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SOLVABILITY OF CHARACTERISTIC BOUNDARY-VALUE
PROBLEMS FOR NONLINEAR EQUATIONS WITH ITERATED
WAVE OPERATOR IN THE PRINCIPAL PART

SERGO KHARIBEGASHVILI, BIDZINA MIDODASHVILI

ABSTRACT. A characteristic boundary-value problem for a hyperbolic equation
with power nonlinearity and iterated wave operator in the principal part is
considered in a conical domain. Depending on the exponent of nonlinearity
and spatial dimensionality of the equation, the existence and uniqueness of
the solution of a boundary-value problem is established. The non-solvability
of this problem is also considered here.

1. INTRODUCTION

In the Euclidean space R™! of independent variables z1, 2, ..., 2y, t, consider
the nonlinear equation
Lyu := O%u = \f(u) + F, (1.1)
where ) is a given real constant, f : R — R is a given continuous nonlinear function,
f(0) =0, F is a given, and u is an unknown real functions, and for n > 2,
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Let Dy : || < t < T — |z| be a domain, which is the intersection of the light
cone of future K : ¢ > |x| with the apex in the origin O(0,0,...,0) and light cone
of past K, :t <T — |z| with apex in point A(0,...,0,T), T = const > 0.

For equation consider the boundary-value problem on determination of its
solution u(z1,...,Tn,t) in domain D7 with the boundary condition

ulyp, =0 (1.2)

It should be noted that for nonlinear hyperbolic equations the local or global
solvability of the Cauchy problem with initial conditions for ¢ = 0 and mixed
problems has been studied in numerous publications; see, [2] [} [ [8, @] 12} 13} [14]
15, 16l (17, 18, 25, 27, 28, 29, [30, [32] 33, [34].

Regarding the nonlinear wave equation Ou = Af(u) + F', we have the following
results: The characteristic problem in the light cone of future K/ : ¢ > |z|, with
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boundary condition u| oKs = 9> in the linear case with A = 0, is well-posed and
has global solvability in some appropriate function spaces; see [II, [3, [6], 10, 26].
Meanwhile, the nonlinear case, when f(u) has exponential nature and A # 0, has
been considered in [19] 20, 21].

Assume C*(Dy,0D7) = {u € C*(Dy) : ulopp, =0}, k > 1. Let u € C*(Dr,
0Dr) be a classical solution of problem -. Multiplying the both parts of
by an arbitrary function ¢ € C? (Dr,0Dr) and integrating obtained equation
by parts in domain D7 we obtain

/ Oul¢ dz dt = A fu)pdxdt + Fodxdt. (1.3)
D Dr Dr

Here we used the equality

0¢ 0
Oule¢ dx dt = / —uds — ¢——0uds + ¢%u dx dt
/[)T 8DT 8N BDT aN DT

and the fact that since Dy is characteristic manifold, then derivative on the conor-
mal

0 0 - 0
8W = %+1§ - ;%07%’

where v = (71, -+, Vn, Yn+1) 1s the unit vector of external normal relative to D,
is an inner differential operator on characteristic manifold 0Dy and, thus, if v €
Co'l(bT,aDT)7 then %|8DT =0.

Let us introduce the Hilbert space WQI’D(DT) as a completion with respect to
the norm

ou 2. du
2 _ 2 OU o 2 2
||UHVDV21D(DT) _/DT [u +(5;) +;(axi) + (Ou)?] da dt (1.4)

of classical space C2 (Dr,0D7). Tt follows from that if u € W;}D(DT), then
uw € WH(Dr) and Ou € Ly(Dr). Here W (Dr) is the known Sobolev space [24,
p. 56|, consisting of elements from Lo(Dr), which have first order generalized
derivatives in Ly (D7), and Wi (Dr) = {u € W(Dr) : ulop, = 0}, where equality
u|ap, = 0 should be understood in the sense of the theory of trace [24], p. 70].

Let us assume as the basis of determination of generalized solution of

problem —.

