. This result is summarized in
the next theorem.
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Theorem 3.1. Let α > 0, α 6= 1 and λ < 0. Then for any F ∈ L2(DT ), Problem
(2.2)-(1.2) cannot have more than one generalized solution in W̊ 1

2,�(DT ).

The following result follows from Theorems 2.7 and 3.1.

Theorem 3.2. Let 0 < α < n+1
n−1 , α 6= 1 and λ < 0. Then for any F ∈ L2(DT ),

Problem (2.2)-(1.2) has an unique weak generalized solution u ∈ W̊ 1
2,�(DT ).

4. Non-solvability of (1.1)-(1.2) when f(u) = |u|α

Now assume that in (1.1), and therefore in (1.3), that f(u) = |u|α, α > 1.

Theorem 4.1. Let F 0 ∈ L2(DT ), ‖F 0‖L2(DT ) 6= 0, F 0 ≥ 0, and F = µF 0, µ is
a positive constant. Then when f(u) = |u|α with α > 1 and λ > 0, there exists
a number µ0 = µ0(F 0, λ, α) > 0 suh that for µ > µ0, problem (1.1)-(1.2) can not
have a weak generalized solution in the space W̊ 1

2,�(DT ).

Proof. Let us assume that there is a solution u ∈ W̊ 1
2,�(DT ) of problem (1.1)-(1.2)

exists for any fixed µ > 0. Then (1.5) takes the form∫
DT

�u�φdx dt = λ

∫
DT

|u|αφ dx dt + µ

∫
DT

F 0φ dx dt ∀φ ∈ W̊ 1
2,�(DT ). (4.1)

It is easy to verify that∫
DT

�u�φdx dt =
∫

DT

u�2φdx dt ∀φ ∈ C̊4(DT , ∂DT ), (4.2)

where C̊4(DT , ∂DT ) = {u ∈ C4(DT ) : u|∂DT
= 0} ⊂ W̊ 1

2,�(DT ). Indeed, since
u ∈ W̊ 1

2,�(DT ), and the space C̊2(DT , ∂DT ) is dense in W̊ 1
2,�(DT ), there exists

such sequence uk ∈ C̊2(Dk, ∂Dk) that

lim
k→∞

‖uk − u‖W̊ 1
2,�

(DT ) = 0. (4.3)

Taking into account that∫
DT

�uk�φdx dt =
∫

∂DT

∂uk

∂N
�φds−

∫
∂DT

uk
∂

∂N
�φds +

∫
DT

uk�2φdx dt, (4.4)

where the derivative on the conormal ∂
∂N = γn+1

∂
∂t −

∑n
i=1 γi

∂
∂xi

is an inner differ-
ential operator on characteristic manifold ∂DT , and, therefore ∂uk

∂N |∂DT
= 0, since

uk|∂DT
= 0, then from (4.4) we obtain∫

DT

�uk�φdx dt =
∫

DT

uk�2φdx dt, (4.5)

where γ = (γ1, . . . , γn, γn+1) is the unit vector of outer normal relative to ∂DT .
Passing in (4.5) to the limit with k → ∞, in view of (1.4) and (4.3), we obtain
(4.2).

Taking into account (4.2) let us rewrite equality (4.1) in the form

λ

∫
DT

|u|αφdx dt =
∫

DT

u�2φdx dt−µ

∫
DT

F 0φdx dt ∀φ ∈ C̊4(DT , ∂DT ). (4.6)
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Below we use the method of test functions [22, p. 10-12]. Let us select such a test
function φ ∈ C̊4(DT , ∂DT ), that φ|DT

> 0. If in Young’s inequality with parameter
ε > 0

ab ≤ ε

α
aα +

1
α′εα′−1

bα′ , a, b ≥ 0, α′ =
α

α− 1

we take a = |u|φ1/α, b = |�2φ|
φ

1
α

, then due to the fact that α′

α = α′ − 1, we have

|u�2φ| = |u|φ 1
α
|�2φ|
φ

1
α

≤ ε

α
|u|αφ +

1
α′εα′−1

|�2φ|α′

φα′−1
. (4.7)

By (4.7) and (4.6) we have the inequality

(λ− ε

α
)
∫

DT

|u|αφdx dt ≤ 1
α′εα′−1

∫
DT

|�2φ|α′

φα′−1
dx dt− µ

∫
DT

F 0φdx dt;

whence for ε < λα we obtain∫
DT

|u|αφdx dt ≤ α

(λα− ε)α′εα′−1

∫
DT

|�2φ|α′

φα′−1
dx dt− αµ

λα− ε

∫
DT

F 0φdx dt.

(4.8)
Taking into account the equalities α′ = α

α−1 , α = α′

α′−1 , and

min
0<ε<λα

α

(λα− ε)α′εα′−1
=

1
λα′

,

which is reached at ε = λ, it follows from (4.8) that∫
DT

|u|αφdx dt ≤ 1
λα′

∫
DT

|�2φ|α′

φα′−1
dx dt− α′µ

λ

∫
DT

F 0φ dx dt.

Let us note that is not difficult to the existence of test function φ, such that

φ ∈ C̊4(DT , ∂DT ), φ|DT
> 0, κ =

∫
DT

|�2φ|α′

φα′−1
dx dt < +∞ . (4.9)

Indeed, it is easy to verify that the function

φ(x, t) =
[
(t2 − |x|2)((T − t)2 − |x|2)

]m

for sufficiently large positive m satisfies conditions (4.9).
According to the conditions in this theorem, F 0 ∈ L2(DT ), ‖F 0‖L2(DT ) 6= 0,

F 0 ≥ 0, and meas DT < +∞. Then due to the fact that φ|DT
> 0 we have

0 < κ1 =
∫

DT

F 0φdx dt < +∞. (4.10)

Let us denote by g(µ) the right side of inequality (4), which is a linear function
with respect to µ, then in view of (4.9) and (4.10) we have

g(µ) < 0 for µ > µ0 and g(µ) > 0 for µ < µ0, (4.11)

where

g(µ) =
κ0

λα′
− α′µ

λ
κ1, µ0 =

λ

α′λα′
κ0

κ1
> 0.

According to (4.11) with µ > µ0 the right side of inequality (4) is negative, while
the left side is non-negative. This contradiction completes the proof. �
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