Definition 1.1. Let F' € Ly(Dr). We call function u € W;D(DT) a weak gen-
eralized solution of problem (L.1)-(1.2) if f(u) € La(Dr) and for any function
¢ € Wy (Dr) it is valid integral equality (1.3)); i.e.

/ Oullg dar dt = A f(u)¢dxdt+/ Fodedt Ve Wis(Dr). (15)
Dt Dr D

T

It is easy to verify that if the solution u of problem ([L.1)-(1.2) in the sense of the
above definition belongs to the class C*(Dr), then it will be a classical solution of
this problem.
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2. SOLVABILITY OF ([L.1)-(1.2) WITH f(u) = |u|*sgnu

Assume that for a positive constant « # 1, the nonlinear function f in (1.1)) has
the form

fu) = |u|“sgnu. (2.1)
Then in accordance to (2.1]), equation (1.1) and (1.5)) take the form
Lyu := O%u = Mu|*sgnu + F (2.2)

and

/ Dungdzdt:)\/ ¢|u|asgnudxdt+/ F¢dx dt, VQSEVOI/;D(DT).
Dr Dr Dr ’

(2.3)
Lemma 2.1. With the norm of the space WQ,D(DT) given in (1.4)),
ol () < elTulzaon)  Yu € Win(Dr) (2.4

where ¢ is positive constant independent on u.

Proof. Since the space C? (Dr,0Dr) is the dense subspace of space WQ{D(DT) it is
sufficient to prove that for all u € mathaccent” 7017C*(Dy, dDr),

< CQHD“HiQ(D;/z)’ ||“H2 (2.5)

) 2
||u||W21,D(D;/2) oDz, )* HDUHL"‘(D;MV

where DT/2 = DTﬂ{t <T/2}, Dy, = Dprn{t > T/2} and the norm |- HWzl,EI(D%/Z)
is given by (|1.4]) with DT/2 instead of Drp.

Let us prove the first inequality of , the second inequality can be proved in
the same way. Assume ), := ﬁ;/zﬂ{t =71}, Df = T/zﬁ{t <7h ST ={(z,t) €
ODf :t=lz|},0<7<T/2and v = (V1,...,%n, Ynt+1) be the unit vector of outer

normal relative to D). For u € CQO(ETﬁDT), taking into account equalities
ulg+ =0, Qr = 0DF N {t = 7} and 7]o, = (0,...,0,1), integrating by parts it is
easy to obtain

82u 8u 1 8 8u 1/ au
7n+1d8
o

(2.6)
:%/ﬂ (‘?;Z) do + = / (‘?;:) Vnt1ds, T <T/2,

0%u Ou ou Ou 1 0,6 Ou
/Wwad dt = /W Dz ot 1T 5 /+at(axﬂ da dt

Ou Ou 1 Bu .,
= /({)D+ o at%ds 5 /3D+ (aixl) Vnt1dS

ou Ou 1 ou 1 ou 5
_/aj:)jaﬂﬁiab‘%ds_2/sj(a ) Yni1ds — 2/9 (8%) dz,

(2.7)
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with 7 < T'/2. Tt follows from ([2.6]) and (2.7)) that

ou
/D+ Dua— dz dt
" du u 2 ou "
[ mn [ G =) GO -] ey
i=1 j=1

1 Ouy =, Ou Ly
+2/QT [(E) +;(3xi)]dx’ r<T.

Since U‘Si = 0 and operator (’yn“% — ’yi%), 1 <i < n, is an inner differential
operator on S}, then we have the equalities

ou ou .
(a—xi’ym_l 5 %) |S+ =0, i=1,...,n. (2.9)
Therefore, taking into account that 42, , — Z?Zl 7]2- = 0 on the characteristic

manifold S, in view of (2.8) and (2.9)), we have

/Q [(?;)QJFZ(g;)Q]de/D Dug dedt, T<T/2. (2.10)
T i=1 ’ -

Assuming w(d) = fQ 2y (2 ) Jdz, and usmg mequahty 20udt <
e(24)?2 + %|Du|2, which is Vahd for any p051tlve g, from (2.10) we obtain

)
1
w(0) < 8/0 w(o)do + EHDHiQ(D;)’ 0<d6<T/2 (2.11)

From (2.11)), taking into account that value ||J||? as a function of ¢ is non-

Ly(DY)
decreasing, in view of Gronwall’s lemma [T} p. 13] it follows that

1 2
w(d) < g||D||L2(D;) exp J€.

Hence taking into account the fact that 1nf€>0 expde = ed and it is reached at

€ = =, we obtain

55
w(6) < eS|O)2, ey 0 <6 <T/2

From , in turn, it follows that

ou "\ du /2 e
/D+ [(at)z-yzl(azi)ﬂdxdt:/() w(@)ds < STYOuE, e o (212)

T/2

Using the equalities uls,,, = 0 and u(z,t) = flt a“(z Ddr, (z,t) € E;/% which

|
are valid for any function u € C20(5T7 0Dr), by Standard reasoning [24] p. 63] we
easily obtain

9 1 2/ ou 5
< - .
/D W (a,t) dedt < {T ()2 ddt. (2.13)

+ +
T/2 DT/
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By virtue of (2.12)) and (2.13]), we have

ou "L Ou
2 _ 2 o\ o 2 2
I o= G Y g+ O et

=1

€2 € 4 2
<(1+ §T + 3—2T )||D||L2(D;/2),

whence it follows the first inequality of (2.5) with constant ¢ = 14 7% + ST*.
The proof is complete. O

Lemma 2.2. Assume F € Ly(Dr), 0 < a < 1, and in the case when o > 1
additionally require that A\ < 0. Then for a weak generalized solution u € W21_D(DT)

of (1.1)-(L.2) in the case with nonlinearity of form (2.1)); i.e., problem (2.2))-(1.2]) in

the sense of integral equality (2.3)) with |u|* € Lo(Dr), it is valid a priori estimate
lullviy g (ory < LNz + 2 (2.14)

with non-negative constants c;(T, a, \), i = 1,2, which do not depend on u, F' and
c1 > 0.

Proof. First let « > 1 and A < 0. Assuming in (2.3) that ¢ = u € W;D(DT) and
taking into account (1.4)), for any € > 0 we have

T

:)\/ |u|* Tt dx dt + Fudx dt
DT DT

< Fudzxdt (2.15)
Dt

1 2 2
S %ATF dxdt+€||u||L2(DT)

1 2 2
< LI + el o,

Due to (2.4) and the above inequality we have

2 2 2 c 2 2 2
lells oy < NPz, 02y < G IF Ly (0 + ellullin [ nyy:

from which for £ = 515 < 2, we obtain
2c c2?

(32

2 2 A2
HUHV'V;D(DT) < mHF”LQ(DT) = |FlL,pr)-

From this inequality in the case @ > 1 and A < 0 follows inequality (2.14) with
c¢1 = c? and ¢p = 0.
Now let 0 < a < 1. Using the known inequality
ea? b?
ab < — +
p o ogqer!
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2

with parameter ¢ > 0 for a = |[u|*T1, b=1,p = T+1 >1,q= 17, 1174—% =1, in
the same way as for inequality (2.15)), we have
2
HDU||L2(DT)
= / (Ou)? dz dt
Dt
=) \u|°‘+1dxdt+/ Fudxdt
. . (2.16)
1 1-— 1
< |)\|/ E +O‘|u|2 + N dedt + — Fdedt+5/ u? d dt
2e q-1 4e Dr Dr
||F||L2(DT) +5(‘)‘|7+1)HUHL2(DT) + 1A \ T meas Dr.
In view of (1.4) and (2.4) it follows from (2.16) that
2
HUHWZ},D(DT)

< CQHDUH%Q(DT)

2
C 9 9 1+« 9
< NP o + 2N + Dl

where ¢ = 12-; whence for ¢ = Jc72(|]A|142 + 1)~
HUH%@’D(DT)
<[1—e(IN—=2+1)]” ( ||FHL2(DT) +e ) (217)
= NS+ 1)||FHL2<DT> +20

From , in the case when 0 < a < 1, follows inequality (2.14]) with ¢; =
(A5 1+°‘ +1)Y/2 and ¢, = (2| A 552 meas DT)1/2, where ¢ = . The proof is
complete ([l

Remark 2.3. From the proof of Lemma it follows that in estimate ([2.14) the
constants ¢; and ¢y are equal:

a>1, A<0: ¢ =¢% c3=0; (2.18)
I<a<l, —oo<A<+oo~
1
PRETON ;“H)l/? & (2IM % 1neas D)}, (2.19)

where constant ¢ = (1 + %T2 + §T4)1/2 is taken from estimate (2.4)), and ¢ = ﬁ

Remark 2.4. Below, we will consider a linear problem appropriate for ([L.1)-(1.2));
i.e., when A = 0. In this case for F' € Lo(Dry) it is analogously introduced a concept
of the weak generalized solution u € W, 5(Dr) of this problem, when

(u, d) ;:/D DquSdmdt:/D Fodrdt Y€ Wig(Dr). (2.20)
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Remark 2.5. In view of (1.4)) and (2.4)), taking into account that
|(Ow,0¢) 1, (D) = |/ DuD¢dmdt|
Dr

< ||DUHLZ(DT)||D¢||L2(DT)
3 [ N T .
the bilinear form

(u, )0 ::/D Oule dx dt

in (2.20) can be considered as a scalar product in the Hilbert space VDVQD(DT).
Therefore, since for F' € Ly(Dr)

| /D Fodzdt] < |Floon |9lla0r) < Il aon 9l g,
) |

then due to the Riesz theorem [7, p. 83| there is unique function u in the space
W;)D(DT)7 which satisfies equality ([2.20) for any ¢ € W217D(DT) and for the norm
of which it is valid estimate

s ory < IFNzaior (221)
Thus, introducing notation u = Ly LF, we obtain that to the linear problem appro-
priate to (1.1)-(1.2); i.e., when A = 0, corresponds the linear, bounded operator
L61 : Ly(Dr) — Wy n(Dr),
for the norm of which, by (2 , it is valid the estimate
Lo 1||L2 D)=} 5 (0r) < IF L2 (r)- (2:22)
Taking into account Definition and Remark 2.5 Equality (2.3) and Problem
(2.2)-(L.2) can be rewritten in the equivalent form
u = Ly [Mu|*sgnu + F] (2.23)
in the Hilbert space Wzl,D(DT).

Remark 2.6. The embedding operator I : W21(DT) — Ly(Dr) is a linear contin-
uous compact operator for 1 < q < %, when n > 2 [24] p. 81]. At the same
time the operator of Nemytskii N : L,(Dr) — L2(Dr), which acts according to
the formula Nu = Au|®sgnu, a > 1, is continuous and bounded for ¢ > 2« [22], p.
349], [23, pp. 66, 67]. Thus, if 1 < v < “EL then there exists such number ¢, that

1<2a<qg< (”_H) and hence the operator

Ny = NI : W} (Dy) — Lao(Dr) (2.24)

is continuous and compact operator. In this case since u € VOVZ (Dr) then it is
clear that f(u) = |u|*sgnu € Lo(Dy). Further, since in view of (L.4) the space
W2 D(DT) is continuously embedded in the space W2 (D7), then taking into account

the operator
Ny = NII; : W} 5(Dr) — Lao(Dr), (2.25)

where I : WQD(DT) — W1(Dr) is the embedding operator, continuous and com-

pact for 1 < a < Z—f} For 0 < o < 1 operator (2.25) is also continuous and
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compact, since according to the Rellich theorem [24, p. 64] the space Wi (Dr)
is continuously and compactly embedded into La(D7), and the space Lo(Dr), in
turn, is continuously embedded into L,(Dr) for p < 2.

Let us rewrite equation (2.23) in the form

u= Au:= Ly (Nyu + F), (2.26)
where the operator N : WQ{D(DT) — Lo(Dr), for 0 < a < Z—i, a # 1, is

continuous and compact in view of the Remark Then taking into account
operator A : WQ{D(DT) — WQ{D(DT) in is also continuous and compact. At
the same time according to a priori estimate (2.14) of the Lemma in which
the constants c¢; and cy are given by equalities and , for any parameter
7 € [0,1] and for any solution u € WQID(DT) of equation u = 7Au with this
parameter it is valid a priori estimation with constants ¢; > 0 and ¢y > 0,
not depending on u, 7 and F. Therefore, according to the Lere-Schauder theorem

[31, p. 375] equation (2.26)), and consequently problem (2.2)-(1.2) has at least one
weak generalized solution u in the space W3 o(D7). This is summarized in the
following result.

Theorem 2.7. Let 0 < o < ™ o £ 1, X # 0 and A < 0 when o > 1. Then

n—1’

for any F € Lo(Dr) problem (2.2))-(1.2) has at least one weak generalized solution
u € WQ{D(DT),
3. UNIQUENESS OF SOLUTION FOR ([I.1))-(1.2) WHEN f(u) = |u|*sgnu

Let F' € La(Dr), and ug, ug be two weak generalized solutions of (2.2)-(1.2)) in
the space W, 5(Dr). According to (2.3),

/ Ow;O¢ dx dt = A olug|* sgnu; do dt+/ Fodxdt V¢ € WQ,D(DT)
Dr

Dr
(3.1)
and |u;|* € Lo(Dr), i = 1,2. For the difference v = us — uy from (3.1)) it follows
that

/ OvO¢ dx dt = )\/ O(Jua|“ sgnus — |ug|*sgnuy)dedt Vo € WQ{D(DT).
DT DT
(3.2)

Dr

Assuming ¢ = v € WQID(DT) in the above equality, we obtain

/ (Ov)? da dt = )\/ (lug|® sgnug — |ug|® sgnuy)(ug — ug) du dt. (3.3)
Dr

Dr
Let us note that for the finite values of u; and us with o > 0 it is valid the inequality

(Juz|®sgnug — Juq|“ sgnuy)(ug —ug) > 0. (3.4)
From (3.3)) and inequality (3.4]), which is true for almost all points (x,t) € Dy with
u; € W;D(DT), i =1,2, in the case when a > 0 and A < 0 it follows that

/ (Ov)*dz dt <0,
Dt

whence, due to (2.4), we obtain v = 0; i.e. u; = ug. This result is summarized in
the next theorem.
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Theorem 3.1. Let a >0, a # 1 and A < 0. Then for any F € Lo(Dr), Problem
. cannot have more than one generalized solution in VV2 o(Dr).

The following result follows from Theorems [2.7] and
Theorem 3.2, Let 0 < a< 2l o #1 and A < 0. Then for any F € La(Dr),

n—1’

Problem . ) has an unique weak generalized solution u € W2 o(Dr).

4. NON-SOLVABILITY OF (|1.1))-(1.2) WHEN f(u) = |u|*
Now assume that in ([L.1)), and therefore in (1.3)), that f(u) = |u|¥, « > 1.
Theorem 4.1. Let FO € Ly(D7p), |F°||ry(pyy # 0, F© >0, and F = pF°, p is
a positive constant. Then when f(u) = |u|® with o > 1 and A > 0 there exists

a number po = po(F°,\,«) > 0 suh that for > po, problem (1.1] . can not
have a weak generalized solution in the space W2 o(Dr).

Proof. Let us assume that there is a solution u € WQI,D(DT) of problem (|1.1))-(1.2])
exists for any fixed p > 0. Then (|1.5)) takes the form

/ OuOe¢ dx dt = A |u\°‘¢dwdt—|—,u/ Fe¢pdrdt Yo € Wyn(Dr). (4.1)
Dt

Dr Dr

It is easy to verify that
/ Oul¢ dx dt = / uPpdrdt VYo e CD’4(ﬁT, ODr), (4.2)
DT DT

where C4*(Dr,0D7) = {u € C*Dr) : ulop, = 0} C WQ{D(DT). Indeed, since
u € I/T/QI,D(DT)7 and the space C2(Dr,dDyr) is dense in W%)D(DT), there exists
such sequence uy, € C? (Dy,0Dy) that

Jim g = ullys ) =0 (4.3)

Taking into account that

Ouy, 0 2
Oure dx dt = / —[¢pds — / up=——0ods + / up“pdx dt, (4.4
/DT oD~ aN oD 8N Dr ( )

where the derivative on the conormal 3% = ’Yn+1% -3, %% is an inner differ-

ential operator on characteristic manifold 0Dr, and, therefore %MDT = 0, since
uglop, = 0, then from (4.4) we obtain

/ Duqudedt:/ up % dx dt, (4.5)
Dr Dr

where v = (V1,...,Vn, Vnt1) is the unit vector of outer normal relative to dDr.
Passing in (4.5) to the limit with & — oo, in view of (1.4) and (4.3), we obtain
E2).

Taking into account (4.2) let us rewrite equality (4.1)) in the form

)\/ |u|aq’>dwdt:/ uD%dmdt—u/ F'¢dzdt Vo e C*Dr,0Dr). (4.6)
Dr Dr Dp
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Below we use the method of test functions [22 p. 10-12]. Let us select such a test
function ¢ € C*(D7,dDr), that ¢|p, > 0. If in Young’s inequality with parameter
e>0

1 /
abgiaa—i— —— 0%, a,b>0, d = @
a a'e®— a—1
we take a = |u|¢'/, b= ‘31‘/", then due to the fact that %’ =o' — 1, we have
o |00 e 1|02
[ ¢| = |u|gp= et < S+~ e (4.7)
By (4.7) and (4.6) we have the inequality
1 ]2 o
(A — 5)/ lul*$da dt < ——— / " e ar u/ FO¢ da dt;
@ Jpp a'e Dr @ Dy
whence for € < Aa we obtain
o gl ap '
“pdrdt < dodt — ——— F°¢dzdt.
o, e =t [, g = gt [, Fs
(4.8)
Taking into account the equalities o' = ~%5, a = a?‘—il, and
. Q 1
mn —+———— = —
0<e<ra (A —eg)a/e®—1 A7
which is reached at € = A, it follows from (4.8) that
1 2 o /
/ lu[*¢drdt < — / E° gt — M/ FO% dz dt.
Dr A pp ¢* ! A Jp,
Let us note that is not difficult to the existence of test function ¢, such that
45 _ [m
¢peC (l)T7 (’)DT), ¢|DT >0, kK= gf)a,*l drdt < +00. (49)
Dt

Indeed, it is easy to verify that the function
$a,t) = [(1* = |2)((T — 1) = |=[*)] "

for sufficiently large positive m satisfies conditions (4.9)).
According to the conditions in this theorem, F° € Ly(Dr), [|F°||1,py) # 0,
FY >0, and meas Dy < +o0. Then due to the fact that ¢|p, > 0 we have

0< k1= / F¢dxdt < +oo. (4.10)
Dt

Let us denote by g(u) the right side of inequality , which is a linear function
with respect to u, then in view of (4.9) and (4.10) we have

g(p) <0 for p>pp and g(p) > 0 for p < po, (4.11)

where
Ko a'p A Ko
9(pn) = N THI’ Ho = Wa
According to with @ > po the right side of inequality is negative, while
the left side is non-negative. This contradiction completes the proof. (I

> 0.
